xref: /openbmc/linux/lib/iov_iter.c (revision 30363d65)
1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9 #include <linux/scatterlist.h>
10 
11 #define PIPE_PARANOIA /* for now */
12 
13 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
14 	size_t left;					\
15 	size_t wanted = n;				\
16 	__p = i->iov;					\
17 	__v.iov_len = min(n, __p->iov_len - skip);	\
18 	if (likely(__v.iov_len)) {			\
19 		__v.iov_base = __p->iov_base + skip;	\
20 		left = (STEP);				\
21 		__v.iov_len -= left;			\
22 		skip += __v.iov_len;			\
23 		n -= __v.iov_len;			\
24 	} else {					\
25 		left = 0;				\
26 	}						\
27 	while (unlikely(!left && n)) {			\
28 		__p++;					\
29 		__v.iov_len = min(n, __p->iov_len);	\
30 		if (unlikely(!__v.iov_len))		\
31 			continue;			\
32 		__v.iov_base = __p->iov_base;		\
33 		left = (STEP);				\
34 		__v.iov_len -= left;			\
35 		skip = __v.iov_len;			\
36 		n -= __v.iov_len;			\
37 	}						\
38 	n = wanted - n;					\
39 }
40 
41 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
42 	size_t wanted = n;				\
43 	__p = i->kvec;					\
44 	__v.iov_len = min(n, __p->iov_len - skip);	\
45 	if (likely(__v.iov_len)) {			\
46 		__v.iov_base = __p->iov_base + skip;	\
47 		(void)(STEP);				\
48 		skip += __v.iov_len;			\
49 		n -= __v.iov_len;			\
50 	}						\
51 	while (unlikely(n)) {				\
52 		__p++;					\
53 		__v.iov_len = min(n, __p->iov_len);	\
54 		if (unlikely(!__v.iov_len))		\
55 			continue;			\
56 		__v.iov_base = __p->iov_base;		\
57 		(void)(STEP);				\
58 		skip = __v.iov_len;			\
59 		n -= __v.iov_len;			\
60 	}						\
61 	n = wanted;					\
62 }
63 
64 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
65 	struct bvec_iter __start;			\
66 	__start.bi_size = n;				\
67 	__start.bi_bvec_done = skip;			\
68 	__start.bi_idx = 0;				\
69 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
70 		if (!__v.bv_len)			\
71 			continue;			\
72 		(void)(STEP);				\
73 	}						\
74 }
75 
76 #define iterate_all_kinds(i, n, v, I, B, K) {			\
77 	if (likely(n)) {					\
78 		size_t skip = i->iov_offset;			\
79 		if (unlikely(i->type & ITER_BVEC)) {		\
80 			struct bio_vec v;			\
81 			struct bvec_iter __bi;			\
82 			iterate_bvec(i, n, v, __bi, skip, (B))	\
83 		} else if (unlikely(i->type & ITER_KVEC)) {	\
84 			const struct kvec *kvec;		\
85 			struct kvec v;				\
86 			iterate_kvec(i, n, v, kvec, skip, (K))	\
87 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
88 		} else {					\
89 			const struct iovec *iov;		\
90 			struct iovec v;				\
91 			iterate_iovec(i, n, v, iov, skip, (I))	\
92 		}						\
93 	}							\
94 }
95 
96 #define iterate_and_advance(i, n, v, I, B, K) {			\
97 	if (unlikely(i->count < n))				\
98 		n = i->count;					\
99 	if (i->count) {						\
100 		size_t skip = i->iov_offset;			\
101 		if (unlikely(i->type & ITER_BVEC)) {		\
102 			const struct bio_vec *bvec = i->bvec;	\
103 			struct bio_vec v;			\
104 			struct bvec_iter __bi;			\
105 			iterate_bvec(i, n, v, __bi, skip, (B))	\
106 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
107 			i->nr_segs -= i->bvec - bvec;		\
108 			skip = __bi.bi_bvec_done;		\
109 		} else if (unlikely(i->type & ITER_KVEC)) {	\
110 			const struct kvec *kvec;		\
111 			struct kvec v;				\
112 			iterate_kvec(i, n, v, kvec, skip, (K))	\
113 			if (skip == kvec->iov_len) {		\
114 				kvec++;				\
115 				skip = 0;			\
116 			}					\
117 			i->nr_segs -= kvec - i->kvec;		\
118 			i->kvec = kvec;				\
119 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
120 			skip += n;				\
121 		} else {					\
122 			const struct iovec *iov;		\
123 			struct iovec v;				\
124 			iterate_iovec(i, n, v, iov, skip, (I))	\
125 			if (skip == iov->iov_len) {		\
126 				iov++;				\
127 				skip = 0;			\
128 			}					\
129 			i->nr_segs -= iov - i->iov;		\
130 			i->iov = iov;				\
131 		}						\
132 		i->count -= n;					\
133 		i->iov_offset = skip;				\
134 	}							\
135 }
136 
137 static int copyout(void __user *to, const void *from, size_t n)
138 {
139 	if (access_ok(to, n)) {
140 		kasan_check_read(from, n);
141 		n = raw_copy_to_user(to, from, n);
142 	}
143 	return n;
144 }
145 
146 static int copyin(void *to, const void __user *from, size_t n)
147 {
148 	if (access_ok(from, n)) {
149 		kasan_check_write(to, n);
150 		n = raw_copy_from_user(to, from, n);
151 	}
152 	return n;
153 }
154 
155 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
156 			 struct iov_iter *i)
157 {
158 	size_t skip, copy, left, wanted;
159 	const struct iovec *iov;
160 	char __user *buf;
161 	void *kaddr, *from;
162 
163 	if (unlikely(bytes > i->count))
164 		bytes = i->count;
165 
166 	if (unlikely(!bytes))
167 		return 0;
168 
169 	might_fault();
170 	wanted = bytes;
171 	iov = i->iov;
172 	skip = i->iov_offset;
173 	buf = iov->iov_base + skip;
174 	copy = min(bytes, iov->iov_len - skip);
175 
176 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
177 		kaddr = kmap_atomic(page);
178 		from = kaddr + offset;
179 
180 		/* first chunk, usually the only one */
181 		left = copyout(buf, from, copy);
182 		copy -= left;
183 		skip += copy;
184 		from += copy;
185 		bytes -= copy;
186 
187 		while (unlikely(!left && bytes)) {
188 			iov++;
189 			buf = iov->iov_base;
190 			copy = min(bytes, iov->iov_len);
191 			left = copyout(buf, from, copy);
192 			copy -= left;
193 			skip = copy;
194 			from += copy;
195 			bytes -= copy;
196 		}
197 		if (likely(!bytes)) {
198 			kunmap_atomic(kaddr);
199 			goto done;
200 		}
201 		offset = from - kaddr;
202 		buf += copy;
203 		kunmap_atomic(kaddr);
204 		copy = min(bytes, iov->iov_len - skip);
205 	}
206 	/* Too bad - revert to non-atomic kmap */
207 
208 	kaddr = kmap(page);
209 	from = kaddr + offset;
210 	left = copyout(buf, from, copy);
211 	copy -= left;
212 	skip += copy;
213 	from += copy;
214 	bytes -= copy;
215 	while (unlikely(!left && bytes)) {
216 		iov++;
217 		buf = iov->iov_base;
218 		copy = min(bytes, iov->iov_len);
219 		left = copyout(buf, from, copy);
220 		copy -= left;
221 		skip = copy;
222 		from += copy;
223 		bytes -= copy;
224 	}
225 	kunmap(page);
226 
227 done:
228 	if (skip == iov->iov_len) {
229 		iov++;
230 		skip = 0;
231 	}
232 	i->count -= wanted - bytes;
233 	i->nr_segs -= iov - i->iov;
234 	i->iov = iov;
235 	i->iov_offset = skip;
236 	return wanted - bytes;
237 }
238 
239 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
240 			 struct iov_iter *i)
241 {
242 	size_t skip, copy, left, wanted;
243 	const struct iovec *iov;
244 	char __user *buf;
245 	void *kaddr, *to;
246 
247 	if (unlikely(bytes > i->count))
248 		bytes = i->count;
249 
250 	if (unlikely(!bytes))
251 		return 0;
252 
253 	might_fault();
254 	wanted = bytes;
255 	iov = i->iov;
256 	skip = i->iov_offset;
257 	buf = iov->iov_base + skip;
258 	copy = min(bytes, iov->iov_len - skip);
259 
260 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
261 		kaddr = kmap_atomic(page);
262 		to = kaddr + offset;
263 
264 		/* first chunk, usually the only one */
265 		left = copyin(to, buf, copy);
266 		copy -= left;
267 		skip += copy;
268 		to += copy;
269 		bytes -= copy;
270 
271 		while (unlikely(!left && bytes)) {
272 			iov++;
273 			buf = iov->iov_base;
274 			copy = min(bytes, iov->iov_len);
275 			left = copyin(to, buf, copy);
276 			copy -= left;
277 			skip = copy;
278 			to += copy;
279 			bytes -= copy;
280 		}
281 		if (likely(!bytes)) {
282 			kunmap_atomic(kaddr);
283 			goto done;
284 		}
285 		offset = to - kaddr;
286 		buf += copy;
287 		kunmap_atomic(kaddr);
288 		copy = min(bytes, iov->iov_len - skip);
289 	}
290 	/* Too bad - revert to non-atomic kmap */
291 
292 	kaddr = kmap(page);
293 	to = kaddr + offset;
294 	left = copyin(to, buf, copy);
295 	copy -= left;
296 	skip += copy;
297 	to += copy;
298 	bytes -= copy;
299 	while (unlikely(!left && bytes)) {
300 		iov++;
301 		buf = iov->iov_base;
302 		copy = min(bytes, iov->iov_len);
303 		left = copyin(to, buf, copy);
304 		copy -= left;
305 		skip = copy;
306 		to += copy;
307 		bytes -= copy;
308 	}
309 	kunmap(page);
310 
311 done:
312 	if (skip == iov->iov_len) {
313 		iov++;
314 		skip = 0;
315 	}
316 	i->count -= wanted - bytes;
317 	i->nr_segs -= iov - i->iov;
318 	i->iov = iov;
319 	i->iov_offset = skip;
320 	return wanted - bytes;
321 }
322 
323 #ifdef PIPE_PARANOIA
324 static bool sanity(const struct iov_iter *i)
325 {
326 	struct pipe_inode_info *pipe = i->pipe;
327 	int idx = i->idx;
328 	int next = pipe->curbuf + pipe->nrbufs;
329 	if (i->iov_offset) {
330 		struct pipe_buffer *p;
331 		if (unlikely(!pipe->nrbufs))
332 			goto Bad;	// pipe must be non-empty
333 		if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
334 			goto Bad;	// must be at the last buffer...
335 
336 		p = &pipe->bufs[idx];
337 		if (unlikely(p->offset + p->len != i->iov_offset))
338 			goto Bad;	// ... at the end of segment
339 	} else {
340 		if (idx != (next & (pipe->buffers - 1)))
341 			goto Bad;	// must be right after the last buffer
342 	}
343 	return true;
344 Bad:
345 	printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
346 	printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
347 			pipe->curbuf, pipe->nrbufs, pipe->buffers);
348 	for (idx = 0; idx < pipe->buffers; idx++)
349 		printk(KERN_ERR "[%p %p %d %d]\n",
350 			pipe->bufs[idx].ops,
351 			pipe->bufs[idx].page,
352 			pipe->bufs[idx].offset,
353 			pipe->bufs[idx].len);
354 	WARN_ON(1);
355 	return false;
356 }
357 #else
358 #define sanity(i) true
359 #endif
360 
361 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
362 {
363 	return (idx + 1) & (pipe->buffers - 1);
364 }
365 
366 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
367 			 struct iov_iter *i)
368 {
369 	struct pipe_inode_info *pipe = i->pipe;
370 	struct pipe_buffer *buf;
371 	size_t off;
372 	int idx;
373 
374 	if (unlikely(bytes > i->count))
375 		bytes = i->count;
376 
377 	if (unlikely(!bytes))
378 		return 0;
379 
380 	if (!sanity(i))
381 		return 0;
382 
383 	off = i->iov_offset;
384 	idx = i->idx;
385 	buf = &pipe->bufs[idx];
386 	if (off) {
387 		if (offset == off && buf->page == page) {
388 			/* merge with the last one */
389 			buf->len += bytes;
390 			i->iov_offset += bytes;
391 			goto out;
392 		}
393 		idx = next_idx(idx, pipe);
394 		buf = &pipe->bufs[idx];
395 	}
396 	if (idx == pipe->curbuf && pipe->nrbufs)
397 		return 0;
398 	pipe->nrbufs++;
399 	buf->ops = &page_cache_pipe_buf_ops;
400 	get_page(buf->page = page);
401 	buf->offset = offset;
402 	buf->len = bytes;
403 	i->iov_offset = offset + bytes;
404 	i->idx = idx;
405 out:
406 	i->count -= bytes;
407 	return bytes;
408 }
409 
410 /*
411  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
412  * bytes.  For each iovec, fault in each page that constitutes the iovec.
413  *
414  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
415  * because it is an invalid address).
416  */
417 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
418 {
419 	size_t skip = i->iov_offset;
420 	const struct iovec *iov;
421 	int err;
422 	struct iovec v;
423 
424 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
425 		iterate_iovec(i, bytes, v, iov, skip, ({
426 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
427 			if (unlikely(err))
428 			return err;
429 		0;}))
430 	}
431 	return 0;
432 }
433 EXPORT_SYMBOL(iov_iter_fault_in_readable);
434 
435 void iov_iter_init(struct iov_iter *i, unsigned int direction,
436 			const struct iovec *iov, unsigned long nr_segs,
437 			size_t count)
438 {
439 	WARN_ON(direction & ~(READ | WRITE));
440 	direction &= READ | WRITE;
441 
442 	/* It will get better.  Eventually... */
443 	if (uaccess_kernel()) {
444 		i->type = ITER_KVEC | direction;
445 		i->kvec = (struct kvec *)iov;
446 	} else {
447 		i->type = ITER_IOVEC | direction;
448 		i->iov = iov;
449 	}
450 	i->nr_segs = nr_segs;
451 	i->iov_offset = 0;
452 	i->count = count;
453 }
454 EXPORT_SYMBOL(iov_iter_init);
455 
456 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
457 {
458 	char *from = kmap_atomic(page);
459 	memcpy(to, from + offset, len);
460 	kunmap_atomic(from);
461 }
462 
463 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
464 {
465 	char *to = kmap_atomic(page);
466 	memcpy(to + offset, from, len);
467 	kunmap_atomic(to);
468 }
469 
470 static void memzero_page(struct page *page, size_t offset, size_t len)
471 {
472 	char *addr = kmap_atomic(page);
473 	memset(addr + offset, 0, len);
474 	kunmap_atomic(addr);
475 }
476 
477 static inline bool allocated(struct pipe_buffer *buf)
478 {
479 	return buf->ops == &default_pipe_buf_ops;
480 }
481 
482 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
483 {
484 	size_t off = i->iov_offset;
485 	int idx = i->idx;
486 	if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
487 		idx = next_idx(idx, i->pipe);
488 		off = 0;
489 	}
490 	*idxp = idx;
491 	*offp = off;
492 }
493 
494 static size_t push_pipe(struct iov_iter *i, size_t size,
495 			int *idxp, size_t *offp)
496 {
497 	struct pipe_inode_info *pipe = i->pipe;
498 	size_t off;
499 	int idx;
500 	ssize_t left;
501 
502 	if (unlikely(size > i->count))
503 		size = i->count;
504 	if (unlikely(!size))
505 		return 0;
506 
507 	left = size;
508 	data_start(i, &idx, &off);
509 	*idxp = idx;
510 	*offp = off;
511 	if (off) {
512 		left -= PAGE_SIZE - off;
513 		if (left <= 0) {
514 			pipe->bufs[idx].len += size;
515 			return size;
516 		}
517 		pipe->bufs[idx].len = PAGE_SIZE;
518 		idx = next_idx(idx, pipe);
519 	}
520 	while (idx != pipe->curbuf || !pipe->nrbufs) {
521 		struct page *page = alloc_page(GFP_USER);
522 		if (!page)
523 			break;
524 		pipe->nrbufs++;
525 		pipe->bufs[idx].ops = &default_pipe_buf_ops;
526 		pipe->bufs[idx].page = page;
527 		pipe->bufs[idx].offset = 0;
528 		if (left <= PAGE_SIZE) {
529 			pipe->bufs[idx].len = left;
530 			return size;
531 		}
532 		pipe->bufs[idx].len = PAGE_SIZE;
533 		left -= PAGE_SIZE;
534 		idx = next_idx(idx, pipe);
535 	}
536 	return size - left;
537 }
538 
539 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
540 				struct iov_iter *i)
541 {
542 	struct pipe_inode_info *pipe = i->pipe;
543 	size_t n, off;
544 	int idx;
545 
546 	if (!sanity(i))
547 		return 0;
548 
549 	bytes = n = push_pipe(i, bytes, &idx, &off);
550 	if (unlikely(!n))
551 		return 0;
552 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
553 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
554 		memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
555 		i->idx = idx;
556 		i->iov_offset = off + chunk;
557 		n -= chunk;
558 		addr += chunk;
559 	}
560 	i->count -= bytes;
561 	return bytes;
562 }
563 
564 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
565 			      __wsum sum, size_t off)
566 {
567 	__wsum next = csum_partial_copy_nocheck(from, to, len, 0);
568 	return csum_block_add(sum, next, off);
569 }
570 
571 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
572 				__wsum *csum, struct iov_iter *i)
573 {
574 	struct pipe_inode_info *pipe = i->pipe;
575 	size_t n, r;
576 	size_t off = 0;
577 	__wsum sum = *csum;
578 	int idx;
579 
580 	if (!sanity(i))
581 		return 0;
582 
583 	bytes = n = push_pipe(i, bytes, &idx, &r);
584 	if (unlikely(!n))
585 		return 0;
586 	for ( ; n; idx = next_idx(idx, pipe), r = 0) {
587 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
588 		char *p = kmap_atomic(pipe->bufs[idx].page);
589 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
590 		kunmap_atomic(p);
591 		i->idx = idx;
592 		i->iov_offset = r + chunk;
593 		n -= chunk;
594 		off += chunk;
595 		addr += chunk;
596 	}
597 	i->count -= bytes;
598 	*csum = sum;
599 	return bytes;
600 }
601 
602 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
603 {
604 	const char *from = addr;
605 	if (unlikely(iov_iter_is_pipe(i)))
606 		return copy_pipe_to_iter(addr, bytes, i);
607 	if (iter_is_iovec(i))
608 		might_fault();
609 	iterate_and_advance(i, bytes, v,
610 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
611 		memcpy_to_page(v.bv_page, v.bv_offset,
612 			       (from += v.bv_len) - v.bv_len, v.bv_len),
613 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
614 	)
615 
616 	return bytes;
617 }
618 EXPORT_SYMBOL(_copy_to_iter);
619 
620 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
621 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
622 {
623 	if (access_ok(to, n)) {
624 		kasan_check_read(from, n);
625 		n = copy_to_user_mcsafe((__force void *) to, from, n);
626 	}
627 	return n;
628 }
629 
630 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
631 		const char *from, size_t len)
632 {
633 	unsigned long ret;
634 	char *to;
635 
636 	to = kmap_atomic(page);
637 	ret = memcpy_mcsafe(to + offset, from, len);
638 	kunmap_atomic(to);
639 
640 	return ret;
641 }
642 
643 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
644 				struct iov_iter *i)
645 {
646 	struct pipe_inode_info *pipe = i->pipe;
647 	size_t n, off, xfer = 0;
648 	int idx;
649 
650 	if (!sanity(i))
651 		return 0;
652 
653 	bytes = n = push_pipe(i, bytes, &idx, &off);
654 	if (unlikely(!n))
655 		return 0;
656 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
657 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
658 		unsigned long rem;
659 
660 		rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
661 				chunk);
662 		i->idx = idx;
663 		i->iov_offset = off + chunk - rem;
664 		xfer += chunk - rem;
665 		if (rem)
666 			break;
667 		n -= chunk;
668 		addr += chunk;
669 	}
670 	i->count -= xfer;
671 	return xfer;
672 }
673 
674 /**
675  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
676  * @addr: source kernel address
677  * @bytes: total transfer length
678  * @iter: destination iterator
679  *
680  * The pmem driver arranges for filesystem-dax to use this facility via
681  * dax_copy_to_iter() for protecting read/write to persistent memory.
682  * Unless / until an architecture can guarantee identical performance
683  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
684  * performance regression to switch more users to the mcsafe version.
685  *
686  * Otherwise, the main differences between this and typical _copy_to_iter().
687  *
688  * * Typical tail/residue handling after a fault retries the copy
689  *   byte-by-byte until the fault happens again. Re-triggering machine
690  *   checks is potentially fatal so the implementation uses source
691  *   alignment and poison alignment assumptions to avoid re-triggering
692  *   hardware exceptions.
693  *
694  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
695  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
696  *   a short copy.
697  *
698  * See MCSAFE_TEST for self-test.
699  */
700 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
701 {
702 	const char *from = addr;
703 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
704 
705 	if (unlikely(iov_iter_is_pipe(i)))
706 		return copy_pipe_to_iter_mcsafe(addr, bytes, i);
707 	if (iter_is_iovec(i))
708 		might_fault();
709 	iterate_and_advance(i, bytes, v,
710 		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
711 		({
712 		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
713                                (from += v.bv_len) - v.bv_len, v.bv_len);
714 		if (rem) {
715 			curr_addr = (unsigned long) from;
716 			bytes = curr_addr - s_addr - rem;
717 			return bytes;
718 		}
719 		}),
720 		({
721 		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
722 				v.iov_len);
723 		if (rem) {
724 			curr_addr = (unsigned long) from;
725 			bytes = curr_addr - s_addr - rem;
726 			return bytes;
727 		}
728 		})
729 	)
730 
731 	return bytes;
732 }
733 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
734 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
735 
736 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
737 {
738 	char *to = addr;
739 	if (unlikely(iov_iter_is_pipe(i))) {
740 		WARN_ON(1);
741 		return 0;
742 	}
743 	if (iter_is_iovec(i))
744 		might_fault();
745 	iterate_and_advance(i, bytes, v,
746 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
747 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
748 				 v.bv_offset, v.bv_len),
749 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
750 	)
751 
752 	return bytes;
753 }
754 EXPORT_SYMBOL(_copy_from_iter);
755 
756 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
757 {
758 	char *to = addr;
759 	if (unlikely(iov_iter_is_pipe(i))) {
760 		WARN_ON(1);
761 		return false;
762 	}
763 	if (unlikely(i->count < bytes))
764 		return false;
765 
766 	if (iter_is_iovec(i))
767 		might_fault();
768 	iterate_all_kinds(i, bytes, v, ({
769 		if (copyin((to += v.iov_len) - v.iov_len,
770 				      v.iov_base, v.iov_len))
771 			return false;
772 		0;}),
773 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
774 				 v.bv_offset, v.bv_len),
775 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
776 	)
777 
778 	iov_iter_advance(i, bytes);
779 	return true;
780 }
781 EXPORT_SYMBOL(_copy_from_iter_full);
782 
783 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
784 {
785 	char *to = addr;
786 	if (unlikely(iov_iter_is_pipe(i))) {
787 		WARN_ON(1);
788 		return 0;
789 	}
790 	iterate_and_advance(i, bytes, v,
791 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
792 					 v.iov_base, v.iov_len),
793 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
794 				 v.bv_offset, v.bv_len),
795 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
796 	)
797 
798 	return bytes;
799 }
800 EXPORT_SYMBOL(_copy_from_iter_nocache);
801 
802 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
803 /**
804  * _copy_from_iter_flushcache - write destination through cpu cache
805  * @addr: destination kernel address
806  * @bytes: total transfer length
807  * @iter: source iterator
808  *
809  * The pmem driver arranges for filesystem-dax to use this facility via
810  * dax_copy_from_iter() for ensuring that writes to persistent memory
811  * are flushed through the CPU cache. It is differentiated from
812  * _copy_from_iter_nocache() in that guarantees all data is flushed for
813  * all iterator types. The _copy_from_iter_nocache() only attempts to
814  * bypass the cache for the ITER_IOVEC case, and on some archs may use
815  * instructions that strand dirty-data in the cache.
816  */
817 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
818 {
819 	char *to = addr;
820 	if (unlikely(iov_iter_is_pipe(i))) {
821 		WARN_ON(1);
822 		return 0;
823 	}
824 	iterate_and_advance(i, bytes, v,
825 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
826 					 v.iov_base, v.iov_len),
827 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
828 				 v.bv_offset, v.bv_len),
829 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
830 			v.iov_len)
831 	)
832 
833 	return bytes;
834 }
835 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
836 #endif
837 
838 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
839 {
840 	char *to = addr;
841 	if (unlikely(iov_iter_is_pipe(i))) {
842 		WARN_ON(1);
843 		return false;
844 	}
845 	if (unlikely(i->count < bytes))
846 		return false;
847 	iterate_all_kinds(i, bytes, v, ({
848 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
849 					     v.iov_base, v.iov_len))
850 			return false;
851 		0;}),
852 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
853 				 v.bv_offset, v.bv_len),
854 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
855 	)
856 
857 	iov_iter_advance(i, bytes);
858 	return true;
859 }
860 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
861 
862 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
863 {
864 	struct page *head = compound_head(page);
865 	size_t v = n + offset + page_address(page) - page_address(head);
866 
867 	if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
868 		return true;
869 	WARN_ON(1);
870 	return false;
871 }
872 
873 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
874 			 struct iov_iter *i)
875 {
876 	if (unlikely(!page_copy_sane(page, offset, bytes)))
877 		return 0;
878 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
879 		void *kaddr = kmap_atomic(page);
880 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
881 		kunmap_atomic(kaddr);
882 		return wanted;
883 	} else if (unlikely(iov_iter_is_discard(i)))
884 		return bytes;
885 	else if (likely(!iov_iter_is_pipe(i)))
886 		return copy_page_to_iter_iovec(page, offset, bytes, i);
887 	else
888 		return copy_page_to_iter_pipe(page, offset, bytes, i);
889 }
890 EXPORT_SYMBOL(copy_page_to_iter);
891 
892 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
893 			 struct iov_iter *i)
894 {
895 	if (unlikely(!page_copy_sane(page, offset, bytes)))
896 		return 0;
897 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
898 		WARN_ON(1);
899 		return 0;
900 	}
901 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
902 		void *kaddr = kmap_atomic(page);
903 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
904 		kunmap_atomic(kaddr);
905 		return wanted;
906 	} else
907 		return copy_page_from_iter_iovec(page, offset, bytes, i);
908 }
909 EXPORT_SYMBOL(copy_page_from_iter);
910 
911 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
912 {
913 	struct pipe_inode_info *pipe = i->pipe;
914 	size_t n, off;
915 	int idx;
916 
917 	if (!sanity(i))
918 		return 0;
919 
920 	bytes = n = push_pipe(i, bytes, &idx, &off);
921 	if (unlikely(!n))
922 		return 0;
923 
924 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
925 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
926 		memzero_page(pipe->bufs[idx].page, off, chunk);
927 		i->idx = idx;
928 		i->iov_offset = off + chunk;
929 		n -= chunk;
930 	}
931 	i->count -= bytes;
932 	return bytes;
933 }
934 
935 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
936 {
937 	if (unlikely(iov_iter_is_pipe(i)))
938 		return pipe_zero(bytes, i);
939 	iterate_and_advance(i, bytes, v,
940 		clear_user(v.iov_base, v.iov_len),
941 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
942 		memset(v.iov_base, 0, v.iov_len)
943 	)
944 
945 	return bytes;
946 }
947 EXPORT_SYMBOL(iov_iter_zero);
948 
949 size_t iov_iter_copy_from_user_atomic(struct page *page,
950 		struct iov_iter *i, unsigned long offset, size_t bytes)
951 {
952 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
953 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
954 		kunmap_atomic(kaddr);
955 		return 0;
956 	}
957 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
958 		kunmap_atomic(kaddr);
959 		WARN_ON(1);
960 		return 0;
961 	}
962 	iterate_all_kinds(i, bytes, v,
963 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
964 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
965 				 v.bv_offset, v.bv_len),
966 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
967 	)
968 	kunmap_atomic(kaddr);
969 	return bytes;
970 }
971 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
972 
973 static inline void pipe_truncate(struct iov_iter *i)
974 {
975 	struct pipe_inode_info *pipe = i->pipe;
976 	if (pipe->nrbufs) {
977 		size_t off = i->iov_offset;
978 		int idx = i->idx;
979 		int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
980 		if (off) {
981 			pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
982 			idx = next_idx(idx, pipe);
983 			nrbufs++;
984 		}
985 		while (pipe->nrbufs > nrbufs) {
986 			pipe_buf_release(pipe, &pipe->bufs[idx]);
987 			idx = next_idx(idx, pipe);
988 			pipe->nrbufs--;
989 		}
990 	}
991 }
992 
993 static void pipe_advance(struct iov_iter *i, size_t size)
994 {
995 	struct pipe_inode_info *pipe = i->pipe;
996 	if (unlikely(i->count < size))
997 		size = i->count;
998 	if (size) {
999 		struct pipe_buffer *buf;
1000 		size_t off = i->iov_offset, left = size;
1001 		int idx = i->idx;
1002 		if (off) /* make it relative to the beginning of buffer */
1003 			left += off - pipe->bufs[idx].offset;
1004 		while (1) {
1005 			buf = &pipe->bufs[idx];
1006 			if (left <= buf->len)
1007 				break;
1008 			left -= buf->len;
1009 			idx = next_idx(idx, pipe);
1010 		}
1011 		i->idx = idx;
1012 		i->iov_offset = buf->offset + left;
1013 	}
1014 	i->count -= size;
1015 	/* ... and discard everything past that point */
1016 	pipe_truncate(i);
1017 }
1018 
1019 void iov_iter_advance(struct iov_iter *i, size_t size)
1020 {
1021 	if (unlikely(iov_iter_is_pipe(i))) {
1022 		pipe_advance(i, size);
1023 		return;
1024 	}
1025 	if (unlikely(iov_iter_is_discard(i))) {
1026 		i->count -= size;
1027 		return;
1028 	}
1029 	iterate_and_advance(i, size, v, 0, 0, 0)
1030 }
1031 EXPORT_SYMBOL(iov_iter_advance);
1032 
1033 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1034 {
1035 	if (!unroll)
1036 		return;
1037 	if (WARN_ON(unroll > MAX_RW_COUNT))
1038 		return;
1039 	i->count += unroll;
1040 	if (unlikely(iov_iter_is_pipe(i))) {
1041 		struct pipe_inode_info *pipe = i->pipe;
1042 		int idx = i->idx;
1043 		size_t off = i->iov_offset;
1044 		while (1) {
1045 			size_t n = off - pipe->bufs[idx].offset;
1046 			if (unroll < n) {
1047 				off -= unroll;
1048 				break;
1049 			}
1050 			unroll -= n;
1051 			if (!unroll && idx == i->start_idx) {
1052 				off = 0;
1053 				break;
1054 			}
1055 			if (!idx--)
1056 				idx = pipe->buffers - 1;
1057 			off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1058 		}
1059 		i->iov_offset = off;
1060 		i->idx = idx;
1061 		pipe_truncate(i);
1062 		return;
1063 	}
1064 	if (unlikely(iov_iter_is_discard(i)))
1065 		return;
1066 	if (unroll <= i->iov_offset) {
1067 		i->iov_offset -= unroll;
1068 		return;
1069 	}
1070 	unroll -= i->iov_offset;
1071 	if (iov_iter_is_bvec(i)) {
1072 		const struct bio_vec *bvec = i->bvec;
1073 		while (1) {
1074 			size_t n = (--bvec)->bv_len;
1075 			i->nr_segs++;
1076 			if (unroll <= n) {
1077 				i->bvec = bvec;
1078 				i->iov_offset = n - unroll;
1079 				return;
1080 			}
1081 			unroll -= n;
1082 		}
1083 	} else { /* same logics for iovec and kvec */
1084 		const struct iovec *iov = i->iov;
1085 		while (1) {
1086 			size_t n = (--iov)->iov_len;
1087 			i->nr_segs++;
1088 			if (unroll <= n) {
1089 				i->iov = iov;
1090 				i->iov_offset = n - unroll;
1091 				return;
1092 			}
1093 			unroll -= n;
1094 		}
1095 	}
1096 }
1097 EXPORT_SYMBOL(iov_iter_revert);
1098 
1099 /*
1100  * Return the count of just the current iov_iter segment.
1101  */
1102 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1103 {
1104 	if (unlikely(iov_iter_is_pipe(i)))
1105 		return i->count;	// it is a silly place, anyway
1106 	if (i->nr_segs == 1)
1107 		return i->count;
1108 	if (unlikely(iov_iter_is_discard(i)))
1109 		return i->count;
1110 	else if (iov_iter_is_bvec(i))
1111 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1112 	else
1113 		return min(i->count, i->iov->iov_len - i->iov_offset);
1114 }
1115 EXPORT_SYMBOL(iov_iter_single_seg_count);
1116 
1117 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1118 			const struct kvec *kvec, unsigned long nr_segs,
1119 			size_t count)
1120 {
1121 	WARN_ON(direction & ~(READ | WRITE));
1122 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1123 	i->kvec = kvec;
1124 	i->nr_segs = nr_segs;
1125 	i->iov_offset = 0;
1126 	i->count = count;
1127 }
1128 EXPORT_SYMBOL(iov_iter_kvec);
1129 
1130 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1131 			const struct bio_vec *bvec, unsigned long nr_segs,
1132 			size_t count)
1133 {
1134 	WARN_ON(direction & ~(READ | WRITE));
1135 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1136 	i->bvec = bvec;
1137 	i->nr_segs = nr_segs;
1138 	i->iov_offset = 0;
1139 	i->count = count;
1140 }
1141 EXPORT_SYMBOL(iov_iter_bvec);
1142 
1143 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1144 			struct pipe_inode_info *pipe,
1145 			size_t count)
1146 {
1147 	BUG_ON(direction != READ);
1148 	WARN_ON(pipe->nrbufs == pipe->buffers);
1149 	i->type = ITER_PIPE | READ;
1150 	i->pipe = pipe;
1151 	i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1152 	i->iov_offset = 0;
1153 	i->count = count;
1154 	i->start_idx = i->idx;
1155 }
1156 EXPORT_SYMBOL(iov_iter_pipe);
1157 
1158 /**
1159  * iov_iter_discard - Initialise an I/O iterator that discards data
1160  * @i: The iterator to initialise.
1161  * @direction: The direction of the transfer.
1162  * @count: The size of the I/O buffer in bytes.
1163  *
1164  * Set up an I/O iterator that just discards everything that's written to it.
1165  * It's only available as a READ iterator.
1166  */
1167 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1168 {
1169 	BUG_ON(direction != READ);
1170 	i->type = ITER_DISCARD | READ;
1171 	i->count = count;
1172 	i->iov_offset = 0;
1173 }
1174 EXPORT_SYMBOL(iov_iter_discard);
1175 
1176 unsigned long iov_iter_alignment(const struct iov_iter *i)
1177 {
1178 	unsigned long res = 0;
1179 	size_t size = i->count;
1180 
1181 	if (unlikely(iov_iter_is_pipe(i))) {
1182 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1183 			return size | i->iov_offset;
1184 		return size;
1185 	}
1186 	iterate_all_kinds(i, size, v,
1187 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1188 		res |= v.bv_offset | v.bv_len,
1189 		res |= (unsigned long)v.iov_base | v.iov_len
1190 	)
1191 	return res;
1192 }
1193 EXPORT_SYMBOL(iov_iter_alignment);
1194 
1195 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1196 {
1197 	unsigned long res = 0;
1198 	size_t size = i->count;
1199 
1200 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1201 		WARN_ON(1);
1202 		return ~0U;
1203 	}
1204 
1205 	iterate_all_kinds(i, size, v,
1206 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1207 			(size != v.iov_len ? size : 0), 0),
1208 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1209 			(size != v.bv_len ? size : 0)),
1210 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1211 			(size != v.iov_len ? size : 0))
1212 		);
1213 	return res;
1214 }
1215 EXPORT_SYMBOL(iov_iter_gap_alignment);
1216 
1217 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1218 				size_t maxsize,
1219 				struct page **pages,
1220 				int idx,
1221 				size_t *start)
1222 {
1223 	struct pipe_inode_info *pipe = i->pipe;
1224 	ssize_t n = push_pipe(i, maxsize, &idx, start);
1225 	if (!n)
1226 		return -EFAULT;
1227 
1228 	maxsize = n;
1229 	n += *start;
1230 	while (n > 0) {
1231 		get_page(*pages++ = pipe->bufs[idx].page);
1232 		idx = next_idx(idx, pipe);
1233 		n -= PAGE_SIZE;
1234 	}
1235 
1236 	return maxsize;
1237 }
1238 
1239 static ssize_t pipe_get_pages(struct iov_iter *i,
1240 		   struct page **pages, size_t maxsize, unsigned maxpages,
1241 		   size_t *start)
1242 {
1243 	unsigned npages;
1244 	size_t capacity;
1245 	int idx;
1246 
1247 	if (!maxsize)
1248 		return 0;
1249 
1250 	if (!sanity(i))
1251 		return -EFAULT;
1252 
1253 	data_start(i, &idx, start);
1254 	/* some of this one + all after this one */
1255 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1256 	capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1257 
1258 	return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1259 }
1260 
1261 ssize_t iov_iter_get_pages(struct iov_iter *i,
1262 		   struct page **pages, size_t maxsize, unsigned maxpages,
1263 		   size_t *start)
1264 {
1265 	if (maxsize > i->count)
1266 		maxsize = i->count;
1267 
1268 	if (unlikely(iov_iter_is_pipe(i)))
1269 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1270 	if (unlikely(iov_iter_is_discard(i)))
1271 		return -EFAULT;
1272 
1273 	iterate_all_kinds(i, maxsize, v, ({
1274 		unsigned long addr = (unsigned long)v.iov_base;
1275 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1276 		int n;
1277 		int res;
1278 
1279 		if (len > maxpages * PAGE_SIZE)
1280 			len = maxpages * PAGE_SIZE;
1281 		addr &= ~(PAGE_SIZE - 1);
1282 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1283 		res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, pages);
1284 		if (unlikely(res < 0))
1285 			return res;
1286 		return (res == n ? len : res * PAGE_SIZE) - *start;
1287 	0;}),({
1288 		/* can't be more than PAGE_SIZE */
1289 		*start = v.bv_offset;
1290 		get_page(*pages = v.bv_page);
1291 		return v.bv_len;
1292 	}),({
1293 		return -EFAULT;
1294 	})
1295 	)
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL(iov_iter_get_pages);
1299 
1300 static struct page **get_pages_array(size_t n)
1301 {
1302 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1303 }
1304 
1305 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1306 		   struct page ***pages, size_t maxsize,
1307 		   size_t *start)
1308 {
1309 	struct page **p;
1310 	ssize_t n;
1311 	int idx;
1312 	int npages;
1313 
1314 	if (!maxsize)
1315 		return 0;
1316 
1317 	if (!sanity(i))
1318 		return -EFAULT;
1319 
1320 	data_start(i, &idx, start);
1321 	/* some of this one + all after this one */
1322 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1323 	n = npages * PAGE_SIZE - *start;
1324 	if (maxsize > n)
1325 		maxsize = n;
1326 	else
1327 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1328 	p = get_pages_array(npages);
1329 	if (!p)
1330 		return -ENOMEM;
1331 	n = __pipe_get_pages(i, maxsize, p, idx, start);
1332 	if (n > 0)
1333 		*pages = p;
1334 	else
1335 		kvfree(p);
1336 	return n;
1337 }
1338 
1339 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1340 		   struct page ***pages, size_t maxsize,
1341 		   size_t *start)
1342 {
1343 	struct page **p;
1344 
1345 	if (maxsize > i->count)
1346 		maxsize = i->count;
1347 
1348 	if (unlikely(iov_iter_is_pipe(i)))
1349 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1350 	if (unlikely(iov_iter_is_discard(i)))
1351 		return -EFAULT;
1352 
1353 	iterate_all_kinds(i, maxsize, v, ({
1354 		unsigned long addr = (unsigned long)v.iov_base;
1355 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1356 		int n;
1357 		int res;
1358 
1359 		addr &= ~(PAGE_SIZE - 1);
1360 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1361 		p = get_pages_array(n);
1362 		if (!p)
1363 			return -ENOMEM;
1364 		res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, p);
1365 		if (unlikely(res < 0)) {
1366 			kvfree(p);
1367 			return res;
1368 		}
1369 		*pages = p;
1370 		return (res == n ? len : res * PAGE_SIZE) - *start;
1371 	0;}),({
1372 		/* can't be more than PAGE_SIZE */
1373 		*start = v.bv_offset;
1374 		*pages = p = get_pages_array(1);
1375 		if (!p)
1376 			return -ENOMEM;
1377 		get_page(*p = v.bv_page);
1378 		return v.bv_len;
1379 	}),({
1380 		return -EFAULT;
1381 	})
1382 	)
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1386 
1387 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1388 			       struct iov_iter *i)
1389 {
1390 	char *to = addr;
1391 	__wsum sum, next;
1392 	size_t off = 0;
1393 	sum = *csum;
1394 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1395 		WARN_ON(1);
1396 		return 0;
1397 	}
1398 	iterate_and_advance(i, bytes, v, ({
1399 		int err = 0;
1400 		next = csum_and_copy_from_user(v.iov_base,
1401 					       (to += v.iov_len) - v.iov_len,
1402 					       v.iov_len, 0, &err);
1403 		if (!err) {
1404 			sum = csum_block_add(sum, next, off);
1405 			off += v.iov_len;
1406 		}
1407 		err ? v.iov_len : 0;
1408 	}), ({
1409 		char *p = kmap_atomic(v.bv_page);
1410 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1411 				      p + v.bv_offset, v.bv_len,
1412 				      sum, off);
1413 		kunmap_atomic(p);
1414 		off += v.bv_len;
1415 	}),({
1416 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1417 				      v.iov_base, v.iov_len,
1418 				      sum, off);
1419 		off += v.iov_len;
1420 	})
1421 	)
1422 	*csum = sum;
1423 	return bytes;
1424 }
1425 EXPORT_SYMBOL(csum_and_copy_from_iter);
1426 
1427 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1428 			       struct iov_iter *i)
1429 {
1430 	char *to = addr;
1431 	__wsum sum, next;
1432 	size_t off = 0;
1433 	sum = *csum;
1434 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1435 		WARN_ON(1);
1436 		return false;
1437 	}
1438 	if (unlikely(i->count < bytes))
1439 		return false;
1440 	iterate_all_kinds(i, bytes, v, ({
1441 		int err = 0;
1442 		next = csum_and_copy_from_user(v.iov_base,
1443 					       (to += v.iov_len) - v.iov_len,
1444 					       v.iov_len, 0, &err);
1445 		if (err)
1446 			return false;
1447 		sum = csum_block_add(sum, next, off);
1448 		off += v.iov_len;
1449 		0;
1450 	}), ({
1451 		char *p = kmap_atomic(v.bv_page);
1452 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1453 				      p + v.bv_offset, v.bv_len,
1454 				      sum, off);
1455 		kunmap_atomic(p);
1456 		off += v.bv_len;
1457 	}),({
1458 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1459 				      v.iov_base, v.iov_len,
1460 				      sum, off);
1461 		off += v.iov_len;
1462 	})
1463 	)
1464 	*csum = sum;
1465 	iov_iter_advance(i, bytes);
1466 	return true;
1467 }
1468 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1469 
1470 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1471 			     struct iov_iter *i)
1472 {
1473 	const char *from = addr;
1474 	__wsum *csum = csump;
1475 	__wsum sum, next;
1476 	size_t off = 0;
1477 
1478 	if (unlikely(iov_iter_is_pipe(i)))
1479 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1480 
1481 	sum = *csum;
1482 	if (unlikely(iov_iter_is_discard(i))) {
1483 		WARN_ON(1);	/* for now */
1484 		return 0;
1485 	}
1486 	iterate_and_advance(i, bytes, v, ({
1487 		int err = 0;
1488 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1489 					     v.iov_base,
1490 					     v.iov_len, 0, &err);
1491 		if (!err) {
1492 			sum = csum_block_add(sum, next, off);
1493 			off += v.iov_len;
1494 		}
1495 		err ? v.iov_len : 0;
1496 	}), ({
1497 		char *p = kmap_atomic(v.bv_page);
1498 		sum = csum_and_memcpy(p + v.bv_offset,
1499 				      (from += v.bv_len) - v.bv_len,
1500 				      v.bv_len, sum, off);
1501 		kunmap_atomic(p);
1502 		off += v.bv_len;
1503 	}),({
1504 		sum = csum_and_memcpy(v.iov_base,
1505 				     (from += v.iov_len) - v.iov_len,
1506 				     v.iov_len, sum, off);
1507 		off += v.iov_len;
1508 	})
1509 	)
1510 	*csum = sum;
1511 	return bytes;
1512 }
1513 EXPORT_SYMBOL(csum_and_copy_to_iter);
1514 
1515 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1516 		struct iov_iter *i)
1517 {
1518 	struct ahash_request *hash = hashp;
1519 	struct scatterlist sg;
1520 	size_t copied;
1521 
1522 	copied = copy_to_iter(addr, bytes, i);
1523 	sg_init_one(&sg, addr, copied);
1524 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1525 	crypto_ahash_update(hash);
1526 	return copied;
1527 }
1528 EXPORT_SYMBOL(hash_and_copy_to_iter);
1529 
1530 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1531 {
1532 	size_t size = i->count;
1533 	int npages = 0;
1534 
1535 	if (!size)
1536 		return 0;
1537 	if (unlikely(iov_iter_is_discard(i)))
1538 		return 0;
1539 
1540 	if (unlikely(iov_iter_is_pipe(i))) {
1541 		struct pipe_inode_info *pipe = i->pipe;
1542 		size_t off;
1543 		int idx;
1544 
1545 		if (!sanity(i))
1546 			return 0;
1547 
1548 		data_start(i, &idx, &off);
1549 		/* some of this one + all after this one */
1550 		npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1551 		if (npages >= maxpages)
1552 			return maxpages;
1553 	} else iterate_all_kinds(i, size, v, ({
1554 		unsigned long p = (unsigned long)v.iov_base;
1555 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1556 			- p / PAGE_SIZE;
1557 		if (npages >= maxpages)
1558 			return maxpages;
1559 	0;}),({
1560 		npages++;
1561 		if (npages >= maxpages)
1562 			return maxpages;
1563 	}),({
1564 		unsigned long p = (unsigned long)v.iov_base;
1565 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1566 			- p / PAGE_SIZE;
1567 		if (npages >= maxpages)
1568 			return maxpages;
1569 	})
1570 	)
1571 	return npages;
1572 }
1573 EXPORT_SYMBOL(iov_iter_npages);
1574 
1575 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1576 {
1577 	*new = *old;
1578 	if (unlikely(iov_iter_is_pipe(new))) {
1579 		WARN_ON(1);
1580 		return NULL;
1581 	}
1582 	if (unlikely(iov_iter_is_discard(new)))
1583 		return NULL;
1584 	if (iov_iter_is_bvec(new))
1585 		return new->bvec = kmemdup(new->bvec,
1586 				    new->nr_segs * sizeof(struct bio_vec),
1587 				    flags);
1588 	else
1589 		/* iovec and kvec have identical layout */
1590 		return new->iov = kmemdup(new->iov,
1591 				   new->nr_segs * sizeof(struct iovec),
1592 				   flags);
1593 }
1594 EXPORT_SYMBOL(dup_iter);
1595 
1596 /**
1597  * import_iovec() - Copy an array of &struct iovec from userspace
1598  *     into the kernel, check that it is valid, and initialize a new
1599  *     &struct iov_iter iterator to access it.
1600  *
1601  * @type: One of %READ or %WRITE.
1602  * @uvector: Pointer to the userspace array.
1603  * @nr_segs: Number of elements in userspace array.
1604  * @fast_segs: Number of elements in @iov.
1605  * @iov: (input and output parameter) Pointer to pointer to (usually small
1606  *     on-stack) kernel array.
1607  * @i: Pointer to iterator that will be initialized on success.
1608  *
1609  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1610  * then this function places %NULL in *@iov on return. Otherwise, a new
1611  * array will be allocated and the result placed in *@iov. This means that
1612  * the caller may call kfree() on *@iov regardless of whether the small
1613  * on-stack array was used or not (and regardless of whether this function
1614  * returns an error or not).
1615  *
1616  * Return: 0 on success or negative error code on error.
1617  */
1618 int import_iovec(int type, const struct iovec __user * uvector,
1619 		 unsigned nr_segs, unsigned fast_segs,
1620 		 struct iovec **iov, struct iov_iter *i)
1621 {
1622 	ssize_t n;
1623 	struct iovec *p;
1624 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1625 				  *iov, &p);
1626 	if (n < 0) {
1627 		if (p != *iov)
1628 			kfree(p);
1629 		*iov = NULL;
1630 		return n;
1631 	}
1632 	iov_iter_init(i, type, p, nr_segs, n);
1633 	*iov = p == *iov ? NULL : p;
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL(import_iovec);
1637 
1638 #ifdef CONFIG_COMPAT
1639 #include <linux/compat.h>
1640 
1641 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1642 		 unsigned nr_segs, unsigned fast_segs,
1643 		 struct iovec **iov, struct iov_iter *i)
1644 {
1645 	ssize_t n;
1646 	struct iovec *p;
1647 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1648 				  *iov, &p);
1649 	if (n < 0) {
1650 		if (p != *iov)
1651 			kfree(p);
1652 		*iov = NULL;
1653 		return n;
1654 	}
1655 	iov_iter_init(i, type, p, nr_segs, n);
1656 	*iov = p == *iov ? NULL : p;
1657 	return 0;
1658 }
1659 #endif
1660 
1661 int import_single_range(int rw, void __user *buf, size_t len,
1662 		 struct iovec *iov, struct iov_iter *i)
1663 {
1664 	if (len > MAX_RW_COUNT)
1665 		len = MAX_RW_COUNT;
1666 	if (unlikely(!access_ok(buf, len)))
1667 		return -EFAULT;
1668 
1669 	iov->iov_base = buf;
1670 	iov->iov_len = len;
1671 	iov_iter_init(i, rw, iov, 1, len);
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL(import_single_range);
1675 
1676 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1677 			    int (*f)(struct kvec *vec, void *context),
1678 			    void *context)
1679 {
1680 	struct kvec w;
1681 	int err = -EINVAL;
1682 	if (!bytes)
1683 		return 0;
1684 
1685 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1686 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1687 		w.iov_len = v.bv_len;
1688 		err = f(&w, context);
1689 		kunmap(v.bv_page);
1690 		err;}), ({
1691 		w = v;
1692 		err = f(&w, context);})
1693 	)
1694 	return err;
1695 }
1696 EXPORT_SYMBOL(iov_iter_for_each_range);
1697