xref: /openbmc/linux/lib/iov_iter.c (revision 21b56c84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, __v, __p, skip, STEP) {		\
21 	size_t left;						\
22 	size_t wanted = n;					\
23 	do {							\
24 		__v.iov_len = min(n, __p->iov_len - skip);	\
25 		if (likely(__v.iov_len)) {			\
26 			__v.iov_base = __p->iov_base + skip;	\
27 			left = (STEP);				\
28 			__v.iov_len -= left;			\
29 			skip += __v.iov_len;			\
30 			n -= __v.iov_len;			\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	n = wanted - n;						\
38 }
39 
40 #define iterate_bvec(i, n, __v, p, skip, STEP) {		\
41 	size_t wanted = n;					\
42 	while (n) {						\
43 		unsigned offset = p->bv_offset + skip;		\
44 		unsigned left;					\
45 		void *kaddr = kmap_local_page(p->bv_page +	\
46 					offset / PAGE_SIZE);	\
47 		__v.iov_base = kaddr + offset % PAGE_SIZE;	\
48 		__v.iov_len = min(min(n, p->bv_len - skip),	\
49 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
50 		left = (STEP);					\
51 		kunmap_local(kaddr);				\
52 		__v.iov_len -= left;				\
53 		skip += __v.iov_len;				\
54 		if (skip == p->bv_len) {			\
55 			skip = 0;				\
56 			p++;					\
57 		}						\
58 		n -= __v.iov_len;				\
59 		if (left)					\
60 			break;					\
61 	}							\
62 	n = wanted - n;						\
63 }
64 
65 #define iterate_xarray(i, n, __v, skip, STEP) {		\
66 	__label__ __out;					\
67 	struct page *head = NULL;				\
68 	size_t wanted = n, seg, offset;				\
69 	loff_t start = i->xarray_start + skip;			\
70 	pgoff_t index = start >> PAGE_SHIFT;			\
71 	int j;							\
72 								\
73 	XA_STATE(xas, i->xarray, index);			\
74 								\
75 	rcu_read_lock();						\
76 	xas_for_each(&xas, head, ULONG_MAX) {				\
77 		unsigned left;						\
78 		if (xas_retry(&xas, head))				\
79 			continue;					\
80 		if (WARN_ON(xa_is_value(head)))				\
81 			break;						\
82 		if (WARN_ON(PageHuge(head)))				\
83 			break;						\
84 		for (j = (head->index < index) ? index - head->index : 0; \
85 		     j < thp_nr_pages(head); j++) {			\
86 			void *kaddr = kmap_local_page(head + j);	\
87 			offset = (i->xarray_start + skip) % PAGE_SIZE;	\
88 			__v.iov_base = kaddr + offset;			\
89 			seg = PAGE_SIZE - offset;			\
90 			__v.iov_len = min(n, seg);			\
91 			left = (STEP);					\
92 			kunmap_local(kaddr);				\
93 			__v.iov_len -= left;				\
94 			n -= __v.iov_len;				\
95 			skip += __v.iov_len;				\
96 			if (left || n == 0)				\
97 				goto __out;				\
98 		}							\
99 	}							\
100 __out:								\
101 	rcu_read_unlock();					\
102 	n = wanted - n;						\
103 }
104 
105 #define __iterate_and_advance(i, n, v, I, K) {			\
106 	if (unlikely(i->count < n))				\
107 		n = i->count;					\
108 	if (likely(n)) {					\
109 		size_t skip = i->iov_offset;			\
110 		if (likely(iter_is_iovec(i))) {			\
111 			const struct iovec *iov = i->iov;	\
112 			struct iovec v;				\
113 			iterate_iovec(i, n, v, iov, skip, (I))	\
114 			i->nr_segs -= iov - i->iov;		\
115 			i->iov = iov;				\
116 		} else if (iov_iter_is_bvec(i)) {		\
117 			const struct bio_vec *bvec = i->bvec;	\
118 			struct kvec v;				\
119 			iterate_bvec(i, n, v, bvec, skip, (K))	\
120 			i->nr_segs -= bvec - i->bvec;		\
121 			i->bvec = bvec;				\
122 		} else if (iov_iter_is_kvec(i)) {		\
123 			const struct kvec *kvec = i->kvec;	\
124 			struct kvec v;				\
125 			iterate_iovec(i, n, v, kvec, skip, (K))	\
126 			i->nr_segs -= kvec - i->kvec;		\
127 			i->kvec = kvec;				\
128 		} else if (iov_iter_is_xarray(i)) {		\
129 			struct kvec v;				\
130 			iterate_xarray(i, n, v, skip, (K))	\
131 		}						\
132 		i->count -= n;					\
133 		i->iov_offset = skip;				\
134 	}							\
135 }
136 #define iterate_and_advance(i, n, v, I, K) \
137 	__iterate_and_advance(i, n, v, I, ((void)(K),0))
138 
139 static int copyout(void __user *to, const void *from, size_t n)
140 {
141 	if (should_fail_usercopy())
142 		return n;
143 	if (access_ok(to, n)) {
144 		instrument_copy_to_user(to, from, n);
145 		n = raw_copy_to_user(to, from, n);
146 	}
147 	return n;
148 }
149 
150 static int copyin(void *to, const void __user *from, size_t n)
151 {
152 	if (should_fail_usercopy())
153 		return n;
154 	if (access_ok(from, n)) {
155 		instrument_copy_from_user(to, from, n);
156 		n = raw_copy_from_user(to, from, n);
157 	}
158 	return n;
159 }
160 
161 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
162 			 struct iov_iter *i)
163 {
164 	size_t skip, copy, left, wanted;
165 	const struct iovec *iov;
166 	char __user *buf;
167 	void *kaddr, *from;
168 
169 	if (unlikely(bytes > i->count))
170 		bytes = i->count;
171 
172 	if (unlikely(!bytes))
173 		return 0;
174 
175 	might_fault();
176 	wanted = bytes;
177 	iov = i->iov;
178 	skip = i->iov_offset;
179 	buf = iov->iov_base + skip;
180 	copy = min(bytes, iov->iov_len - skip);
181 
182 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
183 		kaddr = kmap_atomic(page);
184 		from = kaddr + offset;
185 
186 		/* first chunk, usually the only one */
187 		left = copyout(buf, from, copy);
188 		copy -= left;
189 		skip += copy;
190 		from += copy;
191 		bytes -= copy;
192 
193 		while (unlikely(!left && bytes)) {
194 			iov++;
195 			buf = iov->iov_base;
196 			copy = min(bytes, iov->iov_len);
197 			left = copyout(buf, from, copy);
198 			copy -= left;
199 			skip = copy;
200 			from += copy;
201 			bytes -= copy;
202 		}
203 		if (likely(!bytes)) {
204 			kunmap_atomic(kaddr);
205 			goto done;
206 		}
207 		offset = from - kaddr;
208 		buf += copy;
209 		kunmap_atomic(kaddr);
210 		copy = min(bytes, iov->iov_len - skip);
211 	}
212 	/* Too bad - revert to non-atomic kmap */
213 
214 	kaddr = kmap(page);
215 	from = kaddr + offset;
216 	left = copyout(buf, from, copy);
217 	copy -= left;
218 	skip += copy;
219 	from += copy;
220 	bytes -= copy;
221 	while (unlikely(!left && bytes)) {
222 		iov++;
223 		buf = iov->iov_base;
224 		copy = min(bytes, iov->iov_len);
225 		left = copyout(buf, from, copy);
226 		copy -= left;
227 		skip = copy;
228 		from += copy;
229 		bytes -= copy;
230 	}
231 	kunmap(page);
232 
233 done:
234 	if (skip == iov->iov_len) {
235 		iov++;
236 		skip = 0;
237 	}
238 	i->count -= wanted - bytes;
239 	i->nr_segs -= iov - i->iov;
240 	i->iov = iov;
241 	i->iov_offset = skip;
242 	return wanted - bytes;
243 }
244 
245 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
246 			 struct iov_iter *i)
247 {
248 	size_t skip, copy, left, wanted;
249 	const struct iovec *iov;
250 	char __user *buf;
251 	void *kaddr, *to;
252 
253 	if (unlikely(bytes > i->count))
254 		bytes = i->count;
255 
256 	if (unlikely(!bytes))
257 		return 0;
258 
259 	might_fault();
260 	wanted = bytes;
261 	iov = i->iov;
262 	skip = i->iov_offset;
263 	buf = iov->iov_base + skip;
264 	copy = min(bytes, iov->iov_len - skip);
265 
266 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
267 		kaddr = kmap_atomic(page);
268 		to = kaddr + offset;
269 
270 		/* first chunk, usually the only one */
271 		left = copyin(to, buf, copy);
272 		copy -= left;
273 		skip += copy;
274 		to += copy;
275 		bytes -= copy;
276 
277 		while (unlikely(!left && bytes)) {
278 			iov++;
279 			buf = iov->iov_base;
280 			copy = min(bytes, iov->iov_len);
281 			left = copyin(to, buf, copy);
282 			copy -= left;
283 			skip = copy;
284 			to += copy;
285 			bytes -= copy;
286 		}
287 		if (likely(!bytes)) {
288 			kunmap_atomic(kaddr);
289 			goto done;
290 		}
291 		offset = to - kaddr;
292 		buf += copy;
293 		kunmap_atomic(kaddr);
294 		copy = min(bytes, iov->iov_len - skip);
295 	}
296 	/* Too bad - revert to non-atomic kmap */
297 
298 	kaddr = kmap(page);
299 	to = kaddr + offset;
300 	left = copyin(to, buf, copy);
301 	copy -= left;
302 	skip += copy;
303 	to += copy;
304 	bytes -= copy;
305 	while (unlikely(!left && bytes)) {
306 		iov++;
307 		buf = iov->iov_base;
308 		copy = min(bytes, iov->iov_len);
309 		left = copyin(to, buf, copy);
310 		copy -= left;
311 		skip = copy;
312 		to += copy;
313 		bytes -= copy;
314 	}
315 	kunmap(page);
316 
317 done:
318 	if (skip == iov->iov_len) {
319 		iov++;
320 		skip = 0;
321 	}
322 	i->count -= wanted - bytes;
323 	i->nr_segs -= iov - i->iov;
324 	i->iov = iov;
325 	i->iov_offset = skip;
326 	return wanted - bytes;
327 }
328 
329 #ifdef PIPE_PARANOIA
330 static bool sanity(const struct iov_iter *i)
331 {
332 	struct pipe_inode_info *pipe = i->pipe;
333 	unsigned int p_head = pipe->head;
334 	unsigned int p_tail = pipe->tail;
335 	unsigned int p_mask = pipe->ring_size - 1;
336 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
337 	unsigned int i_head = i->head;
338 	unsigned int idx;
339 
340 	if (i->iov_offset) {
341 		struct pipe_buffer *p;
342 		if (unlikely(p_occupancy == 0))
343 			goto Bad;	// pipe must be non-empty
344 		if (unlikely(i_head != p_head - 1))
345 			goto Bad;	// must be at the last buffer...
346 
347 		p = &pipe->bufs[i_head & p_mask];
348 		if (unlikely(p->offset + p->len != i->iov_offset))
349 			goto Bad;	// ... at the end of segment
350 	} else {
351 		if (i_head != p_head)
352 			goto Bad;	// must be right after the last buffer
353 	}
354 	return true;
355 Bad:
356 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
357 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
358 			p_head, p_tail, pipe->ring_size);
359 	for (idx = 0; idx < pipe->ring_size; idx++)
360 		printk(KERN_ERR "[%p %p %d %d]\n",
361 			pipe->bufs[idx].ops,
362 			pipe->bufs[idx].page,
363 			pipe->bufs[idx].offset,
364 			pipe->bufs[idx].len);
365 	WARN_ON(1);
366 	return false;
367 }
368 #else
369 #define sanity(i) true
370 #endif
371 
372 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
373 			 struct iov_iter *i)
374 {
375 	struct pipe_inode_info *pipe = i->pipe;
376 	struct pipe_buffer *buf;
377 	unsigned int p_tail = pipe->tail;
378 	unsigned int p_mask = pipe->ring_size - 1;
379 	unsigned int i_head = i->head;
380 	size_t off;
381 
382 	if (unlikely(bytes > i->count))
383 		bytes = i->count;
384 
385 	if (unlikely(!bytes))
386 		return 0;
387 
388 	if (!sanity(i))
389 		return 0;
390 
391 	off = i->iov_offset;
392 	buf = &pipe->bufs[i_head & p_mask];
393 	if (off) {
394 		if (offset == off && buf->page == page) {
395 			/* merge with the last one */
396 			buf->len += bytes;
397 			i->iov_offset += bytes;
398 			goto out;
399 		}
400 		i_head++;
401 		buf = &pipe->bufs[i_head & p_mask];
402 	}
403 	if (pipe_full(i_head, p_tail, pipe->max_usage))
404 		return 0;
405 
406 	buf->ops = &page_cache_pipe_buf_ops;
407 	get_page(page);
408 	buf->page = page;
409 	buf->offset = offset;
410 	buf->len = bytes;
411 
412 	pipe->head = i_head + 1;
413 	i->iov_offset = offset + bytes;
414 	i->head = i_head;
415 out:
416 	i->count -= bytes;
417 	return bytes;
418 }
419 
420 /*
421  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
422  * bytes.  For each iovec, fault in each page that constitutes the iovec.
423  *
424  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
425  * because it is an invalid address).
426  */
427 int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
428 {
429 	if (iter_is_iovec(i)) {
430 		const struct iovec *p;
431 		size_t skip;
432 
433 		if (bytes > i->count)
434 			bytes = i->count;
435 		for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
436 			size_t len = min(bytes, p->iov_len - skip);
437 			int err;
438 
439 			if (unlikely(!len))
440 				continue;
441 			err = fault_in_pages_readable(p->iov_base + skip, len);
442 			if (unlikely(err))
443 				return err;
444 			bytes -= len;
445 		}
446 	}
447 	return 0;
448 }
449 EXPORT_SYMBOL(iov_iter_fault_in_readable);
450 
451 void iov_iter_init(struct iov_iter *i, unsigned int direction,
452 			const struct iovec *iov, unsigned long nr_segs,
453 			size_t count)
454 {
455 	WARN_ON(direction & ~(READ | WRITE));
456 	WARN_ON_ONCE(uaccess_kernel());
457 	*i = (struct iov_iter) {
458 		.iter_type = ITER_IOVEC,
459 		.data_source = direction,
460 		.iov = iov,
461 		.nr_segs = nr_segs,
462 		.iov_offset = 0,
463 		.count = count
464 	};
465 }
466 EXPORT_SYMBOL(iov_iter_init);
467 
468 static inline bool allocated(struct pipe_buffer *buf)
469 {
470 	return buf->ops == &default_pipe_buf_ops;
471 }
472 
473 static inline void data_start(const struct iov_iter *i,
474 			      unsigned int *iter_headp, size_t *offp)
475 {
476 	unsigned int p_mask = i->pipe->ring_size - 1;
477 	unsigned int iter_head = i->head;
478 	size_t off = i->iov_offset;
479 
480 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
481 		    off == PAGE_SIZE)) {
482 		iter_head++;
483 		off = 0;
484 	}
485 	*iter_headp = iter_head;
486 	*offp = off;
487 }
488 
489 static size_t push_pipe(struct iov_iter *i, size_t size,
490 			int *iter_headp, size_t *offp)
491 {
492 	struct pipe_inode_info *pipe = i->pipe;
493 	unsigned int p_tail = pipe->tail;
494 	unsigned int p_mask = pipe->ring_size - 1;
495 	unsigned int iter_head;
496 	size_t off;
497 	ssize_t left;
498 
499 	if (unlikely(size > i->count))
500 		size = i->count;
501 	if (unlikely(!size))
502 		return 0;
503 
504 	left = size;
505 	data_start(i, &iter_head, &off);
506 	*iter_headp = iter_head;
507 	*offp = off;
508 	if (off) {
509 		left -= PAGE_SIZE - off;
510 		if (left <= 0) {
511 			pipe->bufs[iter_head & p_mask].len += size;
512 			return size;
513 		}
514 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
515 		iter_head++;
516 	}
517 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
518 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
519 		struct page *page = alloc_page(GFP_USER);
520 		if (!page)
521 			break;
522 
523 		buf->ops = &default_pipe_buf_ops;
524 		buf->page = page;
525 		buf->offset = 0;
526 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
527 		left -= buf->len;
528 		iter_head++;
529 		pipe->head = iter_head;
530 
531 		if (left == 0)
532 			return size;
533 	}
534 	return size - left;
535 }
536 
537 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
538 				struct iov_iter *i)
539 {
540 	struct pipe_inode_info *pipe = i->pipe;
541 	unsigned int p_mask = pipe->ring_size - 1;
542 	unsigned int i_head;
543 	size_t n, off;
544 
545 	if (!sanity(i))
546 		return 0;
547 
548 	bytes = n = push_pipe(i, bytes, &i_head, &off);
549 	if (unlikely(!n))
550 		return 0;
551 	do {
552 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
553 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
554 		i->head = i_head;
555 		i->iov_offset = off + chunk;
556 		n -= chunk;
557 		addr += chunk;
558 		off = 0;
559 		i_head++;
560 	} while (n);
561 	i->count -= bytes;
562 	return bytes;
563 }
564 
565 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
566 			      __wsum sum, size_t off)
567 {
568 	__wsum next = csum_partial_copy_nocheck(from, to, len);
569 	return csum_block_add(sum, next, off);
570 }
571 
572 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
573 					 struct csum_state *csstate,
574 					 struct iov_iter *i)
575 {
576 	struct pipe_inode_info *pipe = i->pipe;
577 	unsigned int p_mask = pipe->ring_size - 1;
578 	__wsum sum = csstate->csum;
579 	size_t off = csstate->off;
580 	unsigned int i_head;
581 	size_t n, r;
582 
583 	if (!sanity(i))
584 		return 0;
585 
586 	bytes = n = push_pipe(i, bytes, &i_head, &r);
587 	if (unlikely(!n))
588 		return 0;
589 	do {
590 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
591 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
592 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
593 		kunmap_atomic(p);
594 		i->head = i_head;
595 		i->iov_offset = r + chunk;
596 		n -= chunk;
597 		off += chunk;
598 		addr += chunk;
599 		r = 0;
600 		i_head++;
601 	} while (n);
602 	i->count -= bytes;
603 	csstate->csum = sum;
604 	csstate->off = off;
605 	return bytes;
606 }
607 
608 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
609 {
610 	const char *from = addr;
611 	if (unlikely(iov_iter_is_pipe(i)))
612 		return copy_pipe_to_iter(addr, bytes, i);
613 	if (iter_is_iovec(i))
614 		might_fault();
615 	iterate_and_advance(i, bytes, v,
616 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
617 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
618 	)
619 
620 	return bytes;
621 }
622 EXPORT_SYMBOL(_copy_to_iter);
623 
624 #ifdef CONFIG_ARCH_HAS_COPY_MC
625 static int copyout_mc(void __user *to, const void *from, size_t n)
626 {
627 	if (access_ok(to, n)) {
628 		instrument_copy_to_user(to, from, n);
629 		n = copy_mc_to_user((__force void *) to, from, n);
630 	}
631 	return n;
632 }
633 
634 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
635 		const char *from, size_t len)
636 {
637 	unsigned long ret;
638 	char *to;
639 
640 	to = kmap_atomic(page);
641 	ret = copy_mc_to_kernel(to + offset, from, len);
642 	kunmap_atomic(to);
643 
644 	return ret;
645 }
646 
647 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
648 				struct iov_iter *i)
649 {
650 	struct pipe_inode_info *pipe = i->pipe;
651 	unsigned int p_mask = pipe->ring_size - 1;
652 	unsigned int i_head;
653 	size_t n, off, xfer = 0;
654 
655 	if (!sanity(i))
656 		return 0;
657 
658 	bytes = n = push_pipe(i, bytes, &i_head, &off);
659 	if (unlikely(!n))
660 		return 0;
661 	do {
662 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
663 		unsigned long rem;
664 
665 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
666 					    off, addr, chunk);
667 		i->head = i_head;
668 		i->iov_offset = off + chunk - rem;
669 		xfer += chunk - rem;
670 		if (rem)
671 			break;
672 		n -= chunk;
673 		addr += chunk;
674 		off = 0;
675 		i_head++;
676 	} while (n);
677 	i->count -= xfer;
678 	return xfer;
679 }
680 
681 /**
682  * _copy_mc_to_iter - copy to iter with source memory error exception handling
683  * @addr: source kernel address
684  * @bytes: total transfer length
685  * @iter: destination iterator
686  *
687  * The pmem driver deploys this for the dax operation
688  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
689  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
690  * successfully copied.
691  *
692  * The main differences between this and typical _copy_to_iter().
693  *
694  * * Typical tail/residue handling after a fault retries the copy
695  *   byte-by-byte until the fault happens again. Re-triggering machine
696  *   checks is potentially fatal so the implementation uses source
697  *   alignment and poison alignment assumptions to avoid re-triggering
698  *   hardware exceptions.
699  *
700  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
701  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
702  *   a short copy.
703  */
704 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
705 {
706 	const char *from = addr;
707 
708 	if (unlikely(iov_iter_is_pipe(i)))
709 		return copy_mc_pipe_to_iter(addr, bytes, i);
710 	if (iter_is_iovec(i))
711 		might_fault();
712 	__iterate_and_advance(i, bytes, v,
713 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
714 			   v.iov_len),
715 		copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
716 					- v.iov_len, v.iov_len)
717 	)
718 
719 	return bytes;
720 }
721 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
722 #endif /* CONFIG_ARCH_HAS_COPY_MC */
723 
724 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
725 {
726 	char *to = addr;
727 	if (unlikely(iov_iter_is_pipe(i))) {
728 		WARN_ON(1);
729 		return 0;
730 	}
731 	if (iter_is_iovec(i))
732 		might_fault();
733 	iterate_and_advance(i, bytes, v,
734 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
735 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
736 	)
737 
738 	return bytes;
739 }
740 EXPORT_SYMBOL(_copy_from_iter);
741 
742 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
743 {
744 	char *to = addr;
745 	if (unlikely(iov_iter_is_pipe(i))) {
746 		WARN_ON(1);
747 		return 0;
748 	}
749 	iterate_and_advance(i, bytes, v,
750 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
751 					 v.iov_base, v.iov_len),
752 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
753 	)
754 
755 	return bytes;
756 }
757 EXPORT_SYMBOL(_copy_from_iter_nocache);
758 
759 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
760 /**
761  * _copy_from_iter_flushcache - write destination through cpu cache
762  * @addr: destination kernel address
763  * @bytes: total transfer length
764  * @iter: source iterator
765  *
766  * The pmem driver arranges for filesystem-dax to use this facility via
767  * dax_copy_from_iter() for ensuring that writes to persistent memory
768  * are flushed through the CPU cache. It is differentiated from
769  * _copy_from_iter_nocache() in that guarantees all data is flushed for
770  * all iterator types. The _copy_from_iter_nocache() only attempts to
771  * bypass the cache for the ITER_IOVEC case, and on some archs may use
772  * instructions that strand dirty-data in the cache.
773  */
774 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
775 {
776 	char *to = addr;
777 	if (unlikely(iov_iter_is_pipe(i))) {
778 		WARN_ON(1);
779 		return 0;
780 	}
781 	iterate_and_advance(i, bytes, v,
782 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
783 					 v.iov_base, v.iov_len),
784 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
785 			v.iov_len)
786 	)
787 
788 	return bytes;
789 }
790 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
791 #endif
792 
793 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
794 {
795 	struct page *head;
796 	size_t v = n + offset;
797 
798 	/*
799 	 * The general case needs to access the page order in order
800 	 * to compute the page size.
801 	 * However, we mostly deal with order-0 pages and thus can
802 	 * avoid a possible cache line miss for requests that fit all
803 	 * page orders.
804 	 */
805 	if (n <= v && v <= PAGE_SIZE)
806 		return true;
807 
808 	head = compound_head(page);
809 	v += (page - head) << PAGE_SHIFT;
810 
811 	if (likely(n <= v && v <= (page_size(head))))
812 		return true;
813 	WARN_ON(1);
814 	return false;
815 }
816 
817 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
818 			 struct iov_iter *i)
819 {
820 	if (likely(iter_is_iovec(i)))
821 		return copy_page_to_iter_iovec(page, offset, bytes, i);
822 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
823 		void *kaddr = kmap_atomic(page);
824 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
825 		kunmap_atomic(kaddr);
826 		return wanted;
827 	}
828 	if (iov_iter_is_pipe(i))
829 		return copy_page_to_iter_pipe(page, offset, bytes, i);
830 	if (unlikely(iov_iter_is_discard(i))) {
831 		if (unlikely(i->count < bytes))
832 			bytes = i->count;
833 		i->count -= bytes;
834 		return bytes;
835 	}
836 	WARN_ON(1);
837 	return 0;
838 }
839 
840 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
841 			 struct iov_iter *i)
842 {
843 	size_t res = 0;
844 	if (unlikely(!page_copy_sane(page, offset, bytes)))
845 		return 0;
846 	page += offset / PAGE_SIZE; // first subpage
847 	offset %= PAGE_SIZE;
848 	while (1) {
849 		size_t n = __copy_page_to_iter(page, offset,
850 				min(bytes, (size_t)PAGE_SIZE - offset), i);
851 		res += n;
852 		bytes -= n;
853 		if (!bytes || !n)
854 			break;
855 		offset += n;
856 		if (offset == PAGE_SIZE) {
857 			page++;
858 			offset = 0;
859 		}
860 	}
861 	return res;
862 }
863 EXPORT_SYMBOL(copy_page_to_iter);
864 
865 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
866 			 struct iov_iter *i)
867 {
868 	if (unlikely(!page_copy_sane(page, offset, bytes)))
869 		return 0;
870 	if (likely(iter_is_iovec(i)))
871 		return copy_page_from_iter_iovec(page, offset, bytes, i);
872 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
873 		void *kaddr = kmap_atomic(page);
874 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
875 		kunmap_atomic(kaddr);
876 		return wanted;
877 	}
878 	WARN_ON(1);
879 	return 0;
880 }
881 EXPORT_SYMBOL(copy_page_from_iter);
882 
883 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
884 {
885 	struct pipe_inode_info *pipe = i->pipe;
886 	unsigned int p_mask = pipe->ring_size - 1;
887 	unsigned int i_head;
888 	size_t n, off;
889 
890 	if (!sanity(i))
891 		return 0;
892 
893 	bytes = n = push_pipe(i, bytes, &i_head, &off);
894 	if (unlikely(!n))
895 		return 0;
896 
897 	do {
898 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
899 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
900 		i->head = i_head;
901 		i->iov_offset = off + chunk;
902 		n -= chunk;
903 		off = 0;
904 		i_head++;
905 	} while (n);
906 	i->count -= bytes;
907 	return bytes;
908 }
909 
910 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
911 {
912 	if (unlikely(iov_iter_is_pipe(i)))
913 		return pipe_zero(bytes, i);
914 	iterate_and_advance(i, bytes, v,
915 		clear_user(v.iov_base, v.iov_len),
916 		memset(v.iov_base, 0, v.iov_len)
917 	)
918 
919 	return bytes;
920 }
921 EXPORT_SYMBOL(iov_iter_zero);
922 
923 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
924 				  struct iov_iter *i)
925 {
926 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
927 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
928 		kunmap_atomic(kaddr);
929 		return 0;
930 	}
931 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
932 		kunmap_atomic(kaddr);
933 		WARN_ON(1);
934 		return 0;
935 	}
936 	iterate_and_advance(i, bytes, v,
937 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
938 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
939 	)
940 	kunmap_atomic(kaddr);
941 	return bytes;
942 }
943 EXPORT_SYMBOL(copy_page_from_iter_atomic);
944 
945 static inline void pipe_truncate(struct iov_iter *i)
946 {
947 	struct pipe_inode_info *pipe = i->pipe;
948 	unsigned int p_tail = pipe->tail;
949 	unsigned int p_head = pipe->head;
950 	unsigned int p_mask = pipe->ring_size - 1;
951 
952 	if (!pipe_empty(p_head, p_tail)) {
953 		struct pipe_buffer *buf;
954 		unsigned int i_head = i->head;
955 		size_t off = i->iov_offset;
956 
957 		if (off) {
958 			buf = &pipe->bufs[i_head & p_mask];
959 			buf->len = off - buf->offset;
960 			i_head++;
961 		}
962 		while (p_head != i_head) {
963 			p_head--;
964 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
965 		}
966 
967 		pipe->head = p_head;
968 	}
969 }
970 
971 static void pipe_advance(struct iov_iter *i, size_t size)
972 {
973 	struct pipe_inode_info *pipe = i->pipe;
974 	if (size) {
975 		struct pipe_buffer *buf;
976 		unsigned int p_mask = pipe->ring_size - 1;
977 		unsigned int i_head = i->head;
978 		size_t off = i->iov_offset, left = size;
979 
980 		if (off) /* make it relative to the beginning of buffer */
981 			left += off - pipe->bufs[i_head & p_mask].offset;
982 		while (1) {
983 			buf = &pipe->bufs[i_head & p_mask];
984 			if (left <= buf->len)
985 				break;
986 			left -= buf->len;
987 			i_head++;
988 		}
989 		i->head = i_head;
990 		i->iov_offset = buf->offset + left;
991 	}
992 	i->count -= size;
993 	/* ... and discard everything past that point */
994 	pipe_truncate(i);
995 }
996 
997 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
998 {
999 	struct bvec_iter bi;
1000 
1001 	bi.bi_size = i->count;
1002 	bi.bi_bvec_done = i->iov_offset;
1003 	bi.bi_idx = 0;
1004 	bvec_iter_advance(i->bvec, &bi, size);
1005 
1006 	i->bvec += bi.bi_idx;
1007 	i->nr_segs -= bi.bi_idx;
1008 	i->count = bi.bi_size;
1009 	i->iov_offset = bi.bi_bvec_done;
1010 }
1011 
1012 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1013 {
1014 	const struct iovec *iov, *end;
1015 
1016 	if (!i->count)
1017 		return;
1018 	i->count -= size;
1019 
1020 	size += i->iov_offset; // from beginning of current segment
1021 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1022 		if (likely(size < iov->iov_len))
1023 			break;
1024 		size -= iov->iov_len;
1025 	}
1026 	i->iov_offset = size;
1027 	i->nr_segs -= iov - i->iov;
1028 	i->iov = iov;
1029 }
1030 
1031 void iov_iter_advance(struct iov_iter *i, size_t size)
1032 {
1033 	if (unlikely(i->count < size))
1034 		size = i->count;
1035 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1036 		/* iovec and kvec have identical layouts */
1037 		iov_iter_iovec_advance(i, size);
1038 	} else if (iov_iter_is_bvec(i)) {
1039 		iov_iter_bvec_advance(i, size);
1040 	} else if (iov_iter_is_pipe(i)) {
1041 		pipe_advance(i, size);
1042 	} else if (unlikely(iov_iter_is_xarray(i))) {
1043 		i->iov_offset += size;
1044 		i->count -= size;
1045 	} else if (iov_iter_is_discard(i)) {
1046 		i->count -= size;
1047 	}
1048 }
1049 EXPORT_SYMBOL(iov_iter_advance);
1050 
1051 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1052 {
1053 	if (!unroll)
1054 		return;
1055 	if (WARN_ON(unroll > MAX_RW_COUNT))
1056 		return;
1057 	i->count += unroll;
1058 	if (unlikely(iov_iter_is_pipe(i))) {
1059 		struct pipe_inode_info *pipe = i->pipe;
1060 		unsigned int p_mask = pipe->ring_size - 1;
1061 		unsigned int i_head = i->head;
1062 		size_t off = i->iov_offset;
1063 		while (1) {
1064 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1065 			size_t n = off - b->offset;
1066 			if (unroll < n) {
1067 				off -= unroll;
1068 				break;
1069 			}
1070 			unroll -= n;
1071 			if (!unroll && i_head == i->start_head) {
1072 				off = 0;
1073 				break;
1074 			}
1075 			i_head--;
1076 			b = &pipe->bufs[i_head & p_mask];
1077 			off = b->offset + b->len;
1078 		}
1079 		i->iov_offset = off;
1080 		i->head = i_head;
1081 		pipe_truncate(i);
1082 		return;
1083 	}
1084 	if (unlikely(iov_iter_is_discard(i)))
1085 		return;
1086 	if (unroll <= i->iov_offset) {
1087 		i->iov_offset -= unroll;
1088 		return;
1089 	}
1090 	unroll -= i->iov_offset;
1091 	if (iov_iter_is_xarray(i)) {
1092 		BUG(); /* We should never go beyond the start of the specified
1093 			* range since we might then be straying into pages that
1094 			* aren't pinned.
1095 			*/
1096 	} else if (iov_iter_is_bvec(i)) {
1097 		const struct bio_vec *bvec = i->bvec;
1098 		while (1) {
1099 			size_t n = (--bvec)->bv_len;
1100 			i->nr_segs++;
1101 			if (unroll <= n) {
1102 				i->bvec = bvec;
1103 				i->iov_offset = n - unroll;
1104 				return;
1105 			}
1106 			unroll -= n;
1107 		}
1108 	} else { /* same logics for iovec and kvec */
1109 		const struct iovec *iov = i->iov;
1110 		while (1) {
1111 			size_t n = (--iov)->iov_len;
1112 			i->nr_segs++;
1113 			if (unroll <= n) {
1114 				i->iov = iov;
1115 				i->iov_offset = n - unroll;
1116 				return;
1117 			}
1118 			unroll -= n;
1119 		}
1120 	}
1121 }
1122 EXPORT_SYMBOL(iov_iter_revert);
1123 
1124 /*
1125  * Return the count of just the current iov_iter segment.
1126  */
1127 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1128 {
1129 	if (i->nr_segs > 1) {
1130 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1131 			return min(i->count, i->iov->iov_len - i->iov_offset);
1132 		if (iov_iter_is_bvec(i))
1133 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1134 	}
1135 	return i->count;
1136 }
1137 EXPORT_SYMBOL(iov_iter_single_seg_count);
1138 
1139 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1140 			const struct kvec *kvec, unsigned long nr_segs,
1141 			size_t count)
1142 {
1143 	WARN_ON(direction & ~(READ | WRITE));
1144 	*i = (struct iov_iter){
1145 		.iter_type = ITER_KVEC,
1146 		.data_source = direction,
1147 		.kvec = kvec,
1148 		.nr_segs = nr_segs,
1149 		.iov_offset = 0,
1150 		.count = count
1151 	};
1152 }
1153 EXPORT_SYMBOL(iov_iter_kvec);
1154 
1155 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1156 			const struct bio_vec *bvec, unsigned long nr_segs,
1157 			size_t count)
1158 {
1159 	WARN_ON(direction & ~(READ | WRITE));
1160 	*i = (struct iov_iter){
1161 		.iter_type = ITER_BVEC,
1162 		.data_source = direction,
1163 		.bvec = bvec,
1164 		.nr_segs = nr_segs,
1165 		.iov_offset = 0,
1166 		.count = count
1167 	};
1168 }
1169 EXPORT_SYMBOL(iov_iter_bvec);
1170 
1171 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1172 			struct pipe_inode_info *pipe,
1173 			size_t count)
1174 {
1175 	BUG_ON(direction != READ);
1176 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1177 	*i = (struct iov_iter){
1178 		.iter_type = ITER_PIPE,
1179 		.data_source = false,
1180 		.pipe = pipe,
1181 		.head = pipe->head,
1182 		.start_head = pipe->head,
1183 		.iov_offset = 0,
1184 		.count = count
1185 	};
1186 }
1187 EXPORT_SYMBOL(iov_iter_pipe);
1188 
1189 /**
1190  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1191  * @i: The iterator to initialise.
1192  * @direction: The direction of the transfer.
1193  * @xarray: The xarray to access.
1194  * @start: The start file position.
1195  * @count: The size of the I/O buffer in bytes.
1196  *
1197  * Set up an I/O iterator to either draw data out of the pages attached to an
1198  * inode or to inject data into those pages.  The pages *must* be prevented
1199  * from evaporation, either by taking a ref on them or locking them by the
1200  * caller.
1201  */
1202 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1203 		     struct xarray *xarray, loff_t start, size_t count)
1204 {
1205 	BUG_ON(direction & ~1);
1206 	*i = (struct iov_iter) {
1207 		.iter_type = ITER_XARRAY,
1208 		.data_source = direction,
1209 		.xarray = xarray,
1210 		.xarray_start = start,
1211 		.count = count,
1212 		.iov_offset = 0
1213 	};
1214 }
1215 EXPORT_SYMBOL(iov_iter_xarray);
1216 
1217 /**
1218  * iov_iter_discard - Initialise an I/O iterator that discards data
1219  * @i: The iterator to initialise.
1220  * @direction: The direction of the transfer.
1221  * @count: The size of the I/O buffer in bytes.
1222  *
1223  * Set up an I/O iterator that just discards everything that's written to it.
1224  * It's only available as a READ iterator.
1225  */
1226 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1227 {
1228 	BUG_ON(direction != READ);
1229 	*i = (struct iov_iter){
1230 		.iter_type = ITER_DISCARD,
1231 		.data_source = false,
1232 		.count = count,
1233 		.iov_offset = 0
1234 	};
1235 }
1236 EXPORT_SYMBOL(iov_iter_discard);
1237 
1238 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1239 {
1240 	unsigned long res = 0;
1241 	size_t size = i->count;
1242 	size_t skip = i->iov_offset;
1243 	unsigned k;
1244 
1245 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1246 		size_t len = i->iov[k].iov_len - skip;
1247 		if (len) {
1248 			res |= (unsigned long)i->iov[k].iov_base + skip;
1249 			if (len > size)
1250 				len = size;
1251 			res |= len;
1252 			size -= len;
1253 			if (!size)
1254 				break;
1255 		}
1256 	}
1257 	return res;
1258 }
1259 
1260 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1261 {
1262 	unsigned res = 0;
1263 	size_t size = i->count;
1264 	unsigned skip = i->iov_offset;
1265 	unsigned k;
1266 
1267 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1268 		size_t len = i->bvec[k].bv_len - skip;
1269 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1270 		if (len > size)
1271 			len = size;
1272 		res |= len;
1273 		size -= len;
1274 		if (!size)
1275 			break;
1276 	}
1277 	return res;
1278 }
1279 
1280 unsigned long iov_iter_alignment(const struct iov_iter *i)
1281 {
1282 	/* iovec and kvec have identical layouts */
1283 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1284 		return iov_iter_alignment_iovec(i);
1285 
1286 	if (iov_iter_is_bvec(i))
1287 		return iov_iter_alignment_bvec(i);
1288 
1289 	if (iov_iter_is_pipe(i)) {
1290 		unsigned int p_mask = i->pipe->ring_size - 1;
1291 		size_t size = i->count;
1292 
1293 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1294 			return size | i->iov_offset;
1295 		return size;
1296 	}
1297 
1298 	if (iov_iter_is_xarray(i))
1299 		return (i->xarray_start + i->iov_offset) | i->count;
1300 
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL(iov_iter_alignment);
1304 
1305 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1306 {
1307 	unsigned long res = 0;
1308 	unsigned long v = 0;
1309 	size_t size = i->count;
1310 	unsigned k;
1311 
1312 	if (WARN_ON(!iter_is_iovec(i)))
1313 		return ~0U;
1314 
1315 	for (k = 0; k < i->nr_segs; k++) {
1316 		if (i->iov[k].iov_len) {
1317 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1318 			if (v) // if not the first one
1319 				res |= base | v; // this start | previous end
1320 			v = base + i->iov[k].iov_len;
1321 			if (size <= i->iov[k].iov_len)
1322 				break;
1323 			size -= i->iov[k].iov_len;
1324 		}
1325 	}
1326 	return res;
1327 }
1328 EXPORT_SYMBOL(iov_iter_gap_alignment);
1329 
1330 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1331 				size_t maxsize,
1332 				struct page **pages,
1333 				int iter_head,
1334 				size_t *start)
1335 {
1336 	struct pipe_inode_info *pipe = i->pipe;
1337 	unsigned int p_mask = pipe->ring_size - 1;
1338 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1339 	if (!n)
1340 		return -EFAULT;
1341 
1342 	maxsize = n;
1343 	n += *start;
1344 	while (n > 0) {
1345 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1346 		iter_head++;
1347 		n -= PAGE_SIZE;
1348 	}
1349 
1350 	return maxsize;
1351 }
1352 
1353 static ssize_t pipe_get_pages(struct iov_iter *i,
1354 		   struct page **pages, size_t maxsize, unsigned maxpages,
1355 		   size_t *start)
1356 {
1357 	unsigned int iter_head, npages;
1358 	size_t capacity;
1359 
1360 	if (!sanity(i))
1361 		return -EFAULT;
1362 
1363 	data_start(i, &iter_head, start);
1364 	/* Amount of free space: some of this one + all after this one */
1365 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1366 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1367 
1368 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1369 }
1370 
1371 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1372 					  pgoff_t index, unsigned int nr_pages)
1373 {
1374 	XA_STATE(xas, xa, index);
1375 	struct page *page;
1376 	unsigned int ret = 0;
1377 
1378 	rcu_read_lock();
1379 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1380 		if (xas_retry(&xas, page))
1381 			continue;
1382 
1383 		/* Has the page moved or been split? */
1384 		if (unlikely(page != xas_reload(&xas))) {
1385 			xas_reset(&xas);
1386 			continue;
1387 		}
1388 
1389 		pages[ret] = find_subpage(page, xas.xa_index);
1390 		get_page(pages[ret]);
1391 		if (++ret == nr_pages)
1392 			break;
1393 	}
1394 	rcu_read_unlock();
1395 	return ret;
1396 }
1397 
1398 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1399 				     struct page **pages, size_t maxsize,
1400 				     unsigned maxpages, size_t *_start_offset)
1401 {
1402 	unsigned nr, offset;
1403 	pgoff_t index, count;
1404 	size_t size = maxsize, actual;
1405 	loff_t pos;
1406 
1407 	if (!size || !maxpages)
1408 		return 0;
1409 
1410 	pos = i->xarray_start + i->iov_offset;
1411 	index = pos >> PAGE_SHIFT;
1412 	offset = pos & ~PAGE_MASK;
1413 	*_start_offset = offset;
1414 
1415 	count = 1;
1416 	if (size > PAGE_SIZE - offset) {
1417 		size -= PAGE_SIZE - offset;
1418 		count += size >> PAGE_SHIFT;
1419 		size &= ~PAGE_MASK;
1420 		if (size)
1421 			count++;
1422 	}
1423 
1424 	if (count > maxpages)
1425 		count = maxpages;
1426 
1427 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1428 	if (nr == 0)
1429 		return 0;
1430 
1431 	actual = PAGE_SIZE * nr;
1432 	actual -= offset;
1433 	if (nr == count && size > 0) {
1434 		unsigned last_offset = (nr > 1) ? 0 : offset;
1435 		actual -= PAGE_SIZE - (last_offset + size);
1436 	}
1437 	return actual;
1438 }
1439 
1440 /* must be done on non-empty ITER_IOVEC one */
1441 static unsigned long first_iovec_segment(const struct iov_iter *i,
1442 					 size_t *size, size_t *start,
1443 					 size_t maxsize, unsigned maxpages)
1444 {
1445 	size_t skip;
1446 	long k;
1447 
1448 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1449 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1450 		size_t len = i->iov[k].iov_len - skip;
1451 
1452 		if (unlikely(!len))
1453 			continue;
1454 		if (len > maxsize)
1455 			len = maxsize;
1456 		len += (*start = addr % PAGE_SIZE);
1457 		if (len > maxpages * PAGE_SIZE)
1458 			len = maxpages * PAGE_SIZE;
1459 		*size = len;
1460 		return addr & PAGE_MASK;
1461 	}
1462 	BUG(); // if it had been empty, we wouldn't get called
1463 }
1464 
1465 /* must be done on non-empty ITER_BVEC one */
1466 static struct page *first_bvec_segment(const struct iov_iter *i,
1467 				       size_t *size, size_t *start,
1468 				       size_t maxsize, unsigned maxpages)
1469 {
1470 	struct page *page;
1471 	size_t skip = i->iov_offset, len;
1472 
1473 	len = i->bvec->bv_len - skip;
1474 	if (len > maxsize)
1475 		len = maxsize;
1476 	skip += i->bvec->bv_offset;
1477 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1478 	len += (*start = skip % PAGE_SIZE);
1479 	if (len > maxpages * PAGE_SIZE)
1480 		len = maxpages * PAGE_SIZE;
1481 	*size = len;
1482 	return page;
1483 }
1484 
1485 ssize_t iov_iter_get_pages(struct iov_iter *i,
1486 		   struct page **pages, size_t maxsize, unsigned maxpages,
1487 		   size_t *start)
1488 {
1489 	size_t len;
1490 	int n, res;
1491 
1492 	if (maxsize > i->count)
1493 		maxsize = i->count;
1494 	if (!maxsize)
1495 		return 0;
1496 
1497 	if (likely(iter_is_iovec(i))) {
1498 		unsigned long addr;
1499 
1500 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1501 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1502 		res = get_user_pages_fast(addr, n,
1503 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1504 				pages);
1505 		if (unlikely(res < 0))
1506 			return res;
1507 		return (res == n ? len : res * PAGE_SIZE) - *start;
1508 	}
1509 	if (iov_iter_is_bvec(i)) {
1510 		struct page *page;
1511 
1512 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1513 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1514 		while (n--)
1515 			get_page(*pages++ = page++);
1516 		return len - *start;
1517 	}
1518 	if (iov_iter_is_pipe(i))
1519 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1520 	if (iov_iter_is_xarray(i))
1521 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1522 	return -EFAULT;
1523 }
1524 EXPORT_SYMBOL(iov_iter_get_pages);
1525 
1526 static struct page **get_pages_array(size_t n)
1527 {
1528 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1529 }
1530 
1531 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1532 		   struct page ***pages, size_t maxsize,
1533 		   size_t *start)
1534 {
1535 	struct page **p;
1536 	unsigned int iter_head, npages;
1537 	ssize_t n;
1538 
1539 	if (!sanity(i))
1540 		return -EFAULT;
1541 
1542 	data_start(i, &iter_head, start);
1543 	/* Amount of free space: some of this one + all after this one */
1544 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1545 	n = npages * PAGE_SIZE - *start;
1546 	if (maxsize > n)
1547 		maxsize = n;
1548 	else
1549 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1550 	p = get_pages_array(npages);
1551 	if (!p)
1552 		return -ENOMEM;
1553 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1554 	if (n > 0)
1555 		*pages = p;
1556 	else
1557 		kvfree(p);
1558 	return n;
1559 }
1560 
1561 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1562 					   struct page ***pages, size_t maxsize,
1563 					   size_t *_start_offset)
1564 {
1565 	struct page **p;
1566 	unsigned nr, offset;
1567 	pgoff_t index, count;
1568 	size_t size = maxsize, actual;
1569 	loff_t pos;
1570 
1571 	if (!size)
1572 		return 0;
1573 
1574 	pos = i->xarray_start + i->iov_offset;
1575 	index = pos >> PAGE_SHIFT;
1576 	offset = pos & ~PAGE_MASK;
1577 	*_start_offset = offset;
1578 
1579 	count = 1;
1580 	if (size > PAGE_SIZE - offset) {
1581 		size -= PAGE_SIZE - offset;
1582 		count += size >> PAGE_SHIFT;
1583 		size &= ~PAGE_MASK;
1584 		if (size)
1585 			count++;
1586 	}
1587 
1588 	p = get_pages_array(count);
1589 	if (!p)
1590 		return -ENOMEM;
1591 	*pages = p;
1592 
1593 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1594 	if (nr == 0)
1595 		return 0;
1596 
1597 	actual = PAGE_SIZE * nr;
1598 	actual -= offset;
1599 	if (nr == count && size > 0) {
1600 		unsigned last_offset = (nr > 1) ? 0 : offset;
1601 		actual -= PAGE_SIZE - (last_offset + size);
1602 	}
1603 	return actual;
1604 }
1605 
1606 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1607 		   struct page ***pages, size_t maxsize,
1608 		   size_t *start)
1609 {
1610 	struct page **p;
1611 	size_t len;
1612 	int n, res;
1613 
1614 	if (maxsize > i->count)
1615 		maxsize = i->count;
1616 	if (!maxsize)
1617 		return 0;
1618 
1619 	if (likely(iter_is_iovec(i))) {
1620 		unsigned long addr;
1621 
1622 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1623 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1624 		p = get_pages_array(n);
1625 		if (!p)
1626 			return -ENOMEM;
1627 		res = get_user_pages_fast(addr, n,
1628 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1629 		if (unlikely(res < 0)) {
1630 			kvfree(p);
1631 			return res;
1632 		}
1633 		*pages = p;
1634 		return (res == n ? len : res * PAGE_SIZE) - *start;
1635 	}
1636 	if (iov_iter_is_bvec(i)) {
1637 		struct page *page;
1638 
1639 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1640 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1641 		*pages = p = get_pages_array(n);
1642 		if (!p)
1643 			return -ENOMEM;
1644 		while (n--)
1645 			get_page(*p++ = page++);
1646 		return len - *start;
1647 	}
1648 	if (iov_iter_is_pipe(i))
1649 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1650 	if (iov_iter_is_xarray(i))
1651 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1652 	return -EFAULT;
1653 }
1654 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1655 
1656 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1657 			       struct iov_iter *i)
1658 {
1659 	char *to = addr;
1660 	__wsum sum, next;
1661 	size_t off = 0;
1662 	sum = *csum;
1663 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1664 		WARN_ON(1);
1665 		return 0;
1666 	}
1667 	iterate_and_advance(i, bytes, v, ({
1668 		next = csum_and_copy_from_user(v.iov_base,
1669 					       (to += v.iov_len) - v.iov_len,
1670 					       v.iov_len);
1671 		if (next) {
1672 			sum = csum_block_add(sum, next, off);
1673 			off += v.iov_len;
1674 		}
1675 		next ? 0 : v.iov_len;
1676 	}), ({
1677 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1678 				      v.iov_base, v.iov_len,
1679 				      sum, off);
1680 		off += v.iov_len;
1681 	})
1682 	)
1683 	*csum = sum;
1684 	return bytes;
1685 }
1686 EXPORT_SYMBOL(csum_and_copy_from_iter);
1687 
1688 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1689 			     struct iov_iter *i)
1690 {
1691 	struct csum_state *csstate = _csstate;
1692 	const char *from = addr;
1693 	__wsum sum, next;
1694 	size_t off;
1695 
1696 	if (unlikely(iov_iter_is_pipe(i)))
1697 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1698 
1699 	sum = csum_shift(csstate->csum, csstate->off);
1700 	off = 0;
1701 	if (unlikely(iov_iter_is_discard(i))) {
1702 		WARN_ON(1);	/* for now */
1703 		return 0;
1704 	}
1705 	iterate_and_advance(i, bytes, v, ({
1706 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1707 					     v.iov_base,
1708 					     v.iov_len);
1709 		if (next) {
1710 			sum = csum_block_add(sum, next, off);
1711 			off += v.iov_len;
1712 		}
1713 		next ? 0 : v.iov_len;
1714 	}), ({
1715 		sum = csum_and_memcpy(v.iov_base,
1716 				     (from += v.iov_len) - v.iov_len,
1717 				     v.iov_len, sum, off);
1718 		off += v.iov_len;
1719 	})
1720 	)
1721 	csstate->csum = csum_shift(sum, csstate->off);
1722 	csstate->off += bytes;
1723 	return bytes;
1724 }
1725 EXPORT_SYMBOL(csum_and_copy_to_iter);
1726 
1727 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1728 		struct iov_iter *i)
1729 {
1730 #ifdef CONFIG_CRYPTO_HASH
1731 	struct ahash_request *hash = hashp;
1732 	struct scatterlist sg;
1733 	size_t copied;
1734 
1735 	copied = copy_to_iter(addr, bytes, i);
1736 	sg_init_one(&sg, addr, copied);
1737 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1738 	crypto_ahash_update(hash);
1739 	return copied;
1740 #else
1741 	return 0;
1742 #endif
1743 }
1744 EXPORT_SYMBOL(hash_and_copy_to_iter);
1745 
1746 static int iov_npages(const struct iov_iter *i, int maxpages)
1747 {
1748 	size_t skip = i->iov_offset, size = i->count;
1749 	const struct iovec *p;
1750 	int npages = 0;
1751 
1752 	for (p = i->iov; size; skip = 0, p++) {
1753 		unsigned offs = offset_in_page(p->iov_base + skip);
1754 		size_t len = min(p->iov_len - skip, size);
1755 
1756 		if (len) {
1757 			size -= len;
1758 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1759 			if (unlikely(npages > maxpages))
1760 				return maxpages;
1761 		}
1762 	}
1763 	return npages;
1764 }
1765 
1766 static int bvec_npages(const struct iov_iter *i, int maxpages)
1767 {
1768 	size_t skip = i->iov_offset, size = i->count;
1769 	const struct bio_vec *p;
1770 	int npages = 0;
1771 
1772 	for (p = i->bvec; size; skip = 0, p++) {
1773 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1774 		size_t len = min(p->bv_len - skip, size);
1775 
1776 		size -= len;
1777 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1778 		if (unlikely(npages > maxpages))
1779 			return maxpages;
1780 	}
1781 	return npages;
1782 }
1783 
1784 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1785 {
1786 	if (unlikely(!i->count))
1787 		return 0;
1788 	/* iovec and kvec have identical layouts */
1789 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1790 		return iov_npages(i, maxpages);
1791 	if (iov_iter_is_bvec(i))
1792 		return bvec_npages(i, maxpages);
1793 	if (iov_iter_is_pipe(i)) {
1794 		unsigned int iter_head;
1795 		int npages;
1796 		size_t off;
1797 
1798 		if (!sanity(i))
1799 			return 0;
1800 
1801 		data_start(i, &iter_head, &off);
1802 		/* some of this one + all after this one */
1803 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1804 		return min(npages, maxpages);
1805 	}
1806 	if (iov_iter_is_xarray(i)) {
1807 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1808 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1809 		return min(npages, maxpages);
1810 	}
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL(iov_iter_npages);
1814 
1815 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1816 {
1817 	*new = *old;
1818 	if (unlikely(iov_iter_is_pipe(new))) {
1819 		WARN_ON(1);
1820 		return NULL;
1821 	}
1822 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1823 		return NULL;
1824 	if (iov_iter_is_bvec(new))
1825 		return new->bvec = kmemdup(new->bvec,
1826 				    new->nr_segs * sizeof(struct bio_vec),
1827 				    flags);
1828 	else
1829 		/* iovec and kvec have identical layout */
1830 		return new->iov = kmemdup(new->iov,
1831 				   new->nr_segs * sizeof(struct iovec),
1832 				   flags);
1833 }
1834 EXPORT_SYMBOL(dup_iter);
1835 
1836 static int copy_compat_iovec_from_user(struct iovec *iov,
1837 		const struct iovec __user *uvec, unsigned long nr_segs)
1838 {
1839 	const struct compat_iovec __user *uiov =
1840 		(const struct compat_iovec __user *)uvec;
1841 	int ret = -EFAULT, i;
1842 
1843 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1844 		return -EFAULT;
1845 
1846 	for (i = 0; i < nr_segs; i++) {
1847 		compat_uptr_t buf;
1848 		compat_ssize_t len;
1849 
1850 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1851 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1852 
1853 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1854 		if (len < 0) {
1855 			ret = -EINVAL;
1856 			goto uaccess_end;
1857 		}
1858 		iov[i].iov_base = compat_ptr(buf);
1859 		iov[i].iov_len = len;
1860 	}
1861 
1862 	ret = 0;
1863 uaccess_end:
1864 	user_access_end();
1865 	return ret;
1866 }
1867 
1868 static int copy_iovec_from_user(struct iovec *iov,
1869 		const struct iovec __user *uvec, unsigned long nr_segs)
1870 {
1871 	unsigned long seg;
1872 
1873 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1874 		return -EFAULT;
1875 	for (seg = 0; seg < nr_segs; seg++) {
1876 		if ((ssize_t)iov[seg].iov_len < 0)
1877 			return -EINVAL;
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1884 		unsigned long nr_segs, unsigned long fast_segs,
1885 		struct iovec *fast_iov, bool compat)
1886 {
1887 	struct iovec *iov = fast_iov;
1888 	int ret;
1889 
1890 	/*
1891 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1892 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1893 	 * traditionally returned zero for zero segments, so...
1894 	 */
1895 	if (nr_segs == 0)
1896 		return iov;
1897 	if (nr_segs > UIO_MAXIOV)
1898 		return ERR_PTR(-EINVAL);
1899 	if (nr_segs > fast_segs) {
1900 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1901 		if (!iov)
1902 			return ERR_PTR(-ENOMEM);
1903 	}
1904 
1905 	if (compat)
1906 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1907 	else
1908 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1909 	if (ret) {
1910 		if (iov != fast_iov)
1911 			kfree(iov);
1912 		return ERR_PTR(ret);
1913 	}
1914 
1915 	return iov;
1916 }
1917 
1918 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1919 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1920 		 struct iov_iter *i, bool compat)
1921 {
1922 	ssize_t total_len = 0;
1923 	unsigned long seg;
1924 	struct iovec *iov;
1925 
1926 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1927 	if (IS_ERR(iov)) {
1928 		*iovp = NULL;
1929 		return PTR_ERR(iov);
1930 	}
1931 
1932 	/*
1933 	 * According to the Single Unix Specification we should return EINVAL if
1934 	 * an element length is < 0 when cast to ssize_t or if the total length
1935 	 * would overflow the ssize_t return value of the system call.
1936 	 *
1937 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1938 	 * overflow case.
1939 	 */
1940 	for (seg = 0; seg < nr_segs; seg++) {
1941 		ssize_t len = (ssize_t)iov[seg].iov_len;
1942 
1943 		if (!access_ok(iov[seg].iov_base, len)) {
1944 			if (iov != *iovp)
1945 				kfree(iov);
1946 			*iovp = NULL;
1947 			return -EFAULT;
1948 		}
1949 
1950 		if (len > MAX_RW_COUNT - total_len) {
1951 			len = MAX_RW_COUNT - total_len;
1952 			iov[seg].iov_len = len;
1953 		}
1954 		total_len += len;
1955 	}
1956 
1957 	iov_iter_init(i, type, iov, nr_segs, total_len);
1958 	if (iov == *iovp)
1959 		*iovp = NULL;
1960 	else
1961 		*iovp = iov;
1962 	return total_len;
1963 }
1964 
1965 /**
1966  * import_iovec() - Copy an array of &struct iovec from userspace
1967  *     into the kernel, check that it is valid, and initialize a new
1968  *     &struct iov_iter iterator to access it.
1969  *
1970  * @type: One of %READ or %WRITE.
1971  * @uvec: Pointer to the userspace array.
1972  * @nr_segs: Number of elements in userspace array.
1973  * @fast_segs: Number of elements in @iov.
1974  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1975  *     on-stack) kernel array.
1976  * @i: Pointer to iterator that will be initialized on success.
1977  *
1978  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1979  * then this function places %NULL in *@iov on return. Otherwise, a new
1980  * array will be allocated and the result placed in *@iov. This means that
1981  * the caller may call kfree() on *@iov regardless of whether the small
1982  * on-stack array was used or not (and regardless of whether this function
1983  * returns an error or not).
1984  *
1985  * Return: Negative error code on error, bytes imported on success
1986  */
1987 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1988 		 unsigned nr_segs, unsigned fast_segs,
1989 		 struct iovec **iovp, struct iov_iter *i)
1990 {
1991 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1992 			      in_compat_syscall());
1993 }
1994 EXPORT_SYMBOL(import_iovec);
1995 
1996 int import_single_range(int rw, void __user *buf, size_t len,
1997 		 struct iovec *iov, struct iov_iter *i)
1998 {
1999 	if (len > MAX_RW_COUNT)
2000 		len = MAX_RW_COUNT;
2001 	if (unlikely(!access_ok(buf, len)))
2002 		return -EFAULT;
2003 
2004 	iov->iov_base = buf;
2005 	iov->iov_len = len;
2006 	iov_iter_init(i, rw, iov, 1, len);
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL(import_single_range);
2010