xref: /openbmc/linux/lib/iov_iter.c (revision 28f38db7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
20 	size_t left;					\
21 	size_t wanted = n;				\
22 	__p = i->iov;					\
23 	__v.iov_len = min(n, __p->iov_len - skip);	\
24 	if (likely(__v.iov_len)) {			\
25 		__v.iov_base = __p->iov_base + skip;	\
26 		left = (STEP);				\
27 		__v.iov_len -= left;			\
28 		skip += __v.iov_len;			\
29 		n -= __v.iov_len;			\
30 	} else {					\
31 		left = 0;				\
32 	}						\
33 	while (unlikely(!left && n)) {			\
34 		__p++;					\
35 		__v.iov_len = min(n, __p->iov_len);	\
36 		if (unlikely(!__v.iov_len))		\
37 			continue;			\
38 		__v.iov_base = __p->iov_base;		\
39 		left = (STEP);				\
40 		__v.iov_len -= left;			\
41 		skip = __v.iov_len;			\
42 		n -= __v.iov_len;			\
43 	}						\
44 	n = wanted - n;					\
45 }
46 
47 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
48 	size_t wanted = n;				\
49 	__p = i->kvec;					\
50 	__v.iov_len = min(n, __p->iov_len - skip);	\
51 	if (likely(__v.iov_len)) {			\
52 		__v.iov_base = __p->iov_base + skip;	\
53 		(void)(STEP);				\
54 		skip += __v.iov_len;			\
55 		n -= __v.iov_len;			\
56 	}						\
57 	while (unlikely(n)) {				\
58 		__p++;					\
59 		__v.iov_len = min(n, __p->iov_len);	\
60 		if (unlikely(!__v.iov_len))		\
61 			continue;			\
62 		__v.iov_base = __p->iov_base;		\
63 		(void)(STEP);				\
64 		skip = __v.iov_len;			\
65 		n -= __v.iov_len;			\
66 	}						\
67 	n = wanted;					\
68 }
69 
70 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
71 	struct bvec_iter __start;			\
72 	__start.bi_size = n;				\
73 	__start.bi_bvec_done = skip;			\
74 	__start.bi_idx = 0;				\
75 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
76 		(void)(STEP);				\
77 	}						\
78 }
79 
80 #define iterate_xarray(i, n, __v, skip, STEP) {		\
81 	struct page *head = NULL;				\
82 	size_t wanted = n, seg, offset;				\
83 	loff_t start = i->xarray_start + skip;			\
84 	pgoff_t index = start >> PAGE_SHIFT;			\
85 	int j;							\
86 								\
87 	XA_STATE(xas, i->xarray, index);			\
88 								\
89 	rcu_read_lock();						\
90 	xas_for_each(&xas, head, ULONG_MAX) {				\
91 		if (xas_retry(&xas, head))				\
92 			continue;					\
93 		if (WARN_ON(xa_is_value(head)))				\
94 			break;						\
95 		if (WARN_ON(PageHuge(head)))				\
96 			break;						\
97 		for (j = (head->index < index) ? index - head->index : 0; \
98 		     j < thp_nr_pages(head); j++) {			\
99 			__v.bv_page = head + j;				\
100 			offset = (i->xarray_start + skip) & ~PAGE_MASK;	\
101 			seg = PAGE_SIZE - offset;			\
102 			__v.bv_offset = offset;				\
103 			__v.bv_len = min(n, seg);			\
104 			(void)(STEP);					\
105 			n -= __v.bv_len;				\
106 			skip += __v.bv_len;				\
107 			if (n == 0)					\
108 				break;					\
109 		}							\
110 		if (n == 0)						\
111 			break;						\
112 	}							\
113 	rcu_read_unlock();					\
114 	n = wanted - n;						\
115 }
116 
117 #define iterate_all_kinds(i, n, v, I, B, K, X) {		\
118 	if (likely(n)) {					\
119 		size_t skip = i->iov_offset;			\
120 		if (likely(iter_is_iovec(i))) {			\
121 			const struct iovec *iov;		\
122 			struct iovec v;				\
123 			iterate_iovec(i, n, v, iov, skip, (I))	\
124 		} else if (iov_iter_is_bvec(i)) {		\
125 			struct bio_vec v;			\
126 			struct bvec_iter __bi;			\
127 			iterate_bvec(i, n, v, __bi, skip, (B))	\
128 		} else if (iov_iter_is_kvec(i)) {		\
129 			const struct kvec *kvec;		\
130 			struct kvec v;				\
131 			iterate_kvec(i, n, v, kvec, skip, (K))	\
132 		} else if (iov_iter_is_xarray(i)) {		\
133 			struct bio_vec v;			\
134 			iterate_xarray(i, n, v, skip, (X));	\
135 		}						\
136 	}							\
137 }
138 
139 #define iterate_and_advance(i, n, v, I, B, K, X) {		\
140 	if (unlikely(i->count < n))				\
141 		n = i->count;					\
142 	if (i->count) {						\
143 		size_t skip = i->iov_offset;			\
144 		if (likely(iter_is_iovec(i))) {			\
145 			const struct iovec *iov;		\
146 			struct iovec v;				\
147 			iterate_iovec(i, n, v, iov, skip, (I))	\
148 			if (skip == iov->iov_len) {		\
149 				iov++;				\
150 				skip = 0;			\
151 			}					\
152 			i->nr_segs -= iov - i->iov;		\
153 			i->iov = iov;				\
154 		} else if (iov_iter_is_bvec(i)) {		\
155 			const struct bio_vec *bvec = i->bvec;	\
156 			struct bio_vec v;			\
157 			struct bvec_iter __bi;			\
158 			iterate_bvec(i, n, v, __bi, skip, (B))	\
159 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
160 			i->nr_segs -= i->bvec - bvec;		\
161 			skip = __bi.bi_bvec_done;		\
162 		} else if (iov_iter_is_kvec(i)) {		\
163 			const struct kvec *kvec;		\
164 			struct kvec v;				\
165 			iterate_kvec(i, n, v, kvec, skip, (K))	\
166 			if (skip == kvec->iov_len) {		\
167 				kvec++;				\
168 				skip = 0;			\
169 			}					\
170 			i->nr_segs -= kvec - i->kvec;		\
171 			i->kvec = kvec;				\
172 		} else if (iov_iter_is_xarray(i)) {		\
173 			struct bio_vec v;			\
174 			iterate_xarray(i, n, v, skip, (X))	\
175 		} else if (iov_iter_is_discard(i)) {		\
176 			skip += n;				\
177 		}						\
178 		i->count -= n;					\
179 		i->iov_offset = skip;				\
180 	}							\
181 }
182 
183 static int copyout(void __user *to, const void *from, size_t n)
184 {
185 	if (should_fail_usercopy())
186 		return n;
187 	if (access_ok(to, n)) {
188 		instrument_copy_to_user(to, from, n);
189 		n = raw_copy_to_user(to, from, n);
190 	}
191 	return n;
192 }
193 
194 static int copyin(void *to, const void __user *from, size_t n)
195 {
196 	if (should_fail_usercopy())
197 		return n;
198 	if (access_ok(from, n)) {
199 		instrument_copy_from_user(to, from, n);
200 		n = raw_copy_from_user(to, from, n);
201 	}
202 	return n;
203 }
204 
205 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
206 			 struct iov_iter *i)
207 {
208 	size_t skip, copy, left, wanted;
209 	const struct iovec *iov;
210 	char __user *buf;
211 	void *kaddr, *from;
212 
213 	if (unlikely(bytes > i->count))
214 		bytes = i->count;
215 
216 	if (unlikely(!bytes))
217 		return 0;
218 
219 	might_fault();
220 	wanted = bytes;
221 	iov = i->iov;
222 	skip = i->iov_offset;
223 	buf = iov->iov_base + skip;
224 	copy = min(bytes, iov->iov_len - skip);
225 
226 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
227 		kaddr = kmap_atomic(page);
228 		from = kaddr + offset;
229 
230 		/* first chunk, usually the only one */
231 		left = copyout(buf, from, copy);
232 		copy -= left;
233 		skip += copy;
234 		from += copy;
235 		bytes -= copy;
236 
237 		while (unlikely(!left && bytes)) {
238 			iov++;
239 			buf = iov->iov_base;
240 			copy = min(bytes, iov->iov_len);
241 			left = copyout(buf, from, copy);
242 			copy -= left;
243 			skip = copy;
244 			from += copy;
245 			bytes -= copy;
246 		}
247 		if (likely(!bytes)) {
248 			kunmap_atomic(kaddr);
249 			goto done;
250 		}
251 		offset = from - kaddr;
252 		buf += copy;
253 		kunmap_atomic(kaddr);
254 		copy = min(bytes, iov->iov_len - skip);
255 	}
256 	/* Too bad - revert to non-atomic kmap */
257 
258 	kaddr = kmap(page);
259 	from = kaddr + offset;
260 	left = copyout(buf, from, copy);
261 	copy -= left;
262 	skip += copy;
263 	from += copy;
264 	bytes -= copy;
265 	while (unlikely(!left && bytes)) {
266 		iov++;
267 		buf = iov->iov_base;
268 		copy = min(bytes, iov->iov_len);
269 		left = copyout(buf, from, copy);
270 		copy -= left;
271 		skip = copy;
272 		from += copy;
273 		bytes -= copy;
274 	}
275 	kunmap(page);
276 
277 done:
278 	if (skip == iov->iov_len) {
279 		iov++;
280 		skip = 0;
281 	}
282 	i->count -= wanted - bytes;
283 	i->nr_segs -= iov - i->iov;
284 	i->iov = iov;
285 	i->iov_offset = skip;
286 	return wanted - bytes;
287 }
288 
289 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
290 			 struct iov_iter *i)
291 {
292 	size_t skip, copy, left, wanted;
293 	const struct iovec *iov;
294 	char __user *buf;
295 	void *kaddr, *to;
296 
297 	if (unlikely(bytes > i->count))
298 		bytes = i->count;
299 
300 	if (unlikely(!bytes))
301 		return 0;
302 
303 	might_fault();
304 	wanted = bytes;
305 	iov = i->iov;
306 	skip = i->iov_offset;
307 	buf = iov->iov_base + skip;
308 	copy = min(bytes, iov->iov_len - skip);
309 
310 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
311 		kaddr = kmap_atomic(page);
312 		to = kaddr + offset;
313 
314 		/* first chunk, usually the only one */
315 		left = copyin(to, buf, copy);
316 		copy -= left;
317 		skip += copy;
318 		to += copy;
319 		bytes -= copy;
320 
321 		while (unlikely(!left && bytes)) {
322 			iov++;
323 			buf = iov->iov_base;
324 			copy = min(bytes, iov->iov_len);
325 			left = copyin(to, buf, copy);
326 			copy -= left;
327 			skip = copy;
328 			to += copy;
329 			bytes -= copy;
330 		}
331 		if (likely(!bytes)) {
332 			kunmap_atomic(kaddr);
333 			goto done;
334 		}
335 		offset = to - kaddr;
336 		buf += copy;
337 		kunmap_atomic(kaddr);
338 		copy = min(bytes, iov->iov_len - skip);
339 	}
340 	/* Too bad - revert to non-atomic kmap */
341 
342 	kaddr = kmap(page);
343 	to = kaddr + offset;
344 	left = copyin(to, buf, copy);
345 	copy -= left;
346 	skip += copy;
347 	to += copy;
348 	bytes -= copy;
349 	while (unlikely(!left && bytes)) {
350 		iov++;
351 		buf = iov->iov_base;
352 		copy = min(bytes, iov->iov_len);
353 		left = copyin(to, buf, copy);
354 		copy -= left;
355 		skip = copy;
356 		to += copy;
357 		bytes -= copy;
358 	}
359 	kunmap(page);
360 
361 done:
362 	if (skip == iov->iov_len) {
363 		iov++;
364 		skip = 0;
365 	}
366 	i->count -= wanted - bytes;
367 	i->nr_segs -= iov - i->iov;
368 	i->iov = iov;
369 	i->iov_offset = skip;
370 	return wanted - bytes;
371 }
372 
373 #ifdef PIPE_PARANOIA
374 static bool sanity(const struct iov_iter *i)
375 {
376 	struct pipe_inode_info *pipe = i->pipe;
377 	unsigned int p_head = pipe->head;
378 	unsigned int p_tail = pipe->tail;
379 	unsigned int p_mask = pipe->ring_size - 1;
380 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
381 	unsigned int i_head = i->head;
382 	unsigned int idx;
383 
384 	if (i->iov_offset) {
385 		struct pipe_buffer *p;
386 		if (unlikely(p_occupancy == 0))
387 			goto Bad;	// pipe must be non-empty
388 		if (unlikely(i_head != p_head - 1))
389 			goto Bad;	// must be at the last buffer...
390 
391 		p = &pipe->bufs[i_head & p_mask];
392 		if (unlikely(p->offset + p->len != i->iov_offset))
393 			goto Bad;	// ... at the end of segment
394 	} else {
395 		if (i_head != p_head)
396 			goto Bad;	// must be right after the last buffer
397 	}
398 	return true;
399 Bad:
400 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
401 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
402 			p_head, p_tail, pipe->ring_size);
403 	for (idx = 0; idx < pipe->ring_size; idx++)
404 		printk(KERN_ERR "[%p %p %d %d]\n",
405 			pipe->bufs[idx].ops,
406 			pipe->bufs[idx].page,
407 			pipe->bufs[idx].offset,
408 			pipe->bufs[idx].len);
409 	WARN_ON(1);
410 	return false;
411 }
412 #else
413 #define sanity(i) true
414 #endif
415 
416 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
417 			 struct iov_iter *i)
418 {
419 	struct pipe_inode_info *pipe = i->pipe;
420 	struct pipe_buffer *buf;
421 	unsigned int p_tail = pipe->tail;
422 	unsigned int p_mask = pipe->ring_size - 1;
423 	unsigned int i_head = i->head;
424 	size_t off;
425 
426 	if (unlikely(bytes > i->count))
427 		bytes = i->count;
428 
429 	if (unlikely(!bytes))
430 		return 0;
431 
432 	if (!sanity(i))
433 		return 0;
434 
435 	off = i->iov_offset;
436 	buf = &pipe->bufs[i_head & p_mask];
437 	if (off) {
438 		if (offset == off && buf->page == page) {
439 			/* merge with the last one */
440 			buf->len += bytes;
441 			i->iov_offset += bytes;
442 			goto out;
443 		}
444 		i_head++;
445 		buf = &pipe->bufs[i_head & p_mask];
446 	}
447 	if (pipe_full(i_head, p_tail, pipe->max_usage))
448 		return 0;
449 
450 	buf->ops = &page_cache_pipe_buf_ops;
451 	get_page(page);
452 	buf->page = page;
453 	buf->offset = offset;
454 	buf->len = bytes;
455 
456 	pipe->head = i_head + 1;
457 	i->iov_offset = offset + bytes;
458 	i->head = i_head;
459 out:
460 	i->count -= bytes;
461 	return bytes;
462 }
463 
464 /*
465  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
466  * bytes.  For each iovec, fault in each page that constitutes the iovec.
467  *
468  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
469  * because it is an invalid address).
470  */
471 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
472 {
473 	size_t skip = i->iov_offset;
474 	const struct iovec *iov;
475 	int err;
476 	struct iovec v;
477 
478 	if (iter_is_iovec(i)) {
479 		iterate_iovec(i, bytes, v, iov, skip, ({
480 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
481 			if (unlikely(err))
482 			return err;
483 		0;}))
484 	}
485 	return 0;
486 }
487 EXPORT_SYMBOL(iov_iter_fault_in_readable);
488 
489 void iov_iter_init(struct iov_iter *i, unsigned int direction,
490 			const struct iovec *iov, unsigned long nr_segs,
491 			size_t count)
492 {
493 	WARN_ON(direction & ~(READ | WRITE));
494 	direction &= READ | WRITE;
495 
496 	/* It will get better.  Eventually... */
497 	if (uaccess_kernel()) {
498 		i->type = ITER_KVEC | direction;
499 		i->kvec = (struct kvec *)iov;
500 	} else {
501 		i->type = ITER_IOVEC | direction;
502 		i->iov = iov;
503 	}
504 	i->nr_segs = nr_segs;
505 	i->iov_offset = 0;
506 	i->count = count;
507 }
508 EXPORT_SYMBOL(iov_iter_init);
509 
510 static inline bool allocated(struct pipe_buffer *buf)
511 {
512 	return buf->ops == &default_pipe_buf_ops;
513 }
514 
515 static inline void data_start(const struct iov_iter *i,
516 			      unsigned int *iter_headp, size_t *offp)
517 {
518 	unsigned int p_mask = i->pipe->ring_size - 1;
519 	unsigned int iter_head = i->head;
520 	size_t off = i->iov_offset;
521 
522 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
523 		    off == PAGE_SIZE)) {
524 		iter_head++;
525 		off = 0;
526 	}
527 	*iter_headp = iter_head;
528 	*offp = off;
529 }
530 
531 static size_t push_pipe(struct iov_iter *i, size_t size,
532 			int *iter_headp, size_t *offp)
533 {
534 	struct pipe_inode_info *pipe = i->pipe;
535 	unsigned int p_tail = pipe->tail;
536 	unsigned int p_mask = pipe->ring_size - 1;
537 	unsigned int iter_head;
538 	size_t off;
539 	ssize_t left;
540 
541 	if (unlikely(size > i->count))
542 		size = i->count;
543 	if (unlikely(!size))
544 		return 0;
545 
546 	left = size;
547 	data_start(i, &iter_head, &off);
548 	*iter_headp = iter_head;
549 	*offp = off;
550 	if (off) {
551 		left -= PAGE_SIZE - off;
552 		if (left <= 0) {
553 			pipe->bufs[iter_head & p_mask].len += size;
554 			return size;
555 		}
556 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
557 		iter_head++;
558 	}
559 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
560 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
561 		struct page *page = alloc_page(GFP_USER);
562 		if (!page)
563 			break;
564 
565 		buf->ops = &default_pipe_buf_ops;
566 		buf->page = page;
567 		buf->offset = 0;
568 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
569 		left -= buf->len;
570 		iter_head++;
571 		pipe->head = iter_head;
572 
573 		if (left == 0)
574 			return size;
575 	}
576 	return size - left;
577 }
578 
579 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
580 				struct iov_iter *i)
581 {
582 	struct pipe_inode_info *pipe = i->pipe;
583 	unsigned int p_mask = pipe->ring_size - 1;
584 	unsigned int i_head;
585 	size_t n, off;
586 
587 	if (!sanity(i))
588 		return 0;
589 
590 	bytes = n = push_pipe(i, bytes, &i_head, &off);
591 	if (unlikely(!n))
592 		return 0;
593 	do {
594 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
595 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
596 		i->head = i_head;
597 		i->iov_offset = off + chunk;
598 		n -= chunk;
599 		addr += chunk;
600 		off = 0;
601 		i_head++;
602 	} while (n);
603 	i->count -= bytes;
604 	return bytes;
605 }
606 
607 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
608 			      __wsum sum, size_t off)
609 {
610 	__wsum next = csum_partial_copy_nocheck(from, to, len);
611 	return csum_block_add(sum, next, off);
612 }
613 
614 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
615 					 struct csum_state *csstate,
616 					 struct iov_iter *i)
617 {
618 	struct pipe_inode_info *pipe = i->pipe;
619 	unsigned int p_mask = pipe->ring_size - 1;
620 	__wsum sum = csstate->csum;
621 	size_t off = csstate->off;
622 	unsigned int i_head;
623 	size_t n, r;
624 
625 	if (!sanity(i))
626 		return 0;
627 
628 	bytes = n = push_pipe(i, bytes, &i_head, &r);
629 	if (unlikely(!n))
630 		return 0;
631 	do {
632 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
633 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
634 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
635 		kunmap_atomic(p);
636 		i->head = i_head;
637 		i->iov_offset = r + chunk;
638 		n -= chunk;
639 		off += chunk;
640 		addr += chunk;
641 		r = 0;
642 		i_head++;
643 	} while (n);
644 	i->count -= bytes;
645 	csstate->csum = sum;
646 	csstate->off = off;
647 	return bytes;
648 }
649 
650 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
651 {
652 	const char *from = addr;
653 	if (unlikely(iov_iter_is_pipe(i)))
654 		return copy_pipe_to_iter(addr, bytes, i);
655 	if (iter_is_iovec(i))
656 		might_fault();
657 	iterate_and_advance(i, bytes, v,
658 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
659 		memcpy_to_page(v.bv_page, v.bv_offset,
660 			       (from += v.bv_len) - v.bv_len, v.bv_len),
661 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
662 		memcpy_to_page(v.bv_page, v.bv_offset,
663 			       (from += v.bv_len) - v.bv_len, v.bv_len)
664 	)
665 
666 	return bytes;
667 }
668 EXPORT_SYMBOL(_copy_to_iter);
669 
670 #ifdef CONFIG_ARCH_HAS_COPY_MC
671 static int copyout_mc(void __user *to, const void *from, size_t n)
672 {
673 	if (access_ok(to, n)) {
674 		instrument_copy_to_user(to, from, n);
675 		n = copy_mc_to_user((__force void *) to, from, n);
676 	}
677 	return n;
678 }
679 
680 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
681 		const char *from, size_t len)
682 {
683 	unsigned long ret;
684 	char *to;
685 
686 	to = kmap_atomic(page);
687 	ret = copy_mc_to_kernel(to + offset, from, len);
688 	kunmap_atomic(to);
689 
690 	return ret;
691 }
692 
693 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
694 				struct iov_iter *i)
695 {
696 	struct pipe_inode_info *pipe = i->pipe;
697 	unsigned int p_mask = pipe->ring_size - 1;
698 	unsigned int i_head;
699 	size_t n, off, xfer = 0;
700 
701 	if (!sanity(i))
702 		return 0;
703 
704 	bytes = n = push_pipe(i, bytes, &i_head, &off);
705 	if (unlikely(!n))
706 		return 0;
707 	do {
708 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
709 		unsigned long rem;
710 
711 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
712 					    off, addr, chunk);
713 		i->head = i_head;
714 		i->iov_offset = off + chunk - rem;
715 		xfer += chunk - rem;
716 		if (rem)
717 			break;
718 		n -= chunk;
719 		addr += chunk;
720 		off = 0;
721 		i_head++;
722 	} while (n);
723 	i->count -= xfer;
724 	return xfer;
725 }
726 
727 /**
728  * _copy_mc_to_iter - copy to iter with source memory error exception handling
729  * @addr: source kernel address
730  * @bytes: total transfer length
731  * @iter: destination iterator
732  *
733  * The pmem driver deploys this for the dax operation
734  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
735  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
736  * successfully copied.
737  *
738  * The main differences between this and typical _copy_to_iter().
739  *
740  * * Typical tail/residue handling after a fault retries the copy
741  *   byte-by-byte until the fault happens again. Re-triggering machine
742  *   checks is potentially fatal so the implementation uses source
743  *   alignment and poison alignment assumptions to avoid re-triggering
744  *   hardware exceptions.
745  *
746  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
747  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
748  *   a short copy.
749  */
750 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
751 {
752 	const char *from = addr;
753 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
754 
755 	if (unlikely(iov_iter_is_pipe(i)))
756 		return copy_mc_pipe_to_iter(addr, bytes, i);
757 	if (iter_is_iovec(i))
758 		might_fault();
759 	iterate_and_advance(i, bytes, v,
760 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
761 			   v.iov_len),
762 		({
763 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
764 				      (from += v.bv_len) - v.bv_len, v.bv_len);
765 		if (rem) {
766 			curr_addr = (unsigned long) from;
767 			bytes = curr_addr - s_addr - rem;
768 			return bytes;
769 		}
770 		}),
771 		({
772 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
773 					- v.iov_len, v.iov_len);
774 		if (rem) {
775 			curr_addr = (unsigned long) from;
776 			bytes = curr_addr - s_addr - rem;
777 			return bytes;
778 		}
779 		}),
780 		({
781 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
782 				      (from += v.bv_len) - v.bv_len, v.bv_len);
783 		if (rem) {
784 			curr_addr = (unsigned long) from;
785 			bytes = curr_addr - s_addr - rem;
786 			rcu_read_unlock();
787 			i->iov_offset += bytes;
788 			i->count -= bytes;
789 			return bytes;
790 		}
791 		})
792 	)
793 
794 	return bytes;
795 }
796 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
797 #endif /* CONFIG_ARCH_HAS_COPY_MC */
798 
799 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
800 {
801 	char *to = addr;
802 	if (unlikely(iov_iter_is_pipe(i))) {
803 		WARN_ON(1);
804 		return 0;
805 	}
806 	if (iter_is_iovec(i))
807 		might_fault();
808 	iterate_and_advance(i, bytes, v,
809 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
810 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
811 				 v.bv_offset, v.bv_len),
812 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
813 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
814 				 v.bv_offset, v.bv_len)
815 	)
816 
817 	return bytes;
818 }
819 EXPORT_SYMBOL(_copy_from_iter);
820 
821 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
822 {
823 	char *to = addr;
824 	if (unlikely(iov_iter_is_pipe(i))) {
825 		WARN_ON(1);
826 		return 0;
827 	}
828 	iterate_and_advance(i, bytes, v,
829 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
830 					 v.iov_base, v.iov_len),
831 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
832 				 v.bv_offset, v.bv_len),
833 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
834 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
835 				 v.bv_offset, v.bv_len)
836 	)
837 
838 	return bytes;
839 }
840 EXPORT_SYMBOL(_copy_from_iter_nocache);
841 
842 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
843 /**
844  * _copy_from_iter_flushcache - write destination through cpu cache
845  * @addr: destination kernel address
846  * @bytes: total transfer length
847  * @iter: source iterator
848  *
849  * The pmem driver arranges for filesystem-dax to use this facility via
850  * dax_copy_from_iter() for ensuring that writes to persistent memory
851  * are flushed through the CPU cache. It is differentiated from
852  * _copy_from_iter_nocache() in that guarantees all data is flushed for
853  * all iterator types. The _copy_from_iter_nocache() only attempts to
854  * bypass the cache for the ITER_IOVEC case, and on some archs may use
855  * instructions that strand dirty-data in the cache.
856  */
857 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
858 {
859 	char *to = addr;
860 	if (unlikely(iov_iter_is_pipe(i))) {
861 		WARN_ON(1);
862 		return 0;
863 	}
864 	iterate_and_advance(i, bytes, v,
865 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
866 					 v.iov_base, v.iov_len),
867 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
868 				 v.bv_offset, v.bv_len),
869 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
870 			v.iov_len),
871 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
872 				 v.bv_offset, v.bv_len)
873 	)
874 
875 	return bytes;
876 }
877 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
878 #endif
879 
880 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
881 {
882 	struct page *head;
883 	size_t v = n + offset;
884 
885 	/*
886 	 * The general case needs to access the page order in order
887 	 * to compute the page size.
888 	 * However, we mostly deal with order-0 pages and thus can
889 	 * avoid a possible cache line miss for requests that fit all
890 	 * page orders.
891 	 */
892 	if (n <= v && v <= PAGE_SIZE)
893 		return true;
894 
895 	head = compound_head(page);
896 	v += (page - head) << PAGE_SHIFT;
897 
898 	if (likely(n <= v && v <= (page_size(head))))
899 		return true;
900 	WARN_ON(1);
901 	return false;
902 }
903 
904 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
905 			 struct iov_iter *i)
906 {
907 	if (likely(iter_is_iovec(i)))
908 		return copy_page_to_iter_iovec(page, offset, bytes, i);
909 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
910 		void *kaddr = kmap_atomic(page);
911 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
912 		kunmap_atomic(kaddr);
913 		return wanted;
914 	}
915 	if (iov_iter_is_pipe(i))
916 		return copy_page_to_iter_pipe(page, offset, bytes, i);
917 	if (unlikely(iov_iter_is_discard(i))) {
918 		if (unlikely(i->count < bytes))
919 			bytes = i->count;
920 		i->count -= bytes;
921 		return bytes;
922 	}
923 	WARN_ON(1);
924 	return 0;
925 }
926 
927 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
928 			 struct iov_iter *i)
929 {
930 	size_t res = 0;
931 	if (unlikely(!page_copy_sane(page, offset, bytes)))
932 		return 0;
933 	page += offset / PAGE_SIZE; // first subpage
934 	offset %= PAGE_SIZE;
935 	while (1) {
936 		size_t n = __copy_page_to_iter(page, offset,
937 				min(bytes, (size_t)PAGE_SIZE - offset), i);
938 		res += n;
939 		bytes -= n;
940 		if (!bytes || !n)
941 			break;
942 		offset += n;
943 		if (offset == PAGE_SIZE) {
944 			page++;
945 			offset = 0;
946 		}
947 	}
948 	return res;
949 }
950 EXPORT_SYMBOL(copy_page_to_iter);
951 
952 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
953 			 struct iov_iter *i)
954 {
955 	if (unlikely(!page_copy_sane(page, offset, bytes)))
956 		return 0;
957 	if (likely(iter_is_iovec(i)))
958 		return copy_page_from_iter_iovec(page, offset, bytes, i);
959 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
960 		void *kaddr = kmap_atomic(page);
961 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
962 		kunmap_atomic(kaddr);
963 		return wanted;
964 	}
965 	WARN_ON(1);
966 	return 0;
967 }
968 EXPORT_SYMBOL(copy_page_from_iter);
969 
970 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
971 {
972 	struct pipe_inode_info *pipe = i->pipe;
973 	unsigned int p_mask = pipe->ring_size - 1;
974 	unsigned int i_head;
975 	size_t n, off;
976 
977 	if (!sanity(i))
978 		return 0;
979 
980 	bytes = n = push_pipe(i, bytes, &i_head, &off);
981 	if (unlikely(!n))
982 		return 0;
983 
984 	do {
985 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
986 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
987 		i->head = i_head;
988 		i->iov_offset = off + chunk;
989 		n -= chunk;
990 		off = 0;
991 		i_head++;
992 	} while (n);
993 	i->count -= bytes;
994 	return bytes;
995 }
996 
997 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
998 {
999 	if (unlikely(iov_iter_is_pipe(i)))
1000 		return pipe_zero(bytes, i);
1001 	iterate_and_advance(i, bytes, v,
1002 		clear_user(v.iov_base, v.iov_len),
1003 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
1004 		memset(v.iov_base, 0, v.iov_len),
1005 		memzero_page(v.bv_page, v.bv_offset, v.bv_len)
1006 	)
1007 
1008 	return bytes;
1009 }
1010 EXPORT_SYMBOL(iov_iter_zero);
1011 
1012 size_t iov_iter_copy_from_user_atomic(struct page *page,
1013 		struct iov_iter *i, unsigned long offset, size_t bytes)
1014 {
1015 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
1016 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
1017 		kunmap_atomic(kaddr);
1018 		return 0;
1019 	}
1020 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1021 		kunmap_atomic(kaddr);
1022 		WARN_ON(1);
1023 		return 0;
1024 	}
1025 	iterate_all_kinds(i, bytes, v,
1026 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1027 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1028 				 v.bv_offset, v.bv_len),
1029 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1030 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1031 				 v.bv_offset, v.bv_len)
1032 	)
1033 	kunmap_atomic(kaddr);
1034 	return bytes;
1035 }
1036 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1037 
1038 static inline void pipe_truncate(struct iov_iter *i)
1039 {
1040 	struct pipe_inode_info *pipe = i->pipe;
1041 	unsigned int p_tail = pipe->tail;
1042 	unsigned int p_head = pipe->head;
1043 	unsigned int p_mask = pipe->ring_size - 1;
1044 
1045 	if (!pipe_empty(p_head, p_tail)) {
1046 		struct pipe_buffer *buf;
1047 		unsigned int i_head = i->head;
1048 		size_t off = i->iov_offset;
1049 
1050 		if (off) {
1051 			buf = &pipe->bufs[i_head & p_mask];
1052 			buf->len = off - buf->offset;
1053 			i_head++;
1054 		}
1055 		while (p_head != i_head) {
1056 			p_head--;
1057 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1058 		}
1059 
1060 		pipe->head = p_head;
1061 	}
1062 }
1063 
1064 static void pipe_advance(struct iov_iter *i, size_t size)
1065 {
1066 	struct pipe_inode_info *pipe = i->pipe;
1067 	if (size) {
1068 		struct pipe_buffer *buf;
1069 		unsigned int p_mask = pipe->ring_size - 1;
1070 		unsigned int i_head = i->head;
1071 		size_t off = i->iov_offset, left = size;
1072 
1073 		if (off) /* make it relative to the beginning of buffer */
1074 			left += off - pipe->bufs[i_head & p_mask].offset;
1075 		while (1) {
1076 			buf = &pipe->bufs[i_head & p_mask];
1077 			if (left <= buf->len)
1078 				break;
1079 			left -= buf->len;
1080 			i_head++;
1081 		}
1082 		i->head = i_head;
1083 		i->iov_offset = buf->offset + left;
1084 	}
1085 	i->count -= size;
1086 	/* ... and discard everything past that point */
1087 	pipe_truncate(i);
1088 }
1089 
1090 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1091 {
1092 	struct bvec_iter bi;
1093 
1094 	bi.bi_size = i->count;
1095 	bi.bi_bvec_done = i->iov_offset;
1096 	bi.bi_idx = 0;
1097 	bvec_iter_advance(i->bvec, &bi, size);
1098 
1099 	i->bvec += bi.bi_idx;
1100 	i->nr_segs -= bi.bi_idx;
1101 	i->count = bi.bi_size;
1102 	i->iov_offset = bi.bi_bvec_done;
1103 }
1104 
1105 void iov_iter_advance(struct iov_iter *i, size_t size)
1106 {
1107 	if (unlikely(i->count < size))
1108 		size = i->count;
1109 	if (unlikely(iov_iter_is_pipe(i))) {
1110 		pipe_advance(i, size);
1111 		return;
1112 	}
1113 	if (unlikely(iov_iter_is_discard(i))) {
1114 		i->count -= size;
1115 		return;
1116 	}
1117 	if (unlikely(iov_iter_is_xarray(i))) {
1118 		i->iov_offset += size;
1119 		i->count -= size;
1120 		return;
1121 	}
1122 	if (iov_iter_is_bvec(i)) {
1123 		iov_iter_bvec_advance(i, size);
1124 		return;
1125 	}
1126 	iterate_and_advance(i, size, v, 0, 0, 0, 0)
1127 }
1128 EXPORT_SYMBOL(iov_iter_advance);
1129 
1130 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1131 {
1132 	if (!unroll)
1133 		return;
1134 	if (WARN_ON(unroll > MAX_RW_COUNT))
1135 		return;
1136 	i->count += unroll;
1137 	if (unlikely(iov_iter_is_pipe(i))) {
1138 		struct pipe_inode_info *pipe = i->pipe;
1139 		unsigned int p_mask = pipe->ring_size - 1;
1140 		unsigned int i_head = i->head;
1141 		size_t off = i->iov_offset;
1142 		while (1) {
1143 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1144 			size_t n = off - b->offset;
1145 			if (unroll < n) {
1146 				off -= unroll;
1147 				break;
1148 			}
1149 			unroll -= n;
1150 			if (!unroll && i_head == i->start_head) {
1151 				off = 0;
1152 				break;
1153 			}
1154 			i_head--;
1155 			b = &pipe->bufs[i_head & p_mask];
1156 			off = b->offset + b->len;
1157 		}
1158 		i->iov_offset = off;
1159 		i->head = i_head;
1160 		pipe_truncate(i);
1161 		return;
1162 	}
1163 	if (unlikely(iov_iter_is_discard(i)))
1164 		return;
1165 	if (unroll <= i->iov_offset) {
1166 		i->iov_offset -= unroll;
1167 		return;
1168 	}
1169 	unroll -= i->iov_offset;
1170 	if (iov_iter_is_xarray(i)) {
1171 		BUG(); /* We should never go beyond the start of the specified
1172 			* range since we might then be straying into pages that
1173 			* aren't pinned.
1174 			*/
1175 	} else if (iov_iter_is_bvec(i)) {
1176 		const struct bio_vec *bvec = i->bvec;
1177 		while (1) {
1178 			size_t n = (--bvec)->bv_len;
1179 			i->nr_segs++;
1180 			if (unroll <= n) {
1181 				i->bvec = bvec;
1182 				i->iov_offset = n - unroll;
1183 				return;
1184 			}
1185 			unroll -= n;
1186 		}
1187 	} else { /* same logics for iovec and kvec */
1188 		const struct iovec *iov = i->iov;
1189 		while (1) {
1190 			size_t n = (--iov)->iov_len;
1191 			i->nr_segs++;
1192 			if (unroll <= n) {
1193 				i->iov = iov;
1194 				i->iov_offset = n - unroll;
1195 				return;
1196 			}
1197 			unroll -= n;
1198 		}
1199 	}
1200 }
1201 EXPORT_SYMBOL(iov_iter_revert);
1202 
1203 /*
1204  * Return the count of just the current iov_iter segment.
1205  */
1206 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1207 {
1208 	if (i->nr_segs > 1) {
1209 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1210 			return min(i->count, i->iov->iov_len - i->iov_offset);
1211 		if (iov_iter_is_bvec(i))
1212 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1213 	}
1214 	return i->count;
1215 }
1216 EXPORT_SYMBOL(iov_iter_single_seg_count);
1217 
1218 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1219 			const struct kvec *kvec, unsigned long nr_segs,
1220 			size_t count)
1221 {
1222 	WARN_ON(direction & ~(READ | WRITE));
1223 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1224 	i->kvec = kvec;
1225 	i->nr_segs = nr_segs;
1226 	i->iov_offset = 0;
1227 	i->count = count;
1228 }
1229 EXPORT_SYMBOL(iov_iter_kvec);
1230 
1231 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1232 			const struct bio_vec *bvec, unsigned long nr_segs,
1233 			size_t count)
1234 {
1235 	WARN_ON(direction & ~(READ | WRITE));
1236 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1237 	i->bvec = bvec;
1238 	i->nr_segs = nr_segs;
1239 	i->iov_offset = 0;
1240 	i->count = count;
1241 }
1242 EXPORT_SYMBOL(iov_iter_bvec);
1243 
1244 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1245 			struct pipe_inode_info *pipe,
1246 			size_t count)
1247 {
1248 	BUG_ON(direction != READ);
1249 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1250 	i->type = ITER_PIPE | READ;
1251 	i->pipe = pipe;
1252 	i->head = pipe->head;
1253 	i->iov_offset = 0;
1254 	i->count = count;
1255 	i->start_head = i->head;
1256 }
1257 EXPORT_SYMBOL(iov_iter_pipe);
1258 
1259 /**
1260  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1261  * @i: The iterator to initialise.
1262  * @direction: The direction of the transfer.
1263  * @xarray: The xarray to access.
1264  * @start: The start file position.
1265  * @count: The size of the I/O buffer in bytes.
1266  *
1267  * Set up an I/O iterator to either draw data out of the pages attached to an
1268  * inode or to inject data into those pages.  The pages *must* be prevented
1269  * from evaporation, either by taking a ref on them or locking them by the
1270  * caller.
1271  */
1272 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1273 		     struct xarray *xarray, loff_t start, size_t count)
1274 {
1275 	BUG_ON(direction & ~1);
1276 	i->type = ITER_XARRAY | (direction & (READ | WRITE));
1277 	i->xarray = xarray;
1278 	i->xarray_start = start;
1279 	i->count = count;
1280 	i->iov_offset = 0;
1281 }
1282 EXPORT_SYMBOL(iov_iter_xarray);
1283 
1284 /**
1285  * iov_iter_discard - Initialise an I/O iterator that discards data
1286  * @i: The iterator to initialise.
1287  * @direction: The direction of the transfer.
1288  * @count: The size of the I/O buffer in bytes.
1289  *
1290  * Set up an I/O iterator that just discards everything that's written to it.
1291  * It's only available as a READ iterator.
1292  */
1293 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1294 {
1295 	BUG_ON(direction != READ);
1296 	i->type = ITER_DISCARD | READ;
1297 	i->count = count;
1298 	i->iov_offset = 0;
1299 }
1300 EXPORT_SYMBOL(iov_iter_discard);
1301 
1302 unsigned long iov_iter_alignment(const struct iov_iter *i)
1303 {
1304 	unsigned long res = 0;
1305 	size_t size = i->count;
1306 
1307 	if (unlikely(iov_iter_is_pipe(i))) {
1308 		unsigned int p_mask = i->pipe->ring_size - 1;
1309 
1310 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1311 			return size | i->iov_offset;
1312 		return size;
1313 	}
1314 	if (unlikely(iov_iter_is_xarray(i)))
1315 		return (i->xarray_start + i->iov_offset) | i->count;
1316 	iterate_all_kinds(i, size, v,
1317 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1318 		res |= v.bv_offset | v.bv_len,
1319 		res |= (unsigned long)v.iov_base | v.iov_len,
1320 		res |= v.bv_offset | v.bv_len
1321 	)
1322 	return res;
1323 }
1324 EXPORT_SYMBOL(iov_iter_alignment);
1325 
1326 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1327 {
1328 	unsigned long res = 0;
1329 	size_t size = i->count;
1330 
1331 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1332 		WARN_ON(1);
1333 		return ~0U;
1334 	}
1335 
1336 	iterate_all_kinds(i, size, v,
1337 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1338 			(size != v.iov_len ? size : 0), 0),
1339 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1340 			(size != v.bv_len ? size : 0)),
1341 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1342 			(size != v.iov_len ? size : 0)),
1343 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1344 			(size != v.bv_len ? size : 0))
1345 		);
1346 	return res;
1347 }
1348 EXPORT_SYMBOL(iov_iter_gap_alignment);
1349 
1350 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1351 				size_t maxsize,
1352 				struct page **pages,
1353 				int iter_head,
1354 				size_t *start)
1355 {
1356 	struct pipe_inode_info *pipe = i->pipe;
1357 	unsigned int p_mask = pipe->ring_size - 1;
1358 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1359 	if (!n)
1360 		return -EFAULT;
1361 
1362 	maxsize = n;
1363 	n += *start;
1364 	while (n > 0) {
1365 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1366 		iter_head++;
1367 		n -= PAGE_SIZE;
1368 	}
1369 
1370 	return maxsize;
1371 }
1372 
1373 static ssize_t pipe_get_pages(struct iov_iter *i,
1374 		   struct page **pages, size_t maxsize, unsigned maxpages,
1375 		   size_t *start)
1376 {
1377 	unsigned int iter_head, npages;
1378 	size_t capacity;
1379 
1380 	if (!maxsize)
1381 		return 0;
1382 
1383 	if (!sanity(i))
1384 		return -EFAULT;
1385 
1386 	data_start(i, &iter_head, start);
1387 	/* Amount of free space: some of this one + all after this one */
1388 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1389 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1390 
1391 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1392 }
1393 
1394 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1395 					  pgoff_t index, unsigned int nr_pages)
1396 {
1397 	XA_STATE(xas, xa, index);
1398 	struct page *page;
1399 	unsigned int ret = 0;
1400 
1401 	rcu_read_lock();
1402 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1403 		if (xas_retry(&xas, page))
1404 			continue;
1405 
1406 		/* Has the page moved or been split? */
1407 		if (unlikely(page != xas_reload(&xas))) {
1408 			xas_reset(&xas);
1409 			continue;
1410 		}
1411 
1412 		pages[ret] = find_subpage(page, xas.xa_index);
1413 		get_page(pages[ret]);
1414 		if (++ret == nr_pages)
1415 			break;
1416 	}
1417 	rcu_read_unlock();
1418 	return ret;
1419 }
1420 
1421 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1422 				     struct page **pages, size_t maxsize,
1423 				     unsigned maxpages, size_t *_start_offset)
1424 {
1425 	unsigned nr, offset;
1426 	pgoff_t index, count;
1427 	size_t size = maxsize, actual;
1428 	loff_t pos;
1429 
1430 	if (!size || !maxpages)
1431 		return 0;
1432 
1433 	pos = i->xarray_start + i->iov_offset;
1434 	index = pos >> PAGE_SHIFT;
1435 	offset = pos & ~PAGE_MASK;
1436 	*_start_offset = offset;
1437 
1438 	count = 1;
1439 	if (size > PAGE_SIZE - offset) {
1440 		size -= PAGE_SIZE - offset;
1441 		count += size >> PAGE_SHIFT;
1442 		size &= ~PAGE_MASK;
1443 		if (size)
1444 			count++;
1445 	}
1446 
1447 	if (count > maxpages)
1448 		count = maxpages;
1449 
1450 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1451 	if (nr == 0)
1452 		return 0;
1453 
1454 	actual = PAGE_SIZE * nr;
1455 	actual -= offset;
1456 	if (nr == count && size > 0) {
1457 		unsigned last_offset = (nr > 1) ? 0 : offset;
1458 		actual -= PAGE_SIZE - (last_offset + size);
1459 	}
1460 	return actual;
1461 }
1462 
1463 ssize_t iov_iter_get_pages(struct iov_iter *i,
1464 		   struct page **pages, size_t maxsize, unsigned maxpages,
1465 		   size_t *start)
1466 {
1467 	if (maxsize > i->count)
1468 		maxsize = i->count;
1469 
1470 	if (unlikely(iov_iter_is_pipe(i)))
1471 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1472 	if (unlikely(iov_iter_is_xarray(i)))
1473 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1474 	if (unlikely(iov_iter_is_discard(i)))
1475 		return -EFAULT;
1476 
1477 	iterate_all_kinds(i, maxsize, v, ({
1478 		unsigned long addr = (unsigned long)v.iov_base;
1479 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1480 		int n;
1481 		int res;
1482 
1483 		if (len > maxpages * PAGE_SIZE)
1484 			len = maxpages * PAGE_SIZE;
1485 		addr &= ~(PAGE_SIZE - 1);
1486 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1487 		res = get_user_pages_fast(addr, n,
1488 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1489 				pages);
1490 		if (unlikely(res < 0))
1491 			return res;
1492 		return (res == n ? len : res * PAGE_SIZE) - *start;
1493 	0;}),({
1494 		/* can't be more than PAGE_SIZE */
1495 		*start = v.bv_offset;
1496 		get_page(*pages = v.bv_page);
1497 		return v.bv_len;
1498 	}),({
1499 		return -EFAULT;
1500 	}),
1501 	0
1502 	)
1503 	return 0;
1504 }
1505 EXPORT_SYMBOL(iov_iter_get_pages);
1506 
1507 static struct page **get_pages_array(size_t n)
1508 {
1509 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1510 }
1511 
1512 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1513 		   struct page ***pages, size_t maxsize,
1514 		   size_t *start)
1515 {
1516 	struct page **p;
1517 	unsigned int iter_head, npages;
1518 	ssize_t n;
1519 
1520 	if (!maxsize)
1521 		return 0;
1522 
1523 	if (!sanity(i))
1524 		return -EFAULT;
1525 
1526 	data_start(i, &iter_head, start);
1527 	/* Amount of free space: some of this one + all after this one */
1528 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1529 	n = npages * PAGE_SIZE - *start;
1530 	if (maxsize > n)
1531 		maxsize = n;
1532 	else
1533 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1534 	p = get_pages_array(npages);
1535 	if (!p)
1536 		return -ENOMEM;
1537 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1538 	if (n > 0)
1539 		*pages = p;
1540 	else
1541 		kvfree(p);
1542 	return n;
1543 }
1544 
1545 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1546 					   struct page ***pages, size_t maxsize,
1547 					   size_t *_start_offset)
1548 {
1549 	struct page **p;
1550 	unsigned nr, offset;
1551 	pgoff_t index, count;
1552 	size_t size = maxsize, actual;
1553 	loff_t pos;
1554 
1555 	if (!size)
1556 		return 0;
1557 
1558 	pos = i->xarray_start + i->iov_offset;
1559 	index = pos >> PAGE_SHIFT;
1560 	offset = pos & ~PAGE_MASK;
1561 	*_start_offset = offset;
1562 
1563 	count = 1;
1564 	if (size > PAGE_SIZE - offset) {
1565 		size -= PAGE_SIZE - offset;
1566 		count += size >> PAGE_SHIFT;
1567 		size &= ~PAGE_MASK;
1568 		if (size)
1569 			count++;
1570 	}
1571 
1572 	p = get_pages_array(count);
1573 	if (!p)
1574 		return -ENOMEM;
1575 	*pages = p;
1576 
1577 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1578 	if (nr == 0)
1579 		return 0;
1580 
1581 	actual = PAGE_SIZE * nr;
1582 	actual -= offset;
1583 	if (nr == count && size > 0) {
1584 		unsigned last_offset = (nr > 1) ? 0 : offset;
1585 		actual -= PAGE_SIZE - (last_offset + size);
1586 	}
1587 	return actual;
1588 }
1589 
1590 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1591 		   struct page ***pages, size_t maxsize,
1592 		   size_t *start)
1593 {
1594 	struct page **p;
1595 
1596 	if (maxsize > i->count)
1597 		maxsize = i->count;
1598 
1599 	if (unlikely(iov_iter_is_pipe(i)))
1600 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1601 	if (unlikely(iov_iter_is_xarray(i)))
1602 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1603 	if (unlikely(iov_iter_is_discard(i)))
1604 		return -EFAULT;
1605 
1606 	iterate_all_kinds(i, maxsize, v, ({
1607 		unsigned long addr = (unsigned long)v.iov_base;
1608 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1609 		int n;
1610 		int res;
1611 
1612 		addr &= ~(PAGE_SIZE - 1);
1613 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1614 		p = get_pages_array(n);
1615 		if (!p)
1616 			return -ENOMEM;
1617 		res = get_user_pages_fast(addr, n,
1618 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1619 		if (unlikely(res < 0)) {
1620 			kvfree(p);
1621 			return res;
1622 		}
1623 		*pages = p;
1624 		return (res == n ? len : res * PAGE_SIZE) - *start;
1625 	0;}),({
1626 		/* can't be more than PAGE_SIZE */
1627 		*start = v.bv_offset;
1628 		*pages = p = get_pages_array(1);
1629 		if (!p)
1630 			return -ENOMEM;
1631 		get_page(*p = v.bv_page);
1632 		return v.bv_len;
1633 	}),({
1634 		return -EFAULT;
1635 	}), 0
1636 	)
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1640 
1641 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1642 			       struct iov_iter *i)
1643 {
1644 	char *to = addr;
1645 	__wsum sum, next;
1646 	size_t off = 0;
1647 	sum = *csum;
1648 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1649 		WARN_ON(1);
1650 		return 0;
1651 	}
1652 	iterate_and_advance(i, bytes, v, ({
1653 		next = csum_and_copy_from_user(v.iov_base,
1654 					       (to += v.iov_len) - v.iov_len,
1655 					       v.iov_len);
1656 		if (next) {
1657 			sum = csum_block_add(sum, next, off);
1658 			off += v.iov_len;
1659 		}
1660 		next ? 0 : v.iov_len;
1661 	}), ({
1662 		char *p = kmap_atomic(v.bv_page);
1663 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1664 				      p + v.bv_offset, v.bv_len,
1665 				      sum, off);
1666 		kunmap_atomic(p);
1667 		off += v.bv_len;
1668 	}),({
1669 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1670 				      v.iov_base, v.iov_len,
1671 				      sum, off);
1672 		off += v.iov_len;
1673 	}), ({
1674 		char *p = kmap_atomic(v.bv_page);
1675 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1676 				      p + v.bv_offset, v.bv_len,
1677 				      sum, off);
1678 		kunmap_atomic(p);
1679 		off += v.bv_len;
1680 	})
1681 	)
1682 	*csum = sum;
1683 	return bytes;
1684 }
1685 EXPORT_SYMBOL(csum_and_copy_from_iter);
1686 
1687 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1688 			     struct iov_iter *i)
1689 {
1690 	struct csum_state *csstate = _csstate;
1691 	const char *from = addr;
1692 	__wsum sum, next;
1693 	size_t off;
1694 
1695 	if (unlikely(iov_iter_is_pipe(i)))
1696 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1697 
1698 	sum = csstate->csum;
1699 	off = csstate->off;
1700 	if (unlikely(iov_iter_is_discard(i))) {
1701 		WARN_ON(1);	/* for now */
1702 		return 0;
1703 	}
1704 	iterate_and_advance(i, bytes, v, ({
1705 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1706 					     v.iov_base,
1707 					     v.iov_len);
1708 		if (next) {
1709 			sum = csum_block_add(sum, next, off);
1710 			off += v.iov_len;
1711 		}
1712 		next ? 0 : v.iov_len;
1713 	}), ({
1714 		char *p = kmap_atomic(v.bv_page);
1715 		sum = csum_and_memcpy(p + v.bv_offset,
1716 				      (from += v.bv_len) - v.bv_len,
1717 				      v.bv_len, sum, off);
1718 		kunmap_atomic(p);
1719 		off += v.bv_len;
1720 	}),({
1721 		sum = csum_and_memcpy(v.iov_base,
1722 				     (from += v.iov_len) - v.iov_len,
1723 				     v.iov_len, sum, off);
1724 		off += v.iov_len;
1725 	}), ({
1726 		char *p = kmap_atomic(v.bv_page);
1727 		sum = csum_and_memcpy(p + v.bv_offset,
1728 				      (from += v.bv_len) - v.bv_len,
1729 				      v.bv_len, sum, off);
1730 		kunmap_atomic(p);
1731 		off += v.bv_len;
1732 	})
1733 	)
1734 	csstate->csum = sum;
1735 	csstate->off = off;
1736 	return bytes;
1737 }
1738 EXPORT_SYMBOL(csum_and_copy_to_iter);
1739 
1740 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1741 		struct iov_iter *i)
1742 {
1743 #ifdef CONFIG_CRYPTO_HASH
1744 	struct ahash_request *hash = hashp;
1745 	struct scatterlist sg;
1746 	size_t copied;
1747 
1748 	copied = copy_to_iter(addr, bytes, i);
1749 	sg_init_one(&sg, addr, copied);
1750 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1751 	crypto_ahash_update(hash);
1752 	return copied;
1753 #else
1754 	return 0;
1755 #endif
1756 }
1757 EXPORT_SYMBOL(hash_and_copy_to_iter);
1758 
1759 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1760 {
1761 	size_t size = i->count;
1762 	int npages = 0;
1763 
1764 	if (!size)
1765 		return 0;
1766 	if (unlikely(iov_iter_is_discard(i)))
1767 		return 0;
1768 
1769 	if (unlikely(iov_iter_is_pipe(i))) {
1770 		struct pipe_inode_info *pipe = i->pipe;
1771 		unsigned int iter_head;
1772 		size_t off;
1773 
1774 		if (!sanity(i))
1775 			return 0;
1776 
1777 		data_start(i, &iter_head, &off);
1778 		/* some of this one + all after this one */
1779 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1780 		if (npages >= maxpages)
1781 			return maxpages;
1782 	} else if (unlikely(iov_iter_is_xarray(i))) {
1783 		unsigned offset;
1784 
1785 		offset = (i->xarray_start + i->iov_offset) & ~PAGE_MASK;
1786 
1787 		npages = 1;
1788 		if (size > PAGE_SIZE - offset) {
1789 			size -= PAGE_SIZE - offset;
1790 			npages += size >> PAGE_SHIFT;
1791 			size &= ~PAGE_MASK;
1792 			if (size)
1793 				npages++;
1794 		}
1795 		if (npages >= maxpages)
1796 			return maxpages;
1797 	} else iterate_all_kinds(i, size, v, ({
1798 		unsigned long p = (unsigned long)v.iov_base;
1799 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1800 			- p / PAGE_SIZE;
1801 		if (npages >= maxpages)
1802 			return maxpages;
1803 	0;}),({
1804 		npages++;
1805 		if (npages >= maxpages)
1806 			return maxpages;
1807 	}),({
1808 		unsigned long p = (unsigned long)v.iov_base;
1809 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1810 			- p / PAGE_SIZE;
1811 		if (npages >= maxpages)
1812 			return maxpages;
1813 	}),
1814 	0
1815 	)
1816 	return npages;
1817 }
1818 EXPORT_SYMBOL(iov_iter_npages);
1819 
1820 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1821 {
1822 	*new = *old;
1823 	if (unlikely(iov_iter_is_pipe(new))) {
1824 		WARN_ON(1);
1825 		return NULL;
1826 	}
1827 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1828 		return NULL;
1829 	if (iov_iter_is_bvec(new))
1830 		return new->bvec = kmemdup(new->bvec,
1831 				    new->nr_segs * sizeof(struct bio_vec),
1832 				    flags);
1833 	else
1834 		/* iovec and kvec have identical layout */
1835 		return new->iov = kmemdup(new->iov,
1836 				   new->nr_segs * sizeof(struct iovec),
1837 				   flags);
1838 }
1839 EXPORT_SYMBOL(dup_iter);
1840 
1841 static int copy_compat_iovec_from_user(struct iovec *iov,
1842 		const struct iovec __user *uvec, unsigned long nr_segs)
1843 {
1844 	const struct compat_iovec __user *uiov =
1845 		(const struct compat_iovec __user *)uvec;
1846 	int ret = -EFAULT, i;
1847 
1848 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1849 		return -EFAULT;
1850 
1851 	for (i = 0; i < nr_segs; i++) {
1852 		compat_uptr_t buf;
1853 		compat_ssize_t len;
1854 
1855 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1856 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1857 
1858 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1859 		if (len < 0) {
1860 			ret = -EINVAL;
1861 			goto uaccess_end;
1862 		}
1863 		iov[i].iov_base = compat_ptr(buf);
1864 		iov[i].iov_len = len;
1865 	}
1866 
1867 	ret = 0;
1868 uaccess_end:
1869 	user_access_end();
1870 	return ret;
1871 }
1872 
1873 static int copy_iovec_from_user(struct iovec *iov,
1874 		const struct iovec __user *uvec, unsigned long nr_segs)
1875 {
1876 	unsigned long seg;
1877 
1878 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1879 		return -EFAULT;
1880 	for (seg = 0; seg < nr_segs; seg++) {
1881 		if ((ssize_t)iov[seg].iov_len < 0)
1882 			return -EINVAL;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1889 		unsigned long nr_segs, unsigned long fast_segs,
1890 		struct iovec *fast_iov, bool compat)
1891 {
1892 	struct iovec *iov = fast_iov;
1893 	int ret;
1894 
1895 	/*
1896 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1897 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1898 	 * traditionally returned zero for zero segments, so...
1899 	 */
1900 	if (nr_segs == 0)
1901 		return iov;
1902 	if (nr_segs > UIO_MAXIOV)
1903 		return ERR_PTR(-EINVAL);
1904 	if (nr_segs > fast_segs) {
1905 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1906 		if (!iov)
1907 			return ERR_PTR(-ENOMEM);
1908 	}
1909 
1910 	if (compat)
1911 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1912 	else
1913 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1914 	if (ret) {
1915 		if (iov != fast_iov)
1916 			kfree(iov);
1917 		return ERR_PTR(ret);
1918 	}
1919 
1920 	return iov;
1921 }
1922 
1923 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1924 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1925 		 struct iov_iter *i, bool compat)
1926 {
1927 	ssize_t total_len = 0;
1928 	unsigned long seg;
1929 	struct iovec *iov;
1930 
1931 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1932 	if (IS_ERR(iov)) {
1933 		*iovp = NULL;
1934 		return PTR_ERR(iov);
1935 	}
1936 
1937 	/*
1938 	 * According to the Single Unix Specification we should return EINVAL if
1939 	 * an element length is < 0 when cast to ssize_t or if the total length
1940 	 * would overflow the ssize_t return value of the system call.
1941 	 *
1942 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1943 	 * overflow case.
1944 	 */
1945 	for (seg = 0; seg < nr_segs; seg++) {
1946 		ssize_t len = (ssize_t)iov[seg].iov_len;
1947 
1948 		if (!access_ok(iov[seg].iov_base, len)) {
1949 			if (iov != *iovp)
1950 				kfree(iov);
1951 			*iovp = NULL;
1952 			return -EFAULT;
1953 		}
1954 
1955 		if (len > MAX_RW_COUNT - total_len) {
1956 			len = MAX_RW_COUNT - total_len;
1957 			iov[seg].iov_len = len;
1958 		}
1959 		total_len += len;
1960 	}
1961 
1962 	iov_iter_init(i, type, iov, nr_segs, total_len);
1963 	if (iov == *iovp)
1964 		*iovp = NULL;
1965 	else
1966 		*iovp = iov;
1967 	return total_len;
1968 }
1969 
1970 /**
1971  * import_iovec() - Copy an array of &struct iovec from userspace
1972  *     into the kernel, check that it is valid, and initialize a new
1973  *     &struct iov_iter iterator to access it.
1974  *
1975  * @type: One of %READ or %WRITE.
1976  * @uvec: Pointer to the userspace array.
1977  * @nr_segs: Number of elements in userspace array.
1978  * @fast_segs: Number of elements in @iov.
1979  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1980  *     on-stack) kernel array.
1981  * @i: Pointer to iterator that will be initialized on success.
1982  *
1983  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1984  * then this function places %NULL in *@iov on return. Otherwise, a new
1985  * array will be allocated and the result placed in *@iov. This means that
1986  * the caller may call kfree() on *@iov regardless of whether the small
1987  * on-stack array was used or not (and regardless of whether this function
1988  * returns an error or not).
1989  *
1990  * Return: Negative error code on error, bytes imported on success
1991  */
1992 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1993 		 unsigned nr_segs, unsigned fast_segs,
1994 		 struct iovec **iovp, struct iov_iter *i)
1995 {
1996 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1997 			      in_compat_syscall());
1998 }
1999 EXPORT_SYMBOL(import_iovec);
2000 
2001 int import_single_range(int rw, void __user *buf, size_t len,
2002 		 struct iovec *iov, struct iov_iter *i)
2003 {
2004 	if (len > MAX_RW_COUNT)
2005 		len = MAX_RW_COUNT;
2006 	if (unlikely(!access_ok(buf, len)))
2007 		return -EFAULT;
2008 
2009 	iov->iov_base = buf;
2010 	iov->iov_len = len;
2011 	iov_iter_init(i, rw, iov, 1, len);
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL(import_single_range);
2015