xref: /openbmc/linux/lib/iov_iter.c (revision 2495bdcc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct page *head = NULL;				\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	unsigned offset = start % PAGE_SIZE;			\
75 	pgoff_t index = start / PAGE_SIZE;			\
76 	int j;							\
77 								\
78 	XA_STATE(xas, i->xarray, index);			\
79 								\
80 	rcu_read_lock();					\
81 	xas_for_each(&xas, head, ULONG_MAX) {			\
82 		unsigned left;					\
83 		if (xas_retry(&xas, head))			\
84 			continue;				\
85 		if (WARN_ON(xa_is_value(head)))			\
86 			break;					\
87 		if (WARN_ON(PageHuge(head)))			\
88 			break;					\
89 		for (j = (head->index < index) ? index - head->index : 0; \
90 		     j < thp_nr_pages(head); j++) {		\
91 			void *kaddr = kmap_local_page(head + j);	\
92 			base = kaddr + offset;			\
93 			len = PAGE_SIZE - offset;		\
94 			len = min(n, len);			\
95 			left = (STEP);				\
96 			kunmap_local(kaddr);			\
97 			len -= left;				\
98 			__off += len;				\
99 			n -= len;				\
100 			if (left || n == 0)			\
101 				goto __out;			\
102 			offset = 0;				\
103 		}						\
104 	}							\
105 __out:								\
106 	rcu_read_unlock();					\
107 	i->iov_offset += __off;						\
108 	n = __off;						\
109 }
110 
111 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
112 	if (unlikely(i->count < n))				\
113 		n = i->count;					\
114 	if (likely(n)) {					\
115 		if (likely(iter_is_iovec(i))) {			\
116 			const struct iovec *iov = i->iov;	\
117 			void __user *base;			\
118 			size_t len;				\
119 			iterate_iovec(i, n, base, len, off,	\
120 						iov, (I))	\
121 			i->nr_segs -= iov - i->iov;		\
122 			i->iov = iov;				\
123 		} else if (iov_iter_is_bvec(i)) {		\
124 			const struct bio_vec *bvec = i->bvec;	\
125 			void *base;				\
126 			size_t len;				\
127 			iterate_bvec(i, n, base, len, off,	\
128 						bvec, (K))	\
129 			i->nr_segs -= bvec - i->bvec;		\
130 			i->bvec = bvec;				\
131 		} else if (iov_iter_is_kvec(i)) {		\
132 			const struct kvec *kvec = i->kvec;	\
133 			void *base;				\
134 			size_t len;				\
135 			iterate_iovec(i, n, base, len, off,	\
136 						kvec, (K))	\
137 			i->nr_segs -= kvec - i->kvec;		\
138 			i->kvec = kvec;				\
139 		} else if (iov_iter_is_xarray(i)) {		\
140 			void *base;				\
141 			size_t len;				\
142 			iterate_xarray(i, n, base, len, off,	\
143 							(K))	\
144 		}						\
145 		i->count -= n;					\
146 	}							\
147 }
148 #define iterate_and_advance(i, n, base, len, off, I, K) \
149 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150 
151 static int copyout(void __user *to, const void *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(to, n)) {
156 		instrument_copy_to_user(to, from, n);
157 		n = raw_copy_to_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static int copyin(void *to, const void __user *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(from, n)) {
167 		instrument_copy_from_user(to, from, n);
168 		n = raw_copy_from_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i)
175 {
176 	size_t skip, copy, left, wanted;
177 	const struct iovec *iov;
178 	char __user *buf;
179 	void *kaddr, *from;
180 
181 	if (unlikely(bytes > i->count))
182 		bytes = i->count;
183 
184 	if (unlikely(!bytes))
185 		return 0;
186 
187 	might_fault();
188 	wanted = bytes;
189 	iov = i->iov;
190 	skip = i->iov_offset;
191 	buf = iov->iov_base + skip;
192 	copy = min(bytes, iov->iov_len - skip);
193 
194 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
195 		kaddr = kmap_atomic(page);
196 		from = kaddr + offset;
197 
198 		/* first chunk, usually the only one */
199 		left = copyout(buf, from, copy);
200 		copy -= left;
201 		skip += copy;
202 		from += copy;
203 		bytes -= copy;
204 
205 		while (unlikely(!left && bytes)) {
206 			iov++;
207 			buf = iov->iov_base;
208 			copy = min(bytes, iov->iov_len);
209 			left = copyout(buf, from, copy);
210 			copy -= left;
211 			skip = copy;
212 			from += copy;
213 			bytes -= copy;
214 		}
215 		if (likely(!bytes)) {
216 			kunmap_atomic(kaddr);
217 			goto done;
218 		}
219 		offset = from - kaddr;
220 		buf += copy;
221 		kunmap_atomic(kaddr);
222 		copy = min(bytes, iov->iov_len - skip);
223 	}
224 	/* Too bad - revert to non-atomic kmap */
225 
226 	kaddr = kmap(page);
227 	from = kaddr + offset;
228 	left = copyout(buf, from, copy);
229 	copy -= left;
230 	skip += copy;
231 	from += copy;
232 	bytes -= copy;
233 	while (unlikely(!left && bytes)) {
234 		iov++;
235 		buf = iov->iov_base;
236 		copy = min(bytes, iov->iov_len);
237 		left = copyout(buf, from, copy);
238 		copy -= left;
239 		skip = copy;
240 		from += copy;
241 		bytes -= copy;
242 	}
243 	kunmap(page);
244 
245 done:
246 	if (skip == iov->iov_len) {
247 		iov++;
248 		skip = 0;
249 	}
250 	i->count -= wanted - bytes;
251 	i->nr_segs -= iov - i->iov;
252 	i->iov = iov;
253 	i->iov_offset = skip;
254 	return wanted - bytes;
255 }
256 
257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 			 struct iov_iter *i)
259 {
260 	size_t skip, copy, left, wanted;
261 	const struct iovec *iov;
262 	char __user *buf;
263 	void *kaddr, *to;
264 
265 	if (unlikely(bytes > i->count))
266 		bytes = i->count;
267 
268 	if (unlikely(!bytes))
269 		return 0;
270 
271 	might_fault();
272 	wanted = bytes;
273 	iov = i->iov;
274 	skip = i->iov_offset;
275 	buf = iov->iov_base + skip;
276 	copy = min(bytes, iov->iov_len - skip);
277 
278 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
279 		kaddr = kmap_atomic(page);
280 		to = kaddr + offset;
281 
282 		/* first chunk, usually the only one */
283 		left = copyin(to, buf, copy);
284 		copy -= left;
285 		skip += copy;
286 		to += copy;
287 		bytes -= copy;
288 
289 		while (unlikely(!left && bytes)) {
290 			iov++;
291 			buf = iov->iov_base;
292 			copy = min(bytes, iov->iov_len);
293 			left = copyin(to, buf, copy);
294 			copy -= left;
295 			skip = copy;
296 			to += copy;
297 			bytes -= copy;
298 		}
299 		if (likely(!bytes)) {
300 			kunmap_atomic(kaddr);
301 			goto done;
302 		}
303 		offset = to - kaddr;
304 		buf += copy;
305 		kunmap_atomic(kaddr);
306 		copy = min(bytes, iov->iov_len - skip);
307 	}
308 	/* Too bad - revert to non-atomic kmap */
309 
310 	kaddr = kmap(page);
311 	to = kaddr + offset;
312 	left = copyin(to, buf, copy);
313 	copy -= left;
314 	skip += copy;
315 	to += copy;
316 	bytes -= copy;
317 	while (unlikely(!left && bytes)) {
318 		iov++;
319 		buf = iov->iov_base;
320 		copy = min(bytes, iov->iov_len);
321 		left = copyin(to, buf, copy);
322 		copy -= left;
323 		skip = copy;
324 		to += copy;
325 		bytes -= copy;
326 	}
327 	kunmap(page);
328 
329 done:
330 	if (skip == iov->iov_len) {
331 		iov++;
332 		skip = 0;
333 	}
334 	i->count -= wanted - bytes;
335 	i->nr_segs -= iov - i->iov;
336 	i->iov = iov;
337 	i->iov_offset = skip;
338 	return wanted - bytes;
339 }
340 
341 #ifdef PIPE_PARANOIA
342 static bool sanity(const struct iov_iter *i)
343 {
344 	struct pipe_inode_info *pipe = i->pipe;
345 	unsigned int p_head = pipe->head;
346 	unsigned int p_tail = pipe->tail;
347 	unsigned int p_mask = pipe->ring_size - 1;
348 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 	unsigned int i_head = i->head;
350 	unsigned int idx;
351 
352 	if (i->iov_offset) {
353 		struct pipe_buffer *p;
354 		if (unlikely(p_occupancy == 0))
355 			goto Bad;	// pipe must be non-empty
356 		if (unlikely(i_head != p_head - 1))
357 			goto Bad;	// must be at the last buffer...
358 
359 		p = &pipe->bufs[i_head & p_mask];
360 		if (unlikely(p->offset + p->len != i->iov_offset))
361 			goto Bad;	// ... at the end of segment
362 	} else {
363 		if (i_head != p_head)
364 			goto Bad;	// must be right after the last buffer
365 	}
366 	return true;
367 Bad:
368 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 			p_head, p_tail, pipe->ring_size);
371 	for (idx = 0; idx < pipe->ring_size; idx++)
372 		printk(KERN_ERR "[%p %p %d %d]\n",
373 			pipe->bufs[idx].ops,
374 			pipe->bufs[idx].page,
375 			pipe->bufs[idx].offset,
376 			pipe->bufs[idx].len);
377 	WARN_ON(1);
378 	return false;
379 }
380 #else
381 #define sanity(i) true
382 #endif
383 
384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 			 struct iov_iter *i)
386 {
387 	struct pipe_inode_info *pipe = i->pipe;
388 	struct pipe_buffer *buf;
389 	unsigned int p_tail = pipe->tail;
390 	unsigned int p_mask = pipe->ring_size - 1;
391 	unsigned int i_head = i->head;
392 	size_t off;
393 
394 	if (unlikely(bytes > i->count))
395 		bytes = i->count;
396 
397 	if (unlikely(!bytes))
398 		return 0;
399 
400 	if (!sanity(i))
401 		return 0;
402 
403 	off = i->iov_offset;
404 	buf = &pipe->bufs[i_head & p_mask];
405 	if (off) {
406 		if (offset == off && buf->page == page) {
407 			/* merge with the last one */
408 			buf->len += bytes;
409 			i->iov_offset += bytes;
410 			goto out;
411 		}
412 		i_head++;
413 		buf = &pipe->bufs[i_head & p_mask];
414 	}
415 	if (pipe_full(i_head, p_tail, pipe->max_usage))
416 		return 0;
417 
418 	buf->ops = &page_cache_pipe_buf_ops;
419 	get_page(page);
420 	buf->page = page;
421 	buf->offset = offset;
422 	buf->len = bytes;
423 
424 	pipe->head = i_head + 1;
425 	i->iov_offset = offset + bytes;
426 	i->head = i_head;
427 out:
428 	i->count -= bytes;
429 	return bytes;
430 }
431 
432 /*
433  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
434  * bytes.  For each iovec, fault in each page that constitutes the iovec.
435  *
436  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
437  * because it is an invalid address).
438  */
439 int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
440 {
441 	if (iter_is_iovec(i)) {
442 		const struct iovec *p;
443 		size_t skip;
444 
445 		if (bytes > i->count)
446 			bytes = i->count;
447 		for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
448 			size_t len = min(bytes, p->iov_len - skip);
449 			int err;
450 
451 			if (unlikely(!len))
452 				continue;
453 			err = fault_in_pages_readable(p->iov_base + skip, len);
454 			if (unlikely(err))
455 				return err;
456 			bytes -= len;
457 		}
458 	}
459 	return 0;
460 }
461 EXPORT_SYMBOL(iov_iter_fault_in_readable);
462 
463 void iov_iter_init(struct iov_iter *i, unsigned int direction,
464 			const struct iovec *iov, unsigned long nr_segs,
465 			size_t count)
466 {
467 	WARN_ON(direction & ~(READ | WRITE));
468 	WARN_ON_ONCE(uaccess_kernel());
469 	*i = (struct iov_iter) {
470 		.iter_type = ITER_IOVEC,
471 		.data_source = direction,
472 		.iov = iov,
473 		.nr_segs = nr_segs,
474 		.iov_offset = 0,
475 		.count = count
476 	};
477 }
478 EXPORT_SYMBOL(iov_iter_init);
479 
480 static inline bool allocated(struct pipe_buffer *buf)
481 {
482 	return buf->ops == &default_pipe_buf_ops;
483 }
484 
485 static inline void data_start(const struct iov_iter *i,
486 			      unsigned int *iter_headp, size_t *offp)
487 {
488 	unsigned int p_mask = i->pipe->ring_size - 1;
489 	unsigned int iter_head = i->head;
490 	size_t off = i->iov_offset;
491 
492 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
493 		    off == PAGE_SIZE)) {
494 		iter_head++;
495 		off = 0;
496 	}
497 	*iter_headp = iter_head;
498 	*offp = off;
499 }
500 
501 static size_t push_pipe(struct iov_iter *i, size_t size,
502 			int *iter_headp, size_t *offp)
503 {
504 	struct pipe_inode_info *pipe = i->pipe;
505 	unsigned int p_tail = pipe->tail;
506 	unsigned int p_mask = pipe->ring_size - 1;
507 	unsigned int iter_head;
508 	size_t off;
509 	ssize_t left;
510 
511 	if (unlikely(size > i->count))
512 		size = i->count;
513 	if (unlikely(!size))
514 		return 0;
515 
516 	left = size;
517 	data_start(i, &iter_head, &off);
518 	*iter_headp = iter_head;
519 	*offp = off;
520 	if (off) {
521 		left -= PAGE_SIZE - off;
522 		if (left <= 0) {
523 			pipe->bufs[iter_head & p_mask].len += size;
524 			return size;
525 		}
526 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
527 		iter_head++;
528 	}
529 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
530 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
531 		struct page *page = alloc_page(GFP_USER);
532 		if (!page)
533 			break;
534 
535 		buf->ops = &default_pipe_buf_ops;
536 		buf->page = page;
537 		buf->offset = 0;
538 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
539 		left -= buf->len;
540 		iter_head++;
541 		pipe->head = iter_head;
542 
543 		if (left == 0)
544 			return size;
545 	}
546 	return size - left;
547 }
548 
549 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
550 				struct iov_iter *i)
551 {
552 	struct pipe_inode_info *pipe = i->pipe;
553 	unsigned int p_mask = pipe->ring_size - 1;
554 	unsigned int i_head;
555 	size_t n, off;
556 
557 	if (!sanity(i))
558 		return 0;
559 
560 	bytes = n = push_pipe(i, bytes, &i_head, &off);
561 	if (unlikely(!n))
562 		return 0;
563 	do {
564 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
565 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
566 		i->head = i_head;
567 		i->iov_offset = off + chunk;
568 		n -= chunk;
569 		addr += chunk;
570 		off = 0;
571 		i_head++;
572 	} while (n);
573 	i->count -= bytes;
574 	return bytes;
575 }
576 
577 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
578 			      __wsum sum, size_t off)
579 {
580 	__wsum next = csum_partial_copy_nocheck(from, to, len);
581 	return csum_block_add(sum, next, off);
582 }
583 
584 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
585 					 struct csum_state *csstate,
586 					 struct iov_iter *i)
587 {
588 	struct pipe_inode_info *pipe = i->pipe;
589 	unsigned int p_mask = pipe->ring_size - 1;
590 	__wsum sum = csstate->csum;
591 	size_t off = csstate->off;
592 	unsigned int i_head;
593 	size_t n, r;
594 
595 	if (!sanity(i))
596 		return 0;
597 
598 	bytes = n = push_pipe(i, bytes, &i_head, &r);
599 	if (unlikely(!n))
600 		return 0;
601 	do {
602 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
603 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
604 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
605 		kunmap_local(p);
606 		i->head = i_head;
607 		i->iov_offset = r + chunk;
608 		n -= chunk;
609 		off += chunk;
610 		addr += chunk;
611 		r = 0;
612 		i_head++;
613 	} while (n);
614 	i->count -= bytes;
615 	csstate->csum = sum;
616 	csstate->off = off;
617 	return bytes;
618 }
619 
620 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
621 {
622 	if (unlikely(iov_iter_is_pipe(i)))
623 		return copy_pipe_to_iter(addr, bytes, i);
624 	if (iter_is_iovec(i))
625 		might_fault();
626 	iterate_and_advance(i, bytes, base, len, off,
627 		copyout(base, addr + off, len),
628 		memcpy(base, addr + off, len)
629 	)
630 
631 	return bytes;
632 }
633 EXPORT_SYMBOL(_copy_to_iter);
634 
635 #ifdef CONFIG_ARCH_HAS_COPY_MC
636 static int copyout_mc(void __user *to, const void *from, size_t n)
637 {
638 	if (access_ok(to, n)) {
639 		instrument_copy_to_user(to, from, n);
640 		n = copy_mc_to_user((__force void *) to, from, n);
641 	}
642 	return n;
643 }
644 
645 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
646 		const char *from, size_t len)
647 {
648 	unsigned long ret;
649 	char *to;
650 
651 	to = kmap_atomic(page);
652 	ret = copy_mc_to_kernel(to + offset, from, len);
653 	kunmap_atomic(to);
654 
655 	return ret;
656 }
657 
658 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
659 				struct iov_iter *i)
660 {
661 	struct pipe_inode_info *pipe = i->pipe;
662 	unsigned int p_mask = pipe->ring_size - 1;
663 	unsigned int i_head;
664 	size_t n, off, xfer = 0;
665 
666 	if (!sanity(i))
667 		return 0;
668 
669 	bytes = n = push_pipe(i, bytes, &i_head, &off);
670 	if (unlikely(!n))
671 		return 0;
672 	do {
673 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
674 		unsigned long rem;
675 
676 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
677 					    off, addr, chunk);
678 		i->head = i_head;
679 		i->iov_offset = off + chunk - rem;
680 		xfer += chunk - rem;
681 		if (rem)
682 			break;
683 		n -= chunk;
684 		addr += chunk;
685 		off = 0;
686 		i_head++;
687 	} while (n);
688 	i->count -= xfer;
689 	return xfer;
690 }
691 
692 /**
693  * _copy_mc_to_iter - copy to iter with source memory error exception handling
694  * @addr: source kernel address
695  * @bytes: total transfer length
696  * @iter: destination iterator
697  *
698  * The pmem driver deploys this for the dax operation
699  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
700  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
701  * successfully copied.
702  *
703  * The main differences between this and typical _copy_to_iter().
704  *
705  * * Typical tail/residue handling after a fault retries the copy
706  *   byte-by-byte until the fault happens again. Re-triggering machine
707  *   checks is potentially fatal so the implementation uses source
708  *   alignment and poison alignment assumptions to avoid re-triggering
709  *   hardware exceptions.
710  *
711  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
712  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
713  *   a short copy.
714  */
715 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
716 {
717 	if (unlikely(iov_iter_is_pipe(i)))
718 		return copy_mc_pipe_to_iter(addr, bytes, i);
719 	if (iter_is_iovec(i))
720 		might_fault();
721 	__iterate_and_advance(i, bytes, base, len, off,
722 		copyout_mc(base, addr + off, len),
723 		copy_mc_to_kernel(base, addr + off, len)
724 	)
725 
726 	return bytes;
727 }
728 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
729 #endif /* CONFIG_ARCH_HAS_COPY_MC */
730 
731 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
732 {
733 	if (unlikely(iov_iter_is_pipe(i))) {
734 		WARN_ON(1);
735 		return 0;
736 	}
737 	if (iter_is_iovec(i))
738 		might_fault();
739 	iterate_and_advance(i, bytes, base, len, off,
740 		copyin(addr + off, base, len),
741 		memcpy(addr + off, base, len)
742 	)
743 
744 	return bytes;
745 }
746 EXPORT_SYMBOL(_copy_from_iter);
747 
748 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
749 {
750 	if (unlikely(iov_iter_is_pipe(i))) {
751 		WARN_ON(1);
752 		return 0;
753 	}
754 	iterate_and_advance(i, bytes, base, len, off,
755 		__copy_from_user_inatomic_nocache(addr + off, base, len),
756 		memcpy(addr + off, base, len)
757 	)
758 
759 	return bytes;
760 }
761 EXPORT_SYMBOL(_copy_from_iter_nocache);
762 
763 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
764 /**
765  * _copy_from_iter_flushcache - write destination through cpu cache
766  * @addr: destination kernel address
767  * @bytes: total transfer length
768  * @iter: source iterator
769  *
770  * The pmem driver arranges for filesystem-dax to use this facility via
771  * dax_copy_from_iter() for ensuring that writes to persistent memory
772  * are flushed through the CPU cache. It is differentiated from
773  * _copy_from_iter_nocache() in that guarantees all data is flushed for
774  * all iterator types. The _copy_from_iter_nocache() only attempts to
775  * bypass the cache for the ITER_IOVEC case, and on some archs may use
776  * instructions that strand dirty-data in the cache.
777  */
778 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
779 {
780 	if (unlikely(iov_iter_is_pipe(i))) {
781 		WARN_ON(1);
782 		return 0;
783 	}
784 	iterate_and_advance(i, bytes, base, len, off,
785 		__copy_from_user_flushcache(addr + off, base, len),
786 		memcpy_flushcache(addr + off, base, len)
787 	)
788 
789 	return bytes;
790 }
791 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
792 #endif
793 
794 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
795 {
796 	struct page *head;
797 	size_t v = n + offset;
798 
799 	/*
800 	 * The general case needs to access the page order in order
801 	 * to compute the page size.
802 	 * However, we mostly deal with order-0 pages and thus can
803 	 * avoid a possible cache line miss for requests that fit all
804 	 * page orders.
805 	 */
806 	if (n <= v && v <= PAGE_SIZE)
807 		return true;
808 
809 	head = compound_head(page);
810 	v += (page - head) << PAGE_SHIFT;
811 
812 	if (likely(n <= v && v <= (page_size(head))))
813 		return true;
814 	WARN_ON(1);
815 	return false;
816 }
817 
818 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
819 			 struct iov_iter *i)
820 {
821 	if (likely(iter_is_iovec(i)))
822 		return copy_page_to_iter_iovec(page, offset, bytes, i);
823 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
824 		void *kaddr = kmap_local_page(page);
825 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
826 		kunmap_local(kaddr);
827 		return wanted;
828 	}
829 	if (iov_iter_is_pipe(i))
830 		return copy_page_to_iter_pipe(page, offset, bytes, i);
831 	if (unlikely(iov_iter_is_discard(i))) {
832 		if (unlikely(i->count < bytes))
833 			bytes = i->count;
834 		i->count -= bytes;
835 		return bytes;
836 	}
837 	WARN_ON(1);
838 	return 0;
839 }
840 
841 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
842 			 struct iov_iter *i)
843 {
844 	size_t res = 0;
845 	if (unlikely(!page_copy_sane(page, offset, bytes)))
846 		return 0;
847 	page += offset / PAGE_SIZE; // first subpage
848 	offset %= PAGE_SIZE;
849 	while (1) {
850 		size_t n = __copy_page_to_iter(page, offset,
851 				min(bytes, (size_t)PAGE_SIZE - offset), i);
852 		res += n;
853 		bytes -= n;
854 		if (!bytes || !n)
855 			break;
856 		offset += n;
857 		if (offset == PAGE_SIZE) {
858 			page++;
859 			offset = 0;
860 		}
861 	}
862 	return res;
863 }
864 EXPORT_SYMBOL(copy_page_to_iter);
865 
866 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
867 			 struct iov_iter *i)
868 {
869 	if (unlikely(!page_copy_sane(page, offset, bytes)))
870 		return 0;
871 	if (likely(iter_is_iovec(i)))
872 		return copy_page_from_iter_iovec(page, offset, bytes, i);
873 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
874 		void *kaddr = kmap_local_page(page);
875 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
876 		kunmap_local(kaddr);
877 		return wanted;
878 	}
879 	WARN_ON(1);
880 	return 0;
881 }
882 EXPORT_SYMBOL(copy_page_from_iter);
883 
884 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
885 {
886 	struct pipe_inode_info *pipe = i->pipe;
887 	unsigned int p_mask = pipe->ring_size - 1;
888 	unsigned int i_head;
889 	size_t n, off;
890 
891 	if (!sanity(i))
892 		return 0;
893 
894 	bytes = n = push_pipe(i, bytes, &i_head, &off);
895 	if (unlikely(!n))
896 		return 0;
897 
898 	do {
899 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
900 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
901 		i->head = i_head;
902 		i->iov_offset = off + chunk;
903 		n -= chunk;
904 		off = 0;
905 		i_head++;
906 	} while (n);
907 	i->count -= bytes;
908 	return bytes;
909 }
910 
911 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
912 {
913 	if (unlikely(iov_iter_is_pipe(i)))
914 		return pipe_zero(bytes, i);
915 	iterate_and_advance(i, bytes, base, len, count,
916 		clear_user(base, len),
917 		memset(base, 0, len)
918 	)
919 
920 	return bytes;
921 }
922 EXPORT_SYMBOL(iov_iter_zero);
923 
924 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
925 				  struct iov_iter *i)
926 {
927 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
928 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
929 		kunmap_atomic(kaddr);
930 		return 0;
931 	}
932 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
933 		kunmap_atomic(kaddr);
934 		WARN_ON(1);
935 		return 0;
936 	}
937 	iterate_and_advance(i, bytes, base, len, off,
938 		copyin(p + off, base, len),
939 		memcpy(p + off, base, len)
940 	)
941 	kunmap_atomic(kaddr);
942 	return bytes;
943 }
944 EXPORT_SYMBOL(copy_page_from_iter_atomic);
945 
946 static inline void pipe_truncate(struct iov_iter *i)
947 {
948 	struct pipe_inode_info *pipe = i->pipe;
949 	unsigned int p_tail = pipe->tail;
950 	unsigned int p_head = pipe->head;
951 	unsigned int p_mask = pipe->ring_size - 1;
952 
953 	if (!pipe_empty(p_head, p_tail)) {
954 		struct pipe_buffer *buf;
955 		unsigned int i_head = i->head;
956 		size_t off = i->iov_offset;
957 
958 		if (off) {
959 			buf = &pipe->bufs[i_head & p_mask];
960 			buf->len = off - buf->offset;
961 			i_head++;
962 		}
963 		while (p_head != i_head) {
964 			p_head--;
965 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
966 		}
967 
968 		pipe->head = p_head;
969 	}
970 }
971 
972 static void pipe_advance(struct iov_iter *i, size_t size)
973 {
974 	struct pipe_inode_info *pipe = i->pipe;
975 	if (size) {
976 		struct pipe_buffer *buf;
977 		unsigned int p_mask = pipe->ring_size - 1;
978 		unsigned int i_head = i->head;
979 		size_t off = i->iov_offset, left = size;
980 
981 		if (off) /* make it relative to the beginning of buffer */
982 			left += off - pipe->bufs[i_head & p_mask].offset;
983 		while (1) {
984 			buf = &pipe->bufs[i_head & p_mask];
985 			if (left <= buf->len)
986 				break;
987 			left -= buf->len;
988 			i_head++;
989 		}
990 		i->head = i_head;
991 		i->iov_offset = buf->offset + left;
992 	}
993 	i->count -= size;
994 	/* ... and discard everything past that point */
995 	pipe_truncate(i);
996 }
997 
998 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
999 {
1000 	struct bvec_iter bi;
1001 
1002 	bi.bi_size = i->count;
1003 	bi.bi_bvec_done = i->iov_offset;
1004 	bi.bi_idx = 0;
1005 	bvec_iter_advance(i->bvec, &bi, size);
1006 
1007 	i->bvec += bi.bi_idx;
1008 	i->nr_segs -= bi.bi_idx;
1009 	i->count = bi.bi_size;
1010 	i->iov_offset = bi.bi_bvec_done;
1011 }
1012 
1013 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1014 {
1015 	const struct iovec *iov, *end;
1016 
1017 	if (!i->count)
1018 		return;
1019 	i->count -= size;
1020 
1021 	size += i->iov_offset; // from beginning of current segment
1022 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1023 		if (likely(size < iov->iov_len))
1024 			break;
1025 		size -= iov->iov_len;
1026 	}
1027 	i->iov_offset = size;
1028 	i->nr_segs -= iov - i->iov;
1029 	i->iov = iov;
1030 }
1031 
1032 void iov_iter_advance(struct iov_iter *i, size_t size)
1033 {
1034 	if (unlikely(i->count < size))
1035 		size = i->count;
1036 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1037 		/* iovec and kvec have identical layouts */
1038 		iov_iter_iovec_advance(i, size);
1039 	} else if (iov_iter_is_bvec(i)) {
1040 		iov_iter_bvec_advance(i, size);
1041 	} else if (iov_iter_is_pipe(i)) {
1042 		pipe_advance(i, size);
1043 	} else if (unlikely(iov_iter_is_xarray(i))) {
1044 		i->iov_offset += size;
1045 		i->count -= size;
1046 	} else if (iov_iter_is_discard(i)) {
1047 		i->count -= size;
1048 	}
1049 }
1050 EXPORT_SYMBOL(iov_iter_advance);
1051 
1052 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1053 {
1054 	if (!unroll)
1055 		return;
1056 	if (WARN_ON(unroll > MAX_RW_COUNT))
1057 		return;
1058 	i->count += unroll;
1059 	if (unlikely(iov_iter_is_pipe(i))) {
1060 		struct pipe_inode_info *pipe = i->pipe;
1061 		unsigned int p_mask = pipe->ring_size - 1;
1062 		unsigned int i_head = i->head;
1063 		size_t off = i->iov_offset;
1064 		while (1) {
1065 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1066 			size_t n = off - b->offset;
1067 			if (unroll < n) {
1068 				off -= unroll;
1069 				break;
1070 			}
1071 			unroll -= n;
1072 			if (!unroll && i_head == i->start_head) {
1073 				off = 0;
1074 				break;
1075 			}
1076 			i_head--;
1077 			b = &pipe->bufs[i_head & p_mask];
1078 			off = b->offset + b->len;
1079 		}
1080 		i->iov_offset = off;
1081 		i->head = i_head;
1082 		pipe_truncate(i);
1083 		return;
1084 	}
1085 	if (unlikely(iov_iter_is_discard(i)))
1086 		return;
1087 	if (unroll <= i->iov_offset) {
1088 		i->iov_offset -= unroll;
1089 		return;
1090 	}
1091 	unroll -= i->iov_offset;
1092 	if (iov_iter_is_xarray(i)) {
1093 		BUG(); /* We should never go beyond the start of the specified
1094 			* range since we might then be straying into pages that
1095 			* aren't pinned.
1096 			*/
1097 	} else if (iov_iter_is_bvec(i)) {
1098 		const struct bio_vec *bvec = i->bvec;
1099 		while (1) {
1100 			size_t n = (--bvec)->bv_len;
1101 			i->nr_segs++;
1102 			if (unroll <= n) {
1103 				i->bvec = bvec;
1104 				i->iov_offset = n - unroll;
1105 				return;
1106 			}
1107 			unroll -= n;
1108 		}
1109 	} else { /* same logics for iovec and kvec */
1110 		const struct iovec *iov = i->iov;
1111 		while (1) {
1112 			size_t n = (--iov)->iov_len;
1113 			i->nr_segs++;
1114 			if (unroll <= n) {
1115 				i->iov = iov;
1116 				i->iov_offset = n - unroll;
1117 				return;
1118 			}
1119 			unroll -= n;
1120 		}
1121 	}
1122 }
1123 EXPORT_SYMBOL(iov_iter_revert);
1124 
1125 /*
1126  * Return the count of just the current iov_iter segment.
1127  */
1128 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1129 {
1130 	if (i->nr_segs > 1) {
1131 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1132 			return min(i->count, i->iov->iov_len - i->iov_offset);
1133 		if (iov_iter_is_bvec(i))
1134 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1135 	}
1136 	return i->count;
1137 }
1138 EXPORT_SYMBOL(iov_iter_single_seg_count);
1139 
1140 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1141 			const struct kvec *kvec, unsigned long nr_segs,
1142 			size_t count)
1143 {
1144 	WARN_ON(direction & ~(READ | WRITE));
1145 	*i = (struct iov_iter){
1146 		.iter_type = ITER_KVEC,
1147 		.data_source = direction,
1148 		.kvec = kvec,
1149 		.nr_segs = nr_segs,
1150 		.iov_offset = 0,
1151 		.count = count
1152 	};
1153 }
1154 EXPORT_SYMBOL(iov_iter_kvec);
1155 
1156 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1157 			const struct bio_vec *bvec, unsigned long nr_segs,
1158 			size_t count)
1159 {
1160 	WARN_ON(direction & ~(READ | WRITE));
1161 	*i = (struct iov_iter){
1162 		.iter_type = ITER_BVEC,
1163 		.data_source = direction,
1164 		.bvec = bvec,
1165 		.nr_segs = nr_segs,
1166 		.iov_offset = 0,
1167 		.count = count
1168 	};
1169 }
1170 EXPORT_SYMBOL(iov_iter_bvec);
1171 
1172 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1173 			struct pipe_inode_info *pipe,
1174 			size_t count)
1175 {
1176 	BUG_ON(direction != READ);
1177 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1178 	*i = (struct iov_iter){
1179 		.iter_type = ITER_PIPE,
1180 		.data_source = false,
1181 		.pipe = pipe,
1182 		.head = pipe->head,
1183 		.start_head = pipe->head,
1184 		.iov_offset = 0,
1185 		.count = count
1186 	};
1187 }
1188 EXPORT_SYMBOL(iov_iter_pipe);
1189 
1190 /**
1191  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1192  * @i: The iterator to initialise.
1193  * @direction: The direction of the transfer.
1194  * @xarray: The xarray to access.
1195  * @start: The start file position.
1196  * @count: The size of the I/O buffer in bytes.
1197  *
1198  * Set up an I/O iterator to either draw data out of the pages attached to an
1199  * inode or to inject data into those pages.  The pages *must* be prevented
1200  * from evaporation, either by taking a ref on them or locking them by the
1201  * caller.
1202  */
1203 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1204 		     struct xarray *xarray, loff_t start, size_t count)
1205 {
1206 	BUG_ON(direction & ~1);
1207 	*i = (struct iov_iter) {
1208 		.iter_type = ITER_XARRAY,
1209 		.data_source = direction,
1210 		.xarray = xarray,
1211 		.xarray_start = start,
1212 		.count = count,
1213 		.iov_offset = 0
1214 	};
1215 }
1216 EXPORT_SYMBOL(iov_iter_xarray);
1217 
1218 /**
1219  * iov_iter_discard - Initialise an I/O iterator that discards data
1220  * @i: The iterator to initialise.
1221  * @direction: The direction of the transfer.
1222  * @count: The size of the I/O buffer in bytes.
1223  *
1224  * Set up an I/O iterator that just discards everything that's written to it.
1225  * It's only available as a READ iterator.
1226  */
1227 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1228 {
1229 	BUG_ON(direction != READ);
1230 	*i = (struct iov_iter){
1231 		.iter_type = ITER_DISCARD,
1232 		.data_source = false,
1233 		.count = count,
1234 		.iov_offset = 0
1235 	};
1236 }
1237 EXPORT_SYMBOL(iov_iter_discard);
1238 
1239 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1240 {
1241 	unsigned long res = 0;
1242 	size_t size = i->count;
1243 	size_t skip = i->iov_offset;
1244 	unsigned k;
1245 
1246 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1247 		size_t len = i->iov[k].iov_len - skip;
1248 		if (len) {
1249 			res |= (unsigned long)i->iov[k].iov_base + skip;
1250 			if (len > size)
1251 				len = size;
1252 			res |= len;
1253 			size -= len;
1254 			if (!size)
1255 				break;
1256 		}
1257 	}
1258 	return res;
1259 }
1260 
1261 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1262 {
1263 	unsigned res = 0;
1264 	size_t size = i->count;
1265 	unsigned skip = i->iov_offset;
1266 	unsigned k;
1267 
1268 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1269 		size_t len = i->bvec[k].bv_len - skip;
1270 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1271 		if (len > size)
1272 			len = size;
1273 		res |= len;
1274 		size -= len;
1275 		if (!size)
1276 			break;
1277 	}
1278 	return res;
1279 }
1280 
1281 unsigned long iov_iter_alignment(const struct iov_iter *i)
1282 {
1283 	/* iovec and kvec have identical layouts */
1284 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1285 		return iov_iter_alignment_iovec(i);
1286 
1287 	if (iov_iter_is_bvec(i))
1288 		return iov_iter_alignment_bvec(i);
1289 
1290 	if (iov_iter_is_pipe(i)) {
1291 		unsigned int p_mask = i->pipe->ring_size - 1;
1292 		size_t size = i->count;
1293 
1294 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1295 			return size | i->iov_offset;
1296 		return size;
1297 	}
1298 
1299 	if (iov_iter_is_xarray(i))
1300 		return (i->xarray_start + i->iov_offset) | i->count;
1301 
1302 	return 0;
1303 }
1304 EXPORT_SYMBOL(iov_iter_alignment);
1305 
1306 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1307 {
1308 	unsigned long res = 0;
1309 	unsigned long v = 0;
1310 	size_t size = i->count;
1311 	unsigned k;
1312 
1313 	if (WARN_ON(!iter_is_iovec(i)))
1314 		return ~0U;
1315 
1316 	for (k = 0; k < i->nr_segs; k++) {
1317 		if (i->iov[k].iov_len) {
1318 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1319 			if (v) // if not the first one
1320 				res |= base | v; // this start | previous end
1321 			v = base + i->iov[k].iov_len;
1322 			if (size <= i->iov[k].iov_len)
1323 				break;
1324 			size -= i->iov[k].iov_len;
1325 		}
1326 	}
1327 	return res;
1328 }
1329 EXPORT_SYMBOL(iov_iter_gap_alignment);
1330 
1331 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1332 				size_t maxsize,
1333 				struct page **pages,
1334 				int iter_head,
1335 				size_t *start)
1336 {
1337 	struct pipe_inode_info *pipe = i->pipe;
1338 	unsigned int p_mask = pipe->ring_size - 1;
1339 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1340 	if (!n)
1341 		return -EFAULT;
1342 
1343 	maxsize = n;
1344 	n += *start;
1345 	while (n > 0) {
1346 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1347 		iter_head++;
1348 		n -= PAGE_SIZE;
1349 	}
1350 
1351 	return maxsize;
1352 }
1353 
1354 static ssize_t pipe_get_pages(struct iov_iter *i,
1355 		   struct page **pages, size_t maxsize, unsigned maxpages,
1356 		   size_t *start)
1357 {
1358 	unsigned int iter_head, npages;
1359 	size_t capacity;
1360 
1361 	if (!sanity(i))
1362 		return -EFAULT;
1363 
1364 	data_start(i, &iter_head, start);
1365 	/* Amount of free space: some of this one + all after this one */
1366 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1367 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1368 
1369 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1370 }
1371 
1372 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1373 					  pgoff_t index, unsigned int nr_pages)
1374 {
1375 	XA_STATE(xas, xa, index);
1376 	struct page *page;
1377 	unsigned int ret = 0;
1378 
1379 	rcu_read_lock();
1380 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1381 		if (xas_retry(&xas, page))
1382 			continue;
1383 
1384 		/* Has the page moved or been split? */
1385 		if (unlikely(page != xas_reload(&xas))) {
1386 			xas_reset(&xas);
1387 			continue;
1388 		}
1389 
1390 		pages[ret] = find_subpage(page, xas.xa_index);
1391 		get_page(pages[ret]);
1392 		if (++ret == nr_pages)
1393 			break;
1394 	}
1395 	rcu_read_unlock();
1396 	return ret;
1397 }
1398 
1399 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1400 				     struct page **pages, size_t maxsize,
1401 				     unsigned maxpages, size_t *_start_offset)
1402 {
1403 	unsigned nr, offset;
1404 	pgoff_t index, count;
1405 	size_t size = maxsize, actual;
1406 	loff_t pos;
1407 
1408 	if (!size || !maxpages)
1409 		return 0;
1410 
1411 	pos = i->xarray_start + i->iov_offset;
1412 	index = pos >> PAGE_SHIFT;
1413 	offset = pos & ~PAGE_MASK;
1414 	*_start_offset = offset;
1415 
1416 	count = 1;
1417 	if (size > PAGE_SIZE - offset) {
1418 		size -= PAGE_SIZE - offset;
1419 		count += size >> PAGE_SHIFT;
1420 		size &= ~PAGE_MASK;
1421 		if (size)
1422 			count++;
1423 	}
1424 
1425 	if (count > maxpages)
1426 		count = maxpages;
1427 
1428 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1429 	if (nr == 0)
1430 		return 0;
1431 
1432 	actual = PAGE_SIZE * nr;
1433 	actual -= offset;
1434 	if (nr == count && size > 0) {
1435 		unsigned last_offset = (nr > 1) ? 0 : offset;
1436 		actual -= PAGE_SIZE - (last_offset + size);
1437 	}
1438 	return actual;
1439 }
1440 
1441 /* must be done on non-empty ITER_IOVEC one */
1442 static unsigned long first_iovec_segment(const struct iov_iter *i,
1443 					 size_t *size, size_t *start,
1444 					 size_t maxsize, unsigned maxpages)
1445 {
1446 	size_t skip;
1447 	long k;
1448 
1449 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1450 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1451 		size_t len = i->iov[k].iov_len - skip;
1452 
1453 		if (unlikely(!len))
1454 			continue;
1455 		if (len > maxsize)
1456 			len = maxsize;
1457 		len += (*start = addr % PAGE_SIZE);
1458 		if (len > maxpages * PAGE_SIZE)
1459 			len = maxpages * PAGE_SIZE;
1460 		*size = len;
1461 		return addr & PAGE_MASK;
1462 	}
1463 	BUG(); // if it had been empty, we wouldn't get called
1464 }
1465 
1466 /* must be done on non-empty ITER_BVEC one */
1467 static struct page *first_bvec_segment(const struct iov_iter *i,
1468 				       size_t *size, size_t *start,
1469 				       size_t maxsize, unsigned maxpages)
1470 {
1471 	struct page *page;
1472 	size_t skip = i->iov_offset, len;
1473 
1474 	len = i->bvec->bv_len - skip;
1475 	if (len > maxsize)
1476 		len = maxsize;
1477 	skip += i->bvec->bv_offset;
1478 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1479 	len += (*start = skip % PAGE_SIZE);
1480 	if (len > maxpages * PAGE_SIZE)
1481 		len = maxpages * PAGE_SIZE;
1482 	*size = len;
1483 	return page;
1484 }
1485 
1486 ssize_t iov_iter_get_pages(struct iov_iter *i,
1487 		   struct page **pages, size_t maxsize, unsigned maxpages,
1488 		   size_t *start)
1489 {
1490 	size_t len;
1491 	int n, res;
1492 
1493 	if (maxsize > i->count)
1494 		maxsize = i->count;
1495 	if (!maxsize)
1496 		return 0;
1497 
1498 	if (likely(iter_is_iovec(i))) {
1499 		unsigned long addr;
1500 
1501 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1502 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1503 		res = get_user_pages_fast(addr, n,
1504 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1505 				pages);
1506 		if (unlikely(res < 0))
1507 			return res;
1508 		return (res == n ? len : res * PAGE_SIZE) - *start;
1509 	}
1510 	if (iov_iter_is_bvec(i)) {
1511 		struct page *page;
1512 
1513 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1514 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1515 		while (n--)
1516 			get_page(*pages++ = page++);
1517 		return len - *start;
1518 	}
1519 	if (iov_iter_is_pipe(i))
1520 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1521 	if (iov_iter_is_xarray(i))
1522 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1523 	return -EFAULT;
1524 }
1525 EXPORT_SYMBOL(iov_iter_get_pages);
1526 
1527 static struct page **get_pages_array(size_t n)
1528 {
1529 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1530 }
1531 
1532 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1533 		   struct page ***pages, size_t maxsize,
1534 		   size_t *start)
1535 {
1536 	struct page **p;
1537 	unsigned int iter_head, npages;
1538 	ssize_t n;
1539 
1540 	if (!sanity(i))
1541 		return -EFAULT;
1542 
1543 	data_start(i, &iter_head, start);
1544 	/* Amount of free space: some of this one + all after this one */
1545 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1546 	n = npages * PAGE_SIZE - *start;
1547 	if (maxsize > n)
1548 		maxsize = n;
1549 	else
1550 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1551 	p = get_pages_array(npages);
1552 	if (!p)
1553 		return -ENOMEM;
1554 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1555 	if (n > 0)
1556 		*pages = p;
1557 	else
1558 		kvfree(p);
1559 	return n;
1560 }
1561 
1562 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1563 					   struct page ***pages, size_t maxsize,
1564 					   size_t *_start_offset)
1565 {
1566 	struct page **p;
1567 	unsigned nr, offset;
1568 	pgoff_t index, count;
1569 	size_t size = maxsize, actual;
1570 	loff_t pos;
1571 
1572 	if (!size)
1573 		return 0;
1574 
1575 	pos = i->xarray_start + i->iov_offset;
1576 	index = pos >> PAGE_SHIFT;
1577 	offset = pos & ~PAGE_MASK;
1578 	*_start_offset = offset;
1579 
1580 	count = 1;
1581 	if (size > PAGE_SIZE - offset) {
1582 		size -= PAGE_SIZE - offset;
1583 		count += size >> PAGE_SHIFT;
1584 		size &= ~PAGE_MASK;
1585 		if (size)
1586 			count++;
1587 	}
1588 
1589 	p = get_pages_array(count);
1590 	if (!p)
1591 		return -ENOMEM;
1592 	*pages = p;
1593 
1594 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1595 	if (nr == 0)
1596 		return 0;
1597 
1598 	actual = PAGE_SIZE * nr;
1599 	actual -= offset;
1600 	if (nr == count && size > 0) {
1601 		unsigned last_offset = (nr > 1) ? 0 : offset;
1602 		actual -= PAGE_SIZE - (last_offset + size);
1603 	}
1604 	return actual;
1605 }
1606 
1607 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1608 		   struct page ***pages, size_t maxsize,
1609 		   size_t *start)
1610 {
1611 	struct page **p;
1612 	size_t len;
1613 	int n, res;
1614 
1615 	if (maxsize > i->count)
1616 		maxsize = i->count;
1617 	if (!maxsize)
1618 		return 0;
1619 
1620 	if (likely(iter_is_iovec(i))) {
1621 		unsigned long addr;
1622 
1623 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1624 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1625 		p = get_pages_array(n);
1626 		if (!p)
1627 			return -ENOMEM;
1628 		res = get_user_pages_fast(addr, n,
1629 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1630 		if (unlikely(res < 0)) {
1631 			kvfree(p);
1632 			return res;
1633 		}
1634 		*pages = p;
1635 		return (res == n ? len : res * PAGE_SIZE) - *start;
1636 	}
1637 	if (iov_iter_is_bvec(i)) {
1638 		struct page *page;
1639 
1640 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1641 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1642 		*pages = p = get_pages_array(n);
1643 		if (!p)
1644 			return -ENOMEM;
1645 		while (n--)
1646 			get_page(*p++ = page++);
1647 		return len - *start;
1648 	}
1649 	if (iov_iter_is_pipe(i))
1650 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1651 	if (iov_iter_is_xarray(i))
1652 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1653 	return -EFAULT;
1654 }
1655 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1656 
1657 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1658 			       struct iov_iter *i)
1659 {
1660 	__wsum sum, next;
1661 	sum = *csum;
1662 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1663 		WARN_ON(1);
1664 		return 0;
1665 	}
1666 	iterate_and_advance(i, bytes, base, len, off, ({
1667 		next = csum_and_copy_from_user(base, addr + off, len);
1668 		sum = csum_block_add(sum, next, off);
1669 		next ? 0 : len;
1670 	}), ({
1671 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1672 	})
1673 	)
1674 	*csum = sum;
1675 	return bytes;
1676 }
1677 EXPORT_SYMBOL(csum_and_copy_from_iter);
1678 
1679 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1680 			     struct iov_iter *i)
1681 {
1682 	struct csum_state *csstate = _csstate;
1683 	__wsum sum, next;
1684 
1685 	if (unlikely(iov_iter_is_pipe(i)))
1686 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1687 
1688 	sum = csum_shift(csstate->csum, csstate->off);
1689 	if (unlikely(iov_iter_is_discard(i))) {
1690 		WARN_ON(1);	/* for now */
1691 		return 0;
1692 	}
1693 	iterate_and_advance(i, bytes, base, len, off, ({
1694 		next = csum_and_copy_to_user(addr + off, base, len);
1695 		sum = csum_block_add(sum, next, off);
1696 		next ? 0 : len;
1697 	}), ({
1698 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1699 	})
1700 	)
1701 	csstate->csum = csum_shift(sum, csstate->off);
1702 	csstate->off += bytes;
1703 	return bytes;
1704 }
1705 EXPORT_SYMBOL(csum_and_copy_to_iter);
1706 
1707 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1708 		struct iov_iter *i)
1709 {
1710 #ifdef CONFIG_CRYPTO_HASH
1711 	struct ahash_request *hash = hashp;
1712 	struct scatterlist sg;
1713 	size_t copied;
1714 
1715 	copied = copy_to_iter(addr, bytes, i);
1716 	sg_init_one(&sg, addr, copied);
1717 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1718 	crypto_ahash_update(hash);
1719 	return copied;
1720 #else
1721 	return 0;
1722 #endif
1723 }
1724 EXPORT_SYMBOL(hash_and_copy_to_iter);
1725 
1726 static int iov_npages(const struct iov_iter *i, int maxpages)
1727 {
1728 	size_t skip = i->iov_offset, size = i->count;
1729 	const struct iovec *p;
1730 	int npages = 0;
1731 
1732 	for (p = i->iov; size; skip = 0, p++) {
1733 		unsigned offs = offset_in_page(p->iov_base + skip);
1734 		size_t len = min(p->iov_len - skip, size);
1735 
1736 		if (len) {
1737 			size -= len;
1738 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1739 			if (unlikely(npages > maxpages))
1740 				return maxpages;
1741 		}
1742 	}
1743 	return npages;
1744 }
1745 
1746 static int bvec_npages(const struct iov_iter *i, int maxpages)
1747 {
1748 	size_t skip = i->iov_offset, size = i->count;
1749 	const struct bio_vec *p;
1750 	int npages = 0;
1751 
1752 	for (p = i->bvec; size; skip = 0, p++) {
1753 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1754 		size_t len = min(p->bv_len - skip, size);
1755 
1756 		size -= len;
1757 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1758 		if (unlikely(npages > maxpages))
1759 			return maxpages;
1760 	}
1761 	return npages;
1762 }
1763 
1764 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1765 {
1766 	if (unlikely(!i->count))
1767 		return 0;
1768 	/* iovec and kvec have identical layouts */
1769 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1770 		return iov_npages(i, maxpages);
1771 	if (iov_iter_is_bvec(i))
1772 		return bvec_npages(i, maxpages);
1773 	if (iov_iter_is_pipe(i)) {
1774 		unsigned int iter_head;
1775 		int npages;
1776 		size_t off;
1777 
1778 		if (!sanity(i))
1779 			return 0;
1780 
1781 		data_start(i, &iter_head, &off);
1782 		/* some of this one + all after this one */
1783 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1784 		return min(npages, maxpages);
1785 	}
1786 	if (iov_iter_is_xarray(i)) {
1787 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1788 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1789 		return min(npages, maxpages);
1790 	}
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(iov_iter_npages);
1794 
1795 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1796 {
1797 	*new = *old;
1798 	if (unlikely(iov_iter_is_pipe(new))) {
1799 		WARN_ON(1);
1800 		return NULL;
1801 	}
1802 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1803 		return NULL;
1804 	if (iov_iter_is_bvec(new))
1805 		return new->bvec = kmemdup(new->bvec,
1806 				    new->nr_segs * sizeof(struct bio_vec),
1807 				    flags);
1808 	else
1809 		/* iovec and kvec have identical layout */
1810 		return new->iov = kmemdup(new->iov,
1811 				   new->nr_segs * sizeof(struct iovec),
1812 				   flags);
1813 }
1814 EXPORT_SYMBOL(dup_iter);
1815 
1816 static int copy_compat_iovec_from_user(struct iovec *iov,
1817 		const struct iovec __user *uvec, unsigned long nr_segs)
1818 {
1819 	const struct compat_iovec __user *uiov =
1820 		(const struct compat_iovec __user *)uvec;
1821 	int ret = -EFAULT, i;
1822 
1823 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1824 		return -EFAULT;
1825 
1826 	for (i = 0; i < nr_segs; i++) {
1827 		compat_uptr_t buf;
1828 		compat_ssize_t len;
1829 
1830 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1831 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1832 
1833 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1834 		if (len < 0) {
1835 			ret = -EINVAL;
1836 			goto uaccess_end;
1837 		}
1838 		iov[i].iov_base = compat_ptr(buf);
1839 		iov[i].iov_len = len;
1840 	}
1841 
1842 	ret = 0;
1843 uaccess_end:
1844 	user_access_end();
1845 	return ret;
1846 }
1847 
1848 static int copy_iovec_from_user(struct iovec *iov,
1849 		const struct iovec __user *uvec, unsigned long nr_segs)
1850 {
1851 	unsigned long seg;
1852 
1853 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1854 		return -EFAULT;
1855 	for (seg = 0; seg < nr_segs; seg++) {
1856 		if ((ssize_t)iov[seg].iov_len < 0)
1857 			return -EINVAL;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1864 		unsigned long nr_segs, unsigned long fast_segs,
1865 		struct iovec *fast_iov, bool compat)
1866 {
1867 	struct iovec *iov = fast_iov;
1868 	int ret;
1869 
1870 	/*
1871 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1872 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1873 	 * traditionally returned zero for zero segments, so...
1874 	 */
1875 	if (nr_segs == 0)
1876 		return iov;
1877 	if (nr_segs > UIO_MAXIOV)
1878 		return ERR_PTR(-EINVAL);
1879 	if (nr_segs > fast_segs) {
1880 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1881 		if (!iov)
1882 			return ERR_PTR(-ENOMEM);
1883 	}
1884 
1885 	if (compat)
1886 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1887 	else
1888 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1889 	if (ret) {
1890 		if (iov != fast_iov)
1891 			kfree(iov);
1892 		return ERR_PTR(ret);
1893 	}
1894 
1895 	return iov;
1896 }
1897 
1898 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1899 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1900 		 struct iov_iter *i, bool compat)
1901 {
1902 	ssize_t total_len = 0;
1903 	unsigned long seg;
1904 	struct iovec *iov;
1905 
1906 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1907 	if (IS_ERR(iov)) {
1908 		*iovp = NULL;
1909 		return PTR_ERR(iov);
1910 	}
1911 
1912 	/*
1913 	 * According to the Single Unix Specification we should return EINVAL if
1914 	 * an element length is < 0 when cast to ssize_t or if the total length
1915 	 * would overflow the ssize_t return value of the system call.
1916 	 *
1917 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1918 	 * overflow case.
1919 	 */
1920 	for (seg = 0; seg < nr_segs; seg++) {
1921 		ssize_t len = (ssize_t)iov[seg].iov_len;
1922 
1923 		if (!access_ok(iov[seg].iov_base, len)) {
1924 			if (iov != *iovp)
1925 				kfree(iov);
1926 			*iovp = NULL;
1927 			return -EFAULT;
1928 		}
1929 
1930 		if (len > MAX_RW_COUNT - total_len) {
1931 			len = MAX_RW_COUNT - total_len;
1932 			iov[seg].iov_len = len;
1933 		}
1934 		total_len += len;
1935 	}
1936 
1937 	iov_iter_init(i, type, iov, nr_segs, total_len);
1938 	if (iov == *iovp)
1939 		*iovp = NULL;
1940 	else
1941 		*iovp = iov;
1942 	return total_len;
1943 }
1944 
1945 /**
1946  * import_iovec() - Copy an array of &struct iovec from userspace
1947  *     into the kernel, check that it is valid, and initialize a new
1948  *     &struct iov_iter iterator to access it.
1949  *
1950  * @type: One of %READ or %WRITE.
1951  * @uvec: Pointer to the userspace array.
1952  * @nr_segs: Number of elements in userspace array.
1953  * @fast_segs: Number of elements in @iov.
1954  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1955  *     on-stack) kernel array.
1956  * @i: Pointer to iterator that will be initialized on success.
1957  *
1958  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1959  * then this function places %NULL in *@iov on return. Otherwise, a new
1960  * array will be allocated and the result placed in *@iov. This means that
1961  * the caller may call kfree() on *@iov regardless of whether the small
1962  * on-stack array was used or not (and regardless of whether this function
1963  * returns an error or not).
1964  *
1965  * Return: Negative error code on error, bytes imported on success
1966  */
1967 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1968 		 unsigned nr_segs, unsigned fast_segs,
1969 		 struct iovec **iovp, struct iov_iter *i)
1970 {
1971 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1972 			      in_compat_syscall());
1973 }
1974 EXPORT_SYMBOL(import_iovec);
1975 
1976 int import_single_range(int rw, void __user *buf, size_t len,
1977 		 struct iovec *iov, struct iov_iter *i)
1978 {
1979 	if (len > MAX_RW_COUNT)
1980 		len = MAX_RW_COUNT;
1981 	if (unlikely(!access_ok(buf, len)))
1982 		return -EFAULT;
1983 
1984 	iov->iov_base = buf;
1985 	iov->iov_len = len;
1986 	iov_iter_init(i, rw, iov, 1, len);
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL(import_single_range);
1990