1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <crypto/hash.h> 3 #include <linux/export.h> 4 #include <linux/bvec.h> 5 #include <linux/fault-inject-usercopy.h> 6 #include <linux/uio.h> 7 #include <linux/pagemap.h> 8 #include <linux/highmem.h> 9 #include <linux/slab.h> 10 #include <linux/vmalloc.h> 11 #include <linux/splice.h> 12 #include <linux/compat.h> 13 #include <net/checksum.h> 14 #include <linux/scatterlist.h> 15 #include <linux/instrumented.h> 16 17 #define PIPE_PARANOIA /* for now */ 18 19 /* covers iovec and kvec alike */ 20 #define iterate_iovec(i, n, base, len, off, __p, STEP) { \ 21 size_t off = 0; \ 22 size_t skip = i->iov_offset; \ 23 do { \ 24 len = min(n, __p->iov_len - skip); \ 25 if (likely(len)) { \ 26 base = __p->iov_base + skip; \ 27 len -= (STEP); \ 28 off += len; \ 29 skip += len; \ 30 n -= len; \ 31 if (skip < __p->iov_len) \ 32 break; \ 33 } \ 34 __p++; \ 35 skip = 0; \ 36 } while (n); \ 37 i->iov_offset = skip; \ 38 n = off; \ 39 } 40 41 #define iterate_bvec(i, n, base, len, off, p, STEP) { \ 42 size_t off = 0; \ 43 unsigned skip = i->iov_offset; \ 44 while (n) { \ 45 unsigned offset = p->bv_offset + skip; \ 46 unsigned left; \ 47 void *kaddr = kmap_local_page(p->bv_page + \ 48 offset / PAGE_SIZE); \ 49 base = kaddr + offset % PAGE_SIZE; \ 50 len = min(min(n, (size_t)(p->bv_len - skip)), \ 51 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \ 52 left = (STEP); \ 53 kunmap_local(kaddr); \ 54 len -= left; \ 55 off += len; \ 56 skip += len; \ 57 if (skip == p->bv_len) { \ 58 skip = 0; \ 59 p++; \ 60 } \ 61 n -= len; \ 62 if (left) \ 63 break; \ 64 } \ 65 i->iov_offset = skip; \ 66 n = off; \ 67 } 68 69 #define iterate_xarray(i, n, base, len, __off, STEP) { \ 70 __label__ __out; \ 71 size_t __off = 0; \ 72 struct page *head = NULL; \ 73 loff_t start = i->xarray_start + i->iov_offset; \ 74 unsigned offset = start % PAGE_SIZE; \ 75 pgoff_t index = start / PAGE_SIZE; \ 76 int j; \ 77 \ 78 XA_STATE(xas, i->xarray, index); \ 79 \ 80 rcu_read_lock(); \ 81 xas_for_each(&xas, head, ULONG_MAX) { \ 82 unsigned left; \ 83 if (xas_retry(&xas, head)) \ 84 continue; \ 85 if (WARN_ON(xa_is_value(head))) \ 86 break; \ 87 if (WARN_ON(PageHuge(head))) \ 88 break; \ 89 for (j = (head->index < index) ? index - head->index : 0; \ 90 j < thp_nr_pages(head); j++) { \ 91 void *kaddr = kmap_local_page(head + j); \ 92 base = kaddr + offset; \ 93 len = PAGE_SIZE - offset; \ 94 len = min(n, len); \ 95 left = (STEP); \ 96 kunmap_local(kaddr); \ 97 len -= left; \ 98 __off += len; \ 99 n -= len; \ 100 if (left || n == 0) \ 101 goto __out; \ 102 offset = 0; \ 103 } \ 104 } \ 105 __out: \ 106 rcu_read_unlock(); \ 107 i->iov_offset += __off; \ 108 n = __off; \ 109 } 110 111 #define __iterate_and_advance(i, n, base, len, off, I, K) { \ 112 if (unlikely(i->count < n)) \ 113 n = i->count; \ 114 if (likely(n)) { \ 115 if (likely(iter_is_iovec(i))) { \ 116 const struct iovec *iov = i->iov; \ 117 void __user *base; \ 118 size_t len; \ 119 iterate_iovec(i, n, base, len, off, \ 120 iov, (I)) \ 121 i->nr_segs -= iov - i->iov; \ 122 i->iov = iov; \ 123 } else if (iov_iter_is_bvec(i)) { \ 124 const struct bio_vec *bvec = i->bvec; \ 125 void *base; \ 126 size_t len; \ 127 iterate_bvec(i, n, base, len, off, \ 128 bvec, (K)) \ 129 i->nr_segs -= bvec - i->bvec; \ 130 i->bvec = bvec; \ 131 } else if (iov_iter_is_kvec(i)) { \ 132 const struct kvec *kvec = i->kvec; \ 133 void *base; \ 134 size_t len; \ 135 iterate_iovec(i, n, base, len, off, \ 136 kvec, (K)) \ 137 i->nr_segs -= kvec - i->kvec; \ 138 i->kvec = kvec; \ 139 } else if (iov_iter_is_xarray(i)) { \ 140 void *base; \ 141 size_t len; \ 142 iterate_xarray(i, n, base, len, off, \ 143 (K)) \ 144 } \ 145 i->count -= n; \ 146 } \ 147 } 148 #define iterate_and_advance(i, n, base, len, off, I, K) \ 149 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0)) 150 151 static int copyout(void __user *to, const void *from, size_t n) 152 { 153 if (should_fail_usercopy()) 154 return n; 155 if (access_ok(to, n)) { 156 instrument_copy_to_user(to, from, n); 157 n = raw_copy_to_user(to, from, n); 158 } 159 return n; 160 } 161 162 static int copyin(void *to, const void __user *from, size_t n) 163 { 164 if (should_fail_usercopy()) 165 return n; 166 if (access_ok(from, n)) { 167 instrument_copy_from_user(to, from, n); 168 n = raw_copy_from_user(to, from, n); 169 } 170 return n; 171 } 172 173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, 174 struct iov_iter *i) 175 { 176 size_t skip, copy, left, wanted; 177 const struct iovec *iov; 178 char __user *buf; 179 void *kaddr, *from; 180 181 if (unlikely(bytes > i->count)) 182 bytes = i->count; 183 184 if (unlikely(!bytes)) 185 return 0; 186 187 might_fault(); 188 wanted = bytes; 189 iov = i->iov; 190 skip = i->iov_offset; 191 buf = iov->iov_base + skip; 192 copy = min(bytes, iov->iov_len - skip); 193 194 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { 195 kaddr = kmap_atomic(page); 196 from = kaddr + offset; 197 198 /* first chunk, usually the only one */ 199 left = copyout(buf, from, copy); 200 copy -= left; 201 skip += copy; 202 from += copy; 203 bytes -= copy; 204 205 while (unlikely(!left && bytes)) { 206 iov++; 207 buf = iov->iov_base; 208 copy = min(bytes, iov->iov_len); 209 left = copyout(buf, from, copy); 210 copy -= left; 211 skip = copy; 212 from += copy; 213 bytes -= copy; 214 } 215 if (likely(!bytes)) { 216 kunmap_atomic(kaddr); 217 goto done; 218 } 219 offset = from - kaddr; 220 buf += copy; 221 kunmap_atomic(kaddr); 222 copy = min(bytes, iov->iov_len - skip); 223 } 224 /* Too bad - revert to non-atomic kmap */ 225 226 kaddr = kmap(page); 227 from = kaddr + offset; 228 left = copyout(buf, from, copy); 229 copy -= left; 230 skip += copy; 231 from += copy; 232 bytes -= copy; 233 while (unlikely(!left && bytes)) { 234 iov++; 235 buf = iov->iov_base; 236 copy = min(bytes, iov->iov_len); 237 left = copyout(buf, from, copy); 238 copy -= left; 239 skip = copy; 240 from += copy; 241 bytes -= copy; 242 } 243 kunmap(page); 244 245 done: 246 if (skip == iov->iov_len) { 247 iov++; 248 skip = 0; 249 } 250 i->count -= wanted - bytes; 251 i->nr_segs -= iov - i->iov; 252 i->iov = iov; 253 i->iov_offset = skip; 254 return wanted - bytes; 255 } 256 257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, 258 struct iov_iter *i) 259 { 260 size_t skip, copy, left, wanted; 261 const struct iovec *iov; 262 char __user *buf; 263 void *kaddr, *to; 264 265 if (unlikely(bytes > i->count)) 266 bytes = i->count; 267 268 if (unlikely(!bytes)) 269 return 0; 270 271 might_fault(); 272 wanted = bytes; 273 iov = i->iov; 274 skip = i->iov_offset; 275 buf = iov->iov_base + skip; 276 copy = min(bytes, iov->iov_len - skip); 277 278 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { 279 kaddr = kmap_atomic(page); 280 to = kaddr + offset; 281 282 /* first chunk, usually the only one */ 283 left = copyin(to, buf, copy); 284 copy -= left; 285 skip += copy; 286 to += copy; 287 bytes -= copy; 288 289 while (unlikely(!left && bytes)) { 290 iov++; 291 buf = iov->iov_base; 292 copy = min(bytes, iov->iov_len); 293 left = copyin(to, buf, copy); 294 copy -= left; 295 skip = copy; 296 to += copy; 297 bytes -= copy; 298 } 299 if (likely(!bytes)) { 300 kunmap_atomic(kaddr); 301 goto done; 302 } 303 offset = to - kaddr; 304 buf += copy; 305 kunmap_atomic(kaddr); 306 copy = min(bytes, iov->iov_len - skip); 307 } 308 /* Too bad - revert to non-atomic kmap */ 309 310 kaddr = kmap(page); 311 to = kaddr + offset; 312 left = copyin(to, buf, copy); 313 copy -= left; 314 skip += copy; 315 to += copy; 316 bytes -= copy; 317 while (unlikely(!left && bytes)) { 318 iov++; 319 buf = iov->iov_base; 320 copy = min(bytes, iov->iov_len); 321 left = copyin(to, buf, copy); 322 copy -= left; 323 skip = copy; 324 to += copy; 325 bytes -= copy; 326 } 327 kunmap(page); 328 329 done: 330 if (skip == iov->iov_len) { 331 iov++; 332 skip = 0; 333 } 334 i->count -= wanted - bytes; 335 i->nr_segs -= iov - i->iov; 336 i->iov = iov; 337 i->iov_offset = skip; 338 return wanted - bytes; 339 } 340 341 #ifdef PIPE_PARANOIA 342 static bool sanity(const struct iov_iter *i) 343 { 344 struct pipe_inode_info *pipe = i->pipe; 345 unsigned int p_head = pipe->head; 346 unsigned int p_tail = pipe->tail; 347 unsigned int p_mask = pipe->ring_size - 1; 348 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail); 349 unsigned int i_head = i->head; 350 unsigned int idx; 351 352 if (i->iov_offset) { 353 struct pipe_buffer *p; 354 if (unlikely(p_occupancy == 0)) 355 goto Bad; // pipe must be non-empty 356 if (unlikely(i_head != p_head - 1)) 357 goto Bad; // must be at the last buffer... 358 359 p = &pipe->bufs[i_head & p_mask]; 360 if (unlikely(p->offset + p->len != i->iov_offset)) 361 goto Bad; // ... at the end of segment 362 } else { 363 if (i_head != p_head) 364 goto Bad; // must be right after the last buffer 365 } 366 return true; 367 Bad: 368 printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset); 369 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n", 370 p_head, p_tail, pipe->ring_size); 371 for (idx = 0; idx < pipe->ring_size; idx++) 372 printk(KERN_ERR "[%p %p %d %d]\n", 373 pipe->bufs[idx].ops, 374 pipe->bufs[idx].page, 375 pipe->bufs[idx].offset, 376 pipe->bufs[idx].len); 377 WARN_ON(1); 378 return false; 379 } 380 #else 381 #define sanity(i) true 382 #endif 383 384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 385 struct iov_iter *i) 386 { 387 struct pipe_inode_info *pipe = i->pipe; 388 struct pipe_buffer *buf; 389 unsigned int p_tail = pipe->tail; 390 unsigned int p_mask = pipe->ring_size - 1; 391 unsigned int i_head = i->head; 392 size_t off; 393 394 if (unlikely(bytes > i->count)) 395 bytes = i->count; 396 397 if (unlikely(!bytes)) 398 return 0; 399 400 if (!sanity(i)) 401 return 0; 402 403 off = i->iov_offset; 404 buf = &pipe->bufs[i_head & p_mask]; 405 if (off) { 406 if (offset == off && buf->page == page) { 407 /* merge with the last one */ 408 buf->len += bytes; 409 i->iov_offset += bytes; 410 goto out; 411 } 412 i_head++; 413 buf = &pipe->bufs[i_head & p_mask]; 414 } 415 if (pipe_full(i_head, p_tail, pipe->max_usage)) 416 return 0; 417 418 buf->ops = &page_cache_pipe_buf_ops; 419 get_page(page); 420 buf->page = page; 421 buf->offset = offset; 422 buf->len = bytes; 423 424 pipe->head = i_head + 1; 425 i->iov_offset = offset + bytes; 426 i->head = i_head; 427 out: 428 i->count -= bytes; 429 return bytes; 430 } 431 432 /* 433 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 434 * bytes. For each iovec, fault in each page that constitutes the iovec. 435 * 436 * Return 0 on success, or non-zero if the memory could not be accessed (i.e. 437 * because it is an invalid address). 438 */ 439 int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes) 440 { 441 if (iter_is_iovec(i)) { 442 const struct iovec *p; 443 size_t skip; 444 445 if (bytes > i->count) 446 bytes = i->count; 447 for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) { 448 size_t len = min(bytes, p->iov_len - skip); 449 int err; 450 451 if (unlikely(!len)) 452 continue; 453 err = fault_in_pages_readable(p->iov_base + skip, len); 454 if (unlikely(err)) 455 return err; 456 bytes -= len; 457 } 458 } 459 return 0; 460 } 461 EXPORT_SYMBOL(iov_iter_fault_in_readable); 462 463 void iov_iter_init(struct iov_iter *i, unsigned int direction, 464 const struct iovec *iov, unsigned long nr_segs, 465 size_t count) 466 { 467 WARN_ON(direction & ~(READ | WRITE)); 468 *i = (struct iov_iter) { 469 .iter_type = ITER_IOVEC, 470 .data_source = direction, 471 .iov = iov, 472 .nr_segs = nr_segs, 473 .iov_offset = 0, 474 .count = count 475 }; 476 } 477 EXPORT_SYMBOL(iov_iter_init); 478 479 static inline bool allocated(struct pipe_buffer *buf) 480 { 481 return buf->ops == &default_pipe_buf_ops; 482 } 483 484 static inline void data_start(const struct iov_iter *i, 485 unsigned int *iter_headp, size_t *offp) 486 { 487 unsigned int p_mask = i->pipe->ring_size - 1; 488 unsigned int iter_head = i->head; 489 size_t off = i->iov_offset; 490 491 if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) || 492 off == PAGE_SIZE)) { 493 iter_head++; 494 off = 0; 495 } 496 *iter_headp = iter_head; 497 *offp = off; 498 } 499 500 static size_t push_pipe(struct iov_iter *i, size_t size, 501 int *iter_headp, size_t *offp) 502 { 503 struct pipe_inode_info *pipe = i->pipe; 504 unsigned int p_tail = pipe->tail; 505 unsigned int p_mask = pipe->ring_size - 1; 506 unsigned int iter_head; 507 size_t off; 508 ssize_t left; 509 510 if (unlikely(size > i->count)) 511 size = i->count; 512 if (unlikely(!size)) 513 return 0; 514 515 left = size; 516 data_start(i, &iter_head, &off); 517 *iter_headp = iter_head; 518 *offp = off; 519 if (off) { 520 left -= PAGE_SIZE - off; 521 if (left <= 0) { 522 pipe->bufs[iter_head & p_mask].len += size; 523 return size; 524 } 525 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE; 526 iter_head++; 527 } 528 while (!pipe_full(iter_head, p_tail, pipe->max_usage)) { 529 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask]; 530 struct page *page = alloc_page(GFP_USER); 531 if (!page) 532 break; 533 534 buf->ops = &default_pipe_buf_ops; 535 buf->page = page; 536 buf->offset = 0; 537 buf->len = min_t(ssize_t, left, PAGE_SIZE); 538 left -= buf->len; 539 iter_head++; 540 pipe->head = iter_head; 541 542 if (left == 0) 543 return size; 544 } 545 return size - left; 546 } 547 548 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 549 struct iov_iter *i) 550 { 551 struct pipe_inode_info *pipe = i->pipe; 552 unsigned int p_mask = pipe->ring_size - 1; 553 unsigned int i_head; 554 size_t n, off; 555 556 if (!sanity(i)) 557 return 0; 558 559 bytes = n = push_pipe(i, bytes, &i_head, &off); 560 if (unlikely(!n)) 561 return 0; 562 do { 563 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 564 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk); 565 i->head = i_head; 566 i->iov_offset = off + chunk; 567 n -= chunk; 568 addr += chunk; 569 off = 0; 570 i_head++; 571 } while (n); 572 i->count -= bytes; 573 return bytes; 574 } 575 576 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 577 __wsum sum, size_t off) 578 { 579 __wsum next = csum_partial_copy_nocheck(from, to, len); 580 return csum_block_add(sum, next, off); 581 } 582 583 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, 584 struct iov_iter *i, __wsum *sump) 585 { 586 struct pipe_inode_info *pipe = i->pipe; 587 unsigned int p_mask = pipe->ring_size - 1; 588 __wsum sum = *sump; 589 size_t off = 0; 590 unsigned int i_head; 591 size_t r; 592 593 if (!sanity(i)) 594 return 0; 595 596 bytes = push_pipe(i, bytes, &i_head, &r); 597 while (bytes) { 598 size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r); 599 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page); 600 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off); 601 kunmap_local(p); 602 i->head = i_head; 603 i->iov_offset = r + chunk; 604 bytes -= chunk; 605 off += chunk; 606 r = 0; 607 i_head++; 608 } 609 *sump = sum; 610 i->count -= off; 611 return off; 612 } 613 614 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 615 { 616 if (unlikely(iov_iter_is_pipe(i))) 617 return copy_pipe_to_iter(addr, bytes, i); 618 if (iter_is_iovec(i)) 619 might_fault(); 620 iterate_and_advance(i, bytes, base, len, off, 621 copyout(base, addr + off, len), 622 memcpy(base, addr + off, len) 623 ) 624 625 return bytes; 626 } 627 EXPORT_SYMBOL(_copy_to_iter); 628 629 #ifdef CONFIG_ARCH_HAS_COPY_MC 630 static int copyout_mc(void __user *to, const void *from, size_t n) 631 { 632 if (access_ok(to, n)) { 633 instrument_copy_to_user(to, from, n); 634 n = copy_mc_to_user((__force void *) to, from, n); 635 } 636 return n; 637 } 638 639 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes, 640 struct iov_iter *i) 641 { 642 struct pipe_inode_info *pipe = i->pipe; 643 unsigned int p_mask = pipe->ring_size - 1; 644 unsigned int i_head; 645 size_t n, off, xfer = 0; 646 647 if (!sanity(i)) 648 return 0; 649 650 n = push_pipe(i, bytes, &i_head, &off); 651 while (n) { 652 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 653 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page); 654 unsigned long rem; 655 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk); 656 chunk -= rem; 657 kunmap_local(p); 658 i->head = i_head; 659 i->iov_offset = off + chunk; 660 xfer += chunk; 661 if (rem) 662 break; 663 n -= chunk; 664 off = 0; 665 i_head++; 666 } 667 i->count -= xfer; 668 return xfer; 669 } 670 671 /** 672 * _copy_mc_to_iter - copy to iter with source memory error exception handling 673 * @addr: source kernel address 674 * @bytes: total transfer length 675 * @i: destination iterator 676 * 677 * The pmem driver deploys this for the dax operation 678 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 679 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 680 * successfully copied. 681 * 682 * The main differences between this and typical _copy_to_iter(). 683 * 684 * * Typical tail/residue handling after a fault retries the copy 685 * byte-by-byte until the fault happens again. Re-triggering machine 686 * checks is potentially fatal so the implementation uses source 687 * alignment and poison alignment assumptions to avoid re-triggering 688 * hardware exceptions. 689 * 690 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 691 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 692 * a short copy. 693 * 694 * Return: number of bytes copied (may be %0) 695 */ 696 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 697 { 698 if (unlikely(iov_iter_is_pipe(i))) 699 return copy_mc_pipe_to_iter(addr, bytes, i); 700 if (iter_is_iovec(i)) 701 might_fault(); 702 __iterate_and_advance(i, bytes, base, len, off, 703 copyout_mc(base, addr + off, len), 704 copy_mc_to_kernel(base, addr + off, len) 705 ) 706 707 return bytes; 708 } 709 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 710 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 711 712 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 713 { 714 if (unlikely(iov_iter_is_pipe(i))) { 715 WARN_ON(1); 716 return 0; 717 } 718 if (iter_is_iovec(i)) 719 might_fault(); 720 iterate_and_advance(i, bytes, base, len, off, 721 copyin(addr + off, base, len), 722 memcpy(addr + off, base, len) 723 ) 724 725 return bytes; 726 } 727 EXPORT_SYMBOL(_copy_from_iter); 728 729 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 730 { 731 if (unlikely(iov_iter_is_pipe(i))) { 732 WARN_ON(1); 733 return 0; 734 } 735 iterate_and_advance(i, bytes, base, len, off, 736 __copy_from_user_inatomic_nocache(addr + off, base, len), 737 memcpy(addr + off, base, len) 738 ) 739 740 return bytes; 741 } 742 EXPORT_SYMBOL(_copy_from_iter_nocache); 743 744 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 745 /** 746 * _copy_from_iter_flushcache - write destination through cpu cache 747 * @addr: destination kernel address 748 * @bytes: total transfer length 749 * @i: source iterator 750 * 751 * The pmem driver arranges for filesystem-dax to use this facility via 752 * dax_copy_from_iter() for ensuring that writes to persistent memory 753 * are flushed through the CPU cache. It is differentiated from 754 * _copy_from_iter_nocache() in that guarantees all data is flushed for 755 * all iterator types. The _copy_from_iter_nocache() only attempts to 756 * bypass the cache for the ITER_IOVEC case, and on some archs may use 757 * instructions that strand dirty-data in the cache. 758 * 759 * Return: number of bytes copied (may be %0) 760 */ 761 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 762 { 763 if (unlikely(iov_iter_is_pipe(i))) { 764 WARN_ON(1); 765 return 0; 766 } 767 iterate_and_advance(i, bytes, base, len, off, 768 __copy_from_user_flushcache(addr + off, base, len), 769 memcpy_flushcache(addr + off, base, len) 770 ) 771 772 return bytes; 773 } 774 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 775 #endif 776 777 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 778 { 779 struct page *head; 780 size_t v = n + offset; 781 782 /* 783 * The general case needs to access the page order in order 784 * to compute the page size. 785 * However, we mostly deal with order-0 pages and thus can 786 * avoid a possible cache line miss for requests that fit all 787 * page orders. 788 */ 789 if (n <= v && v <= PAGE_SIZE) 790 return true; 791 792 head = compound_head(page); 793 v += (page - head) << PAGE_SHIFT; 794 795 if (likely(n <= v && v <= (page_size(head)))) 796 return true; 797 WARN_ON(1); 798 return false; 799 } 800 801 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 802 struct iov_iter *i) 803 { 804 if (likely(iter_is_iovec(i))) 805 return copy_page_to_iter_iovec(page, offset, bytes, i); 806 if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) { 807 void *kaddr = kmap_local_page(page); 808 size_t wanted = _copy_to_iter(kaddr + offset, bytes, i); 809 kunmap_local(kaddr); 810 return wanted; 811 } 812 if (iov_iter_is_pipe(i)) 813 return copy_page_to_iter_pipe(page, offset, bytes, i); 814 if (unlikely(iov_iter_is_discard(i))) { 815 if (unlikely(i->count < bytes)) 816 bytes = i->count; 817 i->count -= bytes; 818 return bytes; 819 } 820 WARN_ON(1); 821 return 0; 822 } 823 824 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 825 struct iov_iter *i) 826 { 827 size_t res = 0; 828 if (unlikely(!page_copy_sane(page, offset, bytes))) 829 return 0; 830 page += offset / PAGE_SIZE; // first subpage 831 offset %= PAGE_SIZE; 832 while (1) { 833 size_t n = __copy_page_to_iter(page, offset, 834 min(bytes, (size_t)PAGE_SIZE - offset), i); 835 res += n; 836 bytes -= n; 837 if (!bytes || !n) 838 break; 839 offset += n; 840 if (offset == PAGE_SIZE) { 841 page++; 842 offset = 0; 843 } 844 } 845 return res; 846 } 847 EXPORT_SYMBOL(copy_page_to_iter); 848 849 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 850 struct iov_iter *i) 851 { 852 if (unlikely(!page_copy_sane(page, offset, bytes))) 853 return 0; 854 if (likely(iter_is_iovec(i))) 855 return copy_page_from_iter_iovec(page, offset, bytes, i); 856 if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) { 857 void *kaddr = kmap_local_page(page); 858 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); 859 kunmap_local(kaddr); 860 return wanted; 861 } 862 WARN_ON(1); 863 return 0; 864 } 865 EXPORT_SYMBOL(copy_page_from_iter); 866 867 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 868 { 869 struct pipe_inode_info *pipe = i->pipe; 870 unsigned int p_mask = pipe->ring_size - 1; 871 unsigned int i_head; 872 size_t n, off; 873 874 if (!sanity(i)) 875 return 0; 876 877 bytes = n = push_pipe(i, bytes, &i_head, &off); 878 if (unlikely(!n)) 879 return 0; 880 881 do { 882 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 883 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page); 884 memset(p + off, 0, chunk); 885 kunmap_local(p); 886 i->head = i_head; 887 i->iov_offset = off + chunk; 888 n -= chunk; 889 off = 0; 890 i_head++; 891 } while (n); 892 i->count -= bytes; 893 return bytes; 894 } 895 896 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 897 { 898 if (unlikely(iov_iter_is_pipe(i))) 899 return pipe_zero(bytes, i); 900 iterate_and_advance(i, bytes, base, len, count, 901 clear_user(base, len), 902 memset(base, 0, len) 903 ) 904 905 return bytes; 906 } 907 EXPORT_SYMBOL(iov_iter_zero); 908 909 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes, 910 struct iov_iter *i) 911 { 912 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 913 if (unlikely(!page_copy_sane(page, offset, bytes))) { 914 kunmap_atomic(kaddr); 915 return 0; 916 } 917 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 918 kunmap_atomic(kaddr); 919 WARN_ON(1); 920 return 0; 921 } 922 iterate_and_advance(i, bytes, base, len, off, 923 copyin(p + off, base, len), 924 memcpy(p + off, base, len) 925 ) 926 kunmap_atomic(kaddr); 927 return bytes; 928 } 929 EXPORT_SYMBOL(copy_page_from_iter_atomic); 930 931 static inline void pipe_truncate(struct iov_iter *i) 932 { 933 struct pipe_inode_info *pipe = i->pipe; 934 unsigned int p_tail = pipe->tail; 935 unsigned int p_head = pipe->head; 936 unsigned int p_mask = pipe->ring_size - 1; 937 938 if (!pipe_empty(p_head, p_tail)) { 939 struct pipe_buffer *buf; 940 unsigned int i_head = i->head; 941 size_t off = i->iov_offset; 942 943 if (off) { 944 buf = &pipe->bufs[i_head & p_mask]; 945 buf->len = off - buf->offset; 946 i_head++; 947 } 948 while (p_head != i_head) { 949 p_head--; 950 pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]); 951 } 952 953 pipe->head = p_head; 954 } 955 } 956 957 static void pipe_advance(struct iov_iter *i, size_t size) 958 { 959 struct pipe_inode_info *pipe = i->pipe; 960 if (size) { 961 struct pipe_buffer *buf; 962 unsigned int p_mask = pipe->ring_size - 1; 963 unsigned int i_head = i->head; 964 size_t off = i->iov_offset, left = size; 965 966 if (off) /* make it relative to the beginning of buffer */ 967 left += off - pipe->bufs[i_head & p_mask].offset; 968 while (1) { 969 buf = &pipe->bufs[i_head & p_mask]; 970 if (left <= buf->len) 971 break; 972 left -= buf->len; 973 i_head++; 974 } 975 i->head = i_head; 976 i->iov_offset = buf->offset + left; 977 } 978 i->count -= size; 979 /* ... and discard everything past that point */ 980 pipe_truncate(i); 981 } 982 983 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 984 { 985 struct bvec_iter bi; 986 987 bi.bi_size = i->count; 988 bi.bi_bvec_done = i->iov_offset; 989 bi.bi_idx = 0; 990 bvec_iter_advance(i->bvec, &bi, size); 991 992 i->bvec += bi.bi_idx; 993 i->nr_segs -= bi.bi_idx; 994 i->count = bi.bi_size; 995 i->iov_offset = bi.bi_bvec_done; 996 } 997 998 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 999 { 1000 const struct iovec *iov, *end; 1001 1002 if (!i->count) 1003 return; 1004 i->count -= size; 1005 1006 size += i->iov_offset; // from beginning of current segment 1007 for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) { 1008 if (likely(size < iov->iov_len)) 1009 break; 1010 size -= iov->iov_len; 1011 } 1012 i->iov_offset = size; 1013 i->nr_segs -= iov - i->iov; 1014 i->iov = iov; 1015 } 1016 1017 void iov_iter_advance(struct iov_iter *i, size_t size) 1018 { 1019 if (unlikely(i->count < size)) 1020 size = i->count; 1021 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 1022 /* iovec and kvec have identical layouts */ 1023 iov_iter_iovec_advance(i, size); 1024 } else if (iov_iter_is_bvec(i)) { 1025 iov_iter_bvec_advance(i, size); 1026 } else if (iov_iter_is_pipe(i)) { 1027 pipe_advance(i, size); 1028 } else if (unlikely(iov_iter_is_xarray(i))) { 1029 i->iov_offset += size; 1030 i->count -= size; 1031 } else if (iov_iter_is_discard(i)) { 1032 i->count -= size; 1033 } 1034 } 1035 EXPORT_SYMBOL(iov_iter_advance); 1036 1037 void iov_iter_revert(struct iov_iter *i, size_t unroll) 1038 { 1039 if (!unroll) 1040 return; 1041 if (WARN_ON(unroll > MAX_RW_COUNT)) 1042 return; 1043 i->count += unroll; 1044 if (unlikely(iov_iter_is_pipe(i))) { 1045 struct pipe_inode_info *pipe = i->pipe; 1046 unsigned int p_mask = pipe->ring_size - 1; 1047 unsigned int i_head = i->head; 1048 size_t off = i->iov_offset; 1049 while (1) { 1050 struct pipe_buffer *b = &pipe->bufs[i_head & p_mask]; 1051 size_t n = off - b->offset; 1052 if (unroll < n) { 1053 off -= unroll; 1054 break; 1055 } 1056 unroll -= n; 1057 if (!unroll && i_head == i->start_head) { 1058 off = 0; 1059 break; 1060 } 1061 i_head--; 1062 b = &pipe->bufs[i_head & p_mask]; 1063 off = b->offset + b->len; 1064 } 1065 i->iov_offset = off; 1066 i->head = i_head; 1067 pipe_truncate(i); 1068 return; 1069 } 1070 if (unlikely(iov_iter_is_discard(i))) 1071 return; 1072 if (unroll <= i->iov_offset) { 1073 i->iov_offset -= unroll; 1074 return; 1075 } 1076 unroll -= i->iov_offset; 1077 if (iov_iter_is_xarray(i)) { 1078 BUG(); /* We should never go beyond the start of the specified 1079 * range since we might then be straying into pages that 1080 * aren't pinned. 1081 */ 1082 } else if (iov_iter_is_bvec(i)) { 1083 const struct bio_vec *bvec = i->bvec; 1084 while (1) { 1085 size_t n = (--bvec)->bv_len; 1086 i->nr_segs++; 1087 if (unroll <= n) { 1088 i->bvec = bvec; 1089 i->iov_offset = n - unroll; 1090 return; 1091 } 1092 unroll -= n; 1093 } 1094 } else { /* same logics for iovec and kvec */ 1095 const struct iovec *iov = i->iov; 1096 while (1) { 1097 size_t n = (--iov)->iov_len; 1098 i->nr_segs++; 1099 if (unroll <= n) { 1100 i->iov = iov; 1101 i->iov_offset = n - unroll; 1102 return; 1103 } 1104 unroll -= n; 1105 } 1106 } 1107 } 1108 EXPORT_SYMBOL(iov_iter_revert); 1109 1110 /* 1111 * Return the count of just the current iov_iter segment. 1112 */ 1113 size_t iov_iter_single_seg_count(const struct iov_iter *i) 1114 { 1115 if (i->nr_segs > 1) { 1116 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1117 return min(i->count, i->iov->iov_len - i->iov_offset); 1118 if (iov_iter_is_bvec(i)) 1119 return min(i->count, i->bvec->bv_len - i->iov_offset); 1120 } 1121 return i->count; 1122 } 1123 EXPORT_SYMBOL(iov_iter_single_seg_count); 1124 1125 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 1126 const struct kvec *kvec, unsigned long nr_segs, 1127 size_t count) 1128 { 1129 WARN_ON(direction & ~(READ | WRITE)); 1130 *i = (struct iov_iter){ 1131 .iter_type = ITER_KVEC, 1132 .data_source = direction, 1133 .kvec = kvec, 1134 .nr_segs = nr_segs, 1135 .iov_offset = 0, 1136 .count = count 1137 }; 1138 } 1139 EXPORT_SYMBOL(iov_iter_kvec); 1140 1141 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 1142 const struct bio_vec *bvec, unsigned long nr_segs, 1143 size_t count) 1144 { 1145 WARN_ON(direction & ~(READ | WRITE)); 1146 *i = (struct iov_iter){ 1147 .iter_type = ITER_BVEC, 1148 .data_source = direction, 1149 .bvec = bvec, 1150 .nr_segs = nr_segs, 1151 .iov_offset = 0, 1152 .count = count 1153 }; 1154 } 1155 EXPORT_SYMBOL(iov_iter_bvec); 1156 1157 void iov_iter_pipe(struct iov_iter *i, unsigned int direction, 1158 struct pipe_inode_info *pipe, 1159 size_t count) 1160 { 1161 BUG_ON(direction != READ); 1162 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size)); 1163 *i = (struct iov_iter){ 1164 .iter_type = ITER_PIPE, 1165 .data_source = false, 1166 .pipe = pipe, 1167 .head = pipe->head, 1168 .start_head = pipe->head, 1169 .iov_offset = 0, 1170 .count = count 1171 }; 1172 } 1173 EXPORT_SYMBOL(iov_iter_pipe); 1174 1175 /** 1176 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 1177 * @i: The iterator to initialise. 1178 * @direction: The direction of the transfer. 1179 * @xarray: The xarray to access. 1180 * @start: The start file position. 1181 * @count: The size of the I/O buffer in bytes. 1182 * 1183 * Set up an I/O iterator to either draw data out of the pages attached to an 1184 * inode or to inject data into those pages. The pages *must* be prevented 1185 * from evaporation, either by taking a ref on them or locking them by the 1186 * caller. 1187 */ 1188 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 1189 struct xarray *xarray, loff_t start, size_t count) 1190 { 1191 BUG_ON(direction & ~1); 1192 *i = (struct iov_iter) { 1193 .iter_type = ITER_XARRAY, 1194 .data_source = direction, 1195 .xarray = xarray, 1196 .xarray_start = start, 1197 .count = count, 1198 .iov_offset = 0 1199 }; 1200 } 1201 EXPORT_SYMBOL(iov_iter_xarray); 1202 1203 /** 1204 * iov_iter_discard - Initialise an I/O iterator that discards data 1205 * @i: The iterator to initialise. 1206 * @direction: The direction of the transfer. 1207 * @count: The size of the I/O buffer in bytes. 1208 * 1209 * Set up an I/O iterator that just discards everything that's written to it. 1210 * It's only available as a READ iterator. 1211 */ 1212 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 1213 { 1214 BUG_ON(direction != READ); 1215 *i = (struct iov_iter){ 1216 .iter_type = ITER_DISCARD, 1217 .data_source = false, 1218 .count = count, 1219 .iov_offset = 0 1220 }; 1221 } 1222 EXPORT_SYMBOL(iov_iter_discard); 1223 1224 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 1225 { 1226 unsigned long res = 0; 1227 size_t size = i->count; 1228 size_t skip = i->iov_offset; 1229 unsigned k; 1230 1231 for (k = 0; k < i->nr_segs; k++, skip = 0) { 1232 size_t len = i->iov[k].iov_len - skip; 1233 if (len) { 1234 res |= (unsigned long)i->iov[k].iov_base + skip; 1235 if (len > size) 1236 len = size; 1237 res |= len; 1238 size -= len; 1239 if (!size) 1240 break; 1241 } 1242 } 1243 return res; 1244 } 1245 1246 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 1247 { 1248 unsigned res = 0; 1249 size_t size = i->count; 1250 unsigned skip = i->iov_offset; 1251 unsigned k; 1252 1253 for (k = 0; k < i->nr_segs; k++, skip = 0) { 1254 size_t len = i->bvec[k].bv_len - skip; 1255 res |= (unsigned long)i->bvec[k].bv_offset + skip; 1256 if (len > size) 1257 len = size; 1258 res |= len; 1259 size -= len; 1260 if (!size) 1261 break; 1262 } 1263 return res; 1264 } 1265 1266 unsigned long iov_iter_alignment(const struct iov_iter *i) 1267 { 1268 /* iovec and kvec have identical layouts */ 1269 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1270 return iov_iter_alignment_iovec(i); 1271 1272 if (iov_iter_is_bvec(i)) 1273 return iov_iter_alignment_bvec(i); 1274 1275 if (iov_iter_is_pipe(i)) { 1276 unsigned int p_mask = i->pipe->ring_size - 1; 1277 size_t size = i->count; 1278 1279 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask])) 1280 return size | i->iov_offset; 1281 return size; 1282 } 1283 1284 if (iov_iter_is_xarray(i)) 1285 return (i->xarray_start + i->iov_offset) | i->count; 1286 1287 return 0; 1288 } 1289 EXPORT_SYMBOL(iov_iter_alignment); 1290 1291 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1292 { 1293 unsigned long res = 0; 1294 unsigned long v = 0; 1295 size_t size = i->count; 1296 unsigned k; 1297 1298 if (WARN_ON(!iter_is_iovec(i))) 1299 return ~0U; 1300 1301 for (k = 0; k < i->nr_segs; k++) { 1302 if (i->iov[k].iov_len) { 1303 unsigned long base = (unsigned long)i->iov[k].iov_base; 1304 if (v) // if not the first one 1305 res |= base | v; // this start | previous end 1306 v = base + i->iov[k].iov_len; 1307 if (size <= i->iov[k].iov_len) 1308 break; 1309 size -= i->iov[k].iov_len; 1310 } 1311 } 1312 return res; 1313 } 1314 EXPORT_SYMBOL(iov_iter_gap_alignment); 1315 1316 static inline ssize_t __pipe_get_pages(struct iov_iter *i, 1317 size_t maxsize, 1318 struct page **pages, 1319 int iter_head, 1320 size_t *start) 1321 { 1322 struct pipe_inode_info *pipe = i->pipe; 1323 unsigned int p_mask = pipe->ring_size - 1; 1324 ssize_t n = push_pipe(i, maxsize, &iter_head, start); 1325 if (!n) 1326 return -EFAULT; 1327 1328 maxsize = n; 1329 n += *start; 1330 while (n > 0) { 1331 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page); 1332 iter_head++; 1333 n -= PAGE_SIZE; 1334 } 1335 1336 return maxsize; 1337 } 1338 1339 static ssize_t pipe_get_pages(struct iov_iter *i, 1340 struct page **pages, size_t maxsize, unsigned maxpages, 1341 size_t *start) 1342 { 1343 unsigned int iter_head, npages; 1344 size_t capacity; 1345 1346 if (!sanity(i)) 1347 return -EFAULT; 1348 1349 data_start(i, &iter_head, start); 1350 /* Amount of free space: some of this one + all after this one */ 1351 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); 1352 capacity = min(npages, maxpages) * PAGE_SIZE - *start; 1353 1354 return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start); 1355 } 1356 1357 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 1358 pgoff_t index, unsigned int nr_pages) 1359 { 1360 XA_STATE(xas, xa, index); 1361 struct page *page; 1362 unsigned int ret = 0; 1363 1364 rcu_read_lock(); 1365 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1366 if (xas_retry(&xas, page)) 1367 continue; 1368 1369 /* Has the page moved or been split? */ 1370 if (unlikely(page != xas_reload(&xas))) { 1371 xas_reset(&xas); 1372 continue; 1373 } 1374 1375 pages[ret] = find_subpage(page, xas.xa_index); 1376 get_page(pages[ret]); 1377 if (++ret == nr_pages) 1378 break; 1379 } 1380 rcu_read_unlock(); 1381 return ret; 1382 } 1383 1384 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 1385 struct page **pages, size_t maxsize, 1386 unsigned maxpages, size_t *_start_offset) 1387 { 1388 unsigned nr, offset; 1389 pgoff_t index, count; 1390 size_t size = maxsize, actual; 1391 loff_t pos; 1392 1393 if (!size || !maxpages) 1394 return 0; 1395 1396 pos = i->xarray_start + i->iov_offset; 1397 index = pos >> PAGE_SHIFT; 1398 offset = pos & ~PAGE_MASK; 1399 *_start_offset = offset; 1400 1401 count = 1; 1402 if (size > PAGE_SIZE - offset) { 1403 size -= PAGE_SIZE - offset; 1404 count += size >> PAGE_SHIFT; 1405 size &= ~PAGE_MASK; 1406 if (size) 1407 count++; 1408 } 1409 1410 if (count > maxpages) 1411 count = maxpages; 1412 1413 nr = iter_xarray_populate_pages(pages, i->xarray, index, count); 1414 if (nr == 0) 1415 return 0; 1416 1417 actual = PAGE_SIZE * nr; 1418 actual -= offset; 1419 if (nr == count && size > 0) { 1420 unsigned last_offset = (nr > 1) ? 0 : offset; 1421 actual -= PAGE_SIZE - (last_offset + size); 1422 } 1423 return actual; 1424 } 1425 1426 /* must be done on non-empty ITER_IOVEC one */ 1427 static unsigned long first_iovec_segment(const struct iov_iter *i, 1428 size_t *size, size_t *start, 1429 size_t maxsize, unsigned maxpages) 1430 { 1431 size_t skip; 1432 long k; 1433 1434 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1435 unsigned long addr = (unsigned long)i->iov[k].iov_base + skip; 1436 size_t len = i->iov[k].iov_len - skip; 1437 1438 if (unlikely(!len)) 1439 continue; 1440 if (len > maxsize) 1441 len = maxsize; 1442 len += (*start = addr % PAGE_SIZE); 1443 if (len > maxpages * PAGE_SIZE) 1444 len = maxpages * PAGE_SIZE; 1445 *size = len; 1446 return addr & PAGE_MASK; 1447 } 1448 BUG(); // if it had been empty, we wouldn't get called 1449 } 1450 1451 /* must be done on non-empty ITER_BVEC one */ 1452 static struct page *first_bvec_segment(const struct iov_iter *i, 1453 size_t *size, size_t *start, 1454 size_t maxsize, unsigned maxpages) 1455 { 1456 struct page *page; 1457 size_t skip = i->iov_offset, len; 1458 1459 len = i->bvec->bv_len - skip; 1460 if (len > maxsize) 1461 len = maxsize; 1462 skip += i->bvec->bv_offset; 1463 page = i->bvec->bv_page + skip / PAGE_SIZE; 1464 len += (*start = skip % PAGE_SIZE); 1465 if (len > maxpages * PAGE_SIZE) 1466 len = maxpages * PAGE_SIZE; 1467 *size = len; 1468 return page; 1469 } 1470 1471 ssize_t iov_iter_get_pages(struct iov_iter *i, 1472 struct page **pages, size_t maxsize, unsigned maxpages, 1473 size_t *start) 1474 { 1475 size_t len; 1476 int n, res; 1477 1478 if (maxsize > i->count) 1479 maxsize = i->count; 1480 if (!maxsize) 1481 return 0; 1482 1483 if (likely(iter_is_iovec(i))) { 1484 unsigned long addr; 1485 1486 addr = first_iovec_segment(i, &len, start, maxsize, maxpages); 1487 n = DIV_ROUND_UP(len, PAGE_SIZE); 1488 res = get_user_pages_fast(addr, n, 1489 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, 1490 pages); 1491 if (unlikely(res < 0)) 1492 return res; 1493 return (res == n ? len : res * PAGE_SIZE) - *start; 1494 } 1495 if (iov_iter_is_bvec(i)) { 1496 struct page *page; 1497 1498 page = first_bvec_segment(i, &len, start, maxsize, maxpages); 1499 n = DIV_ROUND_UP(len, PAGE_SIZE); 1500 while (n--) 1501 get_page(*pages++ = page++); 1502 return len - *start; 1503 } 1504 if (iov_iter_is_pipe(i)) 1505 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1506 if (iov_iter_is_xarray(i)) 1507 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1508 return -EFAULT; 1509 } 1510 EXPORT_SYMBOL(iov_iter_get_pages); 1511 1512 static struct page **get_pages_array(size_t n) 1513 { 1514 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); 1515 } 1516 1517 static ssize_t pipe_get_pages_alloc(struct iov_iter *i, 1518 struct page ***pages, size_t maxsize, 1519 size_t *start) 1520 { 1521 struct page **p; 1522 unsigned int iter_head, npages; 1523 ssize_t n; 1524 1525 if (!sanity(i)) 1526 return -EFAULT; 1527 1528 data_start(i, &iter_head, start); 1529 /* Amount of free space: some of this one + all after this one */ 1530 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); 1531 n = npages * PAGE_SIZE - *start; 1532 if (maxsize > n) 1533 maxsize = n; 1534 else 1535 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); 1536 p = get_pages_array(npages); 1537 if (!p) 1538 return -ENOMEM; 1539 n = __pipe_get_pages(i, maxsize, p, iter_head, start); 1540 if (n > 0) 1541 *pages = p; 1542 else 1543 kvfree(p); 1544 return n; 1545 } 1546 1547 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i, 1548 struct page ***pages, size_t maxsize, 1549 size_t *_start_offset) 1550 { 1551 struct page **p; 1552 unsigned nr, offset; 1553 pgoff_t index, count; 1554 size_t size = maxsize, actual; 1555 loff_t pos; 1556 1557 if (!size) 1558 return 0; 1559 1560 pos = i->xarray_start + i->iov_offset; 1561 index = pos >> PAGE_SHIFT; 1562 offset = pos & ~PAGE_MASK; 1563 *_start_offset = offset; 1564 1565 count = 1; 1566 if (size > PAGE_SIZE - offset) { 1567 size -= PAGE_SIZE - offset; 1568 count += size >> PAGE_SHIFT; 1569 size &= ~PAGE_MASK; 1570 if (size) 1571 count++; 1572 } 1573 1574 p = get_pages_array(count); 1575 if (!p) 1576 return -ENOMEM; 1577 *pages = p; 1578 1579 nr = iter_xarray_populate_pages(p, i->xarray, index, count); 1580 if (nr == 0) 1581 return 0; 1582 1583 actual = PAGE_SIZE * nr; 1584 actual -= offset; 1585 if (nr == count && size > 0) { 1586 unsigned last_offset = (nr > 1) ? 0 : offset; 1587 actual -= PAGE_SIZE - (last_offset + size); 1588 } 1589 return actual; 1590 } 1591 1592 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1593 struct page ***pages, size_t maxsize, 1594 size_t *start) 1595 { 1596 struct page **p; 1597 size_t len; 1598 int n, res; 1599 1600 if (maxsize > i->count) 1601 maxsize = i->count; 1602 if (!maxsize) 1603 return 0; 1604 1605 if (likely(iter_is_iovec(i))) { 1606 unsigned long addr; 1607 1608 addr = first_iovec_segment(i, &len, start, maxsize, ~0U); 1609 n = DIV_ROUND_UP(len, PAGE_SIZE); 1610 p = get_pages_array(n); 1611 if (!p) 1612 return -ENOMEM; 1613 res = get_user_pages_fast(addr, n, 1614 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p); 1615 if (unlikely(res < 0)) { 1616 kvfree(p); 1617 return res; 1618 } 1619 *pages = p; 1620 return (res == n ? len : res * PAGE_SIZE) - *start; 1621 } 1622 if (iov_iter_is_bvec(i)) { 1623 struct page *page; 1624 1625 page = first_bvec_segment(i, &len, start, maxsize, ~0U); 1626 n = DIV_ROUND_UP(len, PAGE_SIZE); 1627 *pages = p = get_pages_array(n); 1628 if (!p) 1629 return -ENOMEM; 1630 while (n--) 1631 get_page(*p++ = page++); 1632 return len - *start; 1633 } 1634 if (iov_iter_is_pipe(i)) 1635 return pipe_get_pages_alloc(i, pages, maxsize, start); 1636 if (iov_iter_is_xarray(i)) 1637 return iter_xarray_get_pages_alloc(i, pages, maxsize, start); 1638 return -EFAULT; 1639 } 1640 EXPORT_SYMBOL(iov_iter_get_pages_alloc); 1641 1642 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1643 struct iov_iter *i) 1644 { 1645 __wsum sum, next; 1646 sum = *csum; 1647 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1648 WARN_ON(1); 1649 return 0; 1650 } 1651 iterate_and_advance(i, bytes, base, len, off, ({ 1652 next = csum_and_copy_from_user(base, addr + off, len); 1653 sum = csum_block_add(sum, next, off); 1654 next ? 0 : len; 1655 }), ({ 1656 sum = csum_and_memcpy(addr + off, base, len, sum, off); 1657 }) 1658 ) 1659 *csum = sum; 1660 return bytes; 1661 } 1662 EXPORT_SYMBOL(csum_and_copy_from_iter); 1663 1664 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, 1665 struct iov_iter *i) 1666 { 1667 struct csum_state *csstate = _csstate; 1668 __wsum sum, next; 1669 1670 if (unlikely(iov_iter_is_discard(i))) { 1671 WARN_ON(1); /* for now */ 1672 return 0; 1673 } 1674 1675 sum = csum_shift(csstate->csum, csstate->off); 1676 if (unlikely(iov_iter_is_pipe(i))) 1677 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum); 1678 else iterate_and_advance(i, bytes, base, len, off, ({ 1679 next = csum_and_copy_to_user(addr + off, base, len); 1680 sum = csum_block_add(sum, next, off); 1681 next ? 0 : len; 1682 }), ({ 1683 sum = csum_and_memcpy(base, addr + off, len, sum, off); 1684 }) 1685 ) 1686 csstate->csum = csum_shift(sum, csstate->off); 1687 csstate->off += bytes; 1688 return bytes; 1689 } 1690 EXPORT_SYMBOL(csum_and_copy_to_iter); 1691 1692 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1693 struct iov_iter *i) 1694 { 1695 #ifdef CONFIG_CRYPTO_HASH 1696 struct ahash_request *hash = hashp; 1697 struct scatterlist sg; 1698 size_t copied; 1699 1700 copied = copy_to_iter(addr, bytes, i); 1701 sg_init_one(&sg, addr, copied); 1702 ahash_request_set_crypt(hash, &sg, NULL, copied); 1703 crypto_ahash_update(hash); 1704 return copied; 1705 #else 1706 return 0; 1707 #endif 1708 } 1709 EXPORT_SYMBOL(hash_and_copy_to_iter); 1710 1711 static int iov_npages(const struct iov_iter *i, int maxpages) 1712 { 1713 size_t skip = i->iov_offset, size = i->count; 1714 const struct iovec *p; 1715 int npages = 0; 1716 1717 for (p = i->iov; size; skip = 0, p++) { 1718 unsigned offs = offset_in_page(p->iov_base + skip); 1719 size_t len = min(p->iov_len - skip, size); 1720 1721 if (len) { 1722 size -= len; 1723 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1724 if (unlikely(npages > maxpages)) 1725 return maxpages; 1726 } 1727 } 1728 return npages; 1729 } 1730 1731 static int bvec_npages(const struct iov_iter *i, int maxpages) 1732 { 1733 size_t skip = i->iov_offset, size = i->count; 1734 const struct bio_vec *p; 1735 int npages = 0; 1736 1737 for (p = i->bvec; size; skip = 0, p++) { 1738 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1739 size_t len = min(p->bv_len - skip, size); 1740 1741 size -= len; 1742 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1743 if (unlikely(npages > maxpages)) 1744 return maxpages; 1745 } 1746 return npages; 1747 } 1748 1749 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1750 { 1751 if (unlikely(!i->count)) 1752 return 0; 1753 /* iovec and kvec have identical layouts */ 1754 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1755 return iov_npages(i, maxpages); 1756 if (iov_iter_is_bvec(i)) 1757 return bvec_npages(i, maxpages); 1758 if (iov_iter_is_pipe(i)) { 1759 unsigned int iter_head; 1760 int npages; 1761 size_t off; 1762 1763 if (!sanity(i)) 1764 return 0; 1765 1766 data_start(i, &iter_head, &off); 1767 /* some of this one + all after this one */ 1768 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); 1769 return min(npages, maxpages); 1770 } 1771 if (iov_iter_is_xarray(i)) { 1772 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1773 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1774 return min(npages, maxpages); 1775 } 1776 return 0; 1777 } 1778 EXPORT_SYMBOL(iov_iter_npages); 1779 1780 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1781 { 1782 *new = *old; 1783 if (unlikely(iov_iter_is_pipe(new))) { 1784 WARN_ON(1); 1785 return NULL; 1786 } 1787 if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new))) 1788 return NULL; 1789 if (iov_iter_is_bvec(new)) 1790 return new->bvec = kmemdup(new->bvec, 1791 new->nr_segs * sizeof(struct bio_vec), 1792 flags); 1793 else 1794 /* iovec and kvec have identical layout */ 1795 return new->iov = kmemdup(new->iov, 1796 new->nr_segs * sizeof(struct iovec), 1797 flags); 1798 } 1799 EXPORT_SYMBOL(dup_iter); 1800 1801 static int copy_compat_iovec_from_user(struct iovec *iov, 1802 const struct iovec __user *uvec, unsigned long nr_segs) 1803 { 1804 const struct compat_iovec __user *uiov = 1805 (const struct compat_iovec __user *)uvec; 1806 int ret = -EFAULT, i; 1807 1808 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1809 return -EFAULT; 1810 1811 for (i = 0; i < nr_segs; i++) { 1812 compat_uptr_t buf; 1813 compat_ssize_t len; 1814 1815 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1816 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1817 1818 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1819 if (len < 0) { 1820 ret = -EINVAL; 1821 goto uaccess_end; 1822 } 1823 iov[i].iov_base = compat_ptr(buf); 1824 iov[i].iov_len = len; 1825 } 1826 1827 ret = 0; 1828 uaccess_end: 1829 user_access_end(); 1830 return ret; 1831 } 1832 1833 static int copy_iovec_from_user(struct iovec *iov, 1834 const struct iovec __user *uvec, unsigned long nr_segs) 1835 { 1836 unsigned long seg; 1837 1838 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec))) 1839 return -EFAULT; 1840 for (seg = 0; seg < nr_segs; seg++) { 1841 if ((ssize_t)iov[seg].iov_len < 0) 1842 return -EINVAL; 1843 } 1844 1845 return 0; 1846 } 1847 1848 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1849 unsigned long nr_segs, unsigned long fast_segs, 1850 struct iovec *fast_iov, bool compat) 1851 { 1852 struct iovec *iov = fast_iov; 1853 int ret; 1854 1855 /* 1856 * SuS says "The readv() function *may* fail if the iovcnt argument was 1857 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1858 * traditionally returned zero for zero segments, so... 1859 */ 1860 if (nr_segs == 0) 1861 return iov; 1862 if (nr_segs > UIO_MAXIOV) 1863 return ERR_PTR(-EINVAL); 1864 if (nr_segs > fast_segs) { 1865 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1866 if (!iov) 1867 return ERR_PTR(-ENOMEM); 1868 } 1869 1870 if (compat) 1871 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1872 else 1873 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1874 if (ret) { 1875 if (iov != fast_iov) 1876 kfree(iov); 1877 return ERR_PTR(ret); 1878 } 1879 1880 return iov; 1881 } 1882 1883 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1884 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1885 struct iov_iter *i, bool compat) 1886 { 1887 ssize_t total_len = 0; 1888 unsigned long seg; 1889 struct iovec *iov; 1890 1891 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1892 if (IS_ERR(iov)) { 1893 *iovp = NULL; 1894 return PTR_ERR(iov); 1895 } 1896 1897 /* 1898 * According to the Single Unix Specification we should return EINVAL if 1899 * an element length is < 0 when cast to ssize_t or if the total length 1900 * would overflow the ssize_t return value of the system call. 1901 * 1902 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1903 * overflow case. 1904 */ 1905 for (seg = 0; seg < nr_segs; seg++) { 1906 ssize_t len = (ssize_t)iov[seg].iov_len; 1907 1908 if (!access_ok(iov[seg].iov_base, len)) { 1909 if (iov != *iovp) 1910 kfree(iov); 1911 *iovp = NULL; 1912 return -EFAULT; 1913 } 1914 1915 if (len > MAX_RW_COUNT - total_len) { 1916 len = MAX_RW_COUNT - total_len; 1917 iov[seg].iov_len = len; 1918 } 1919 total_len += len; 1920 } 1921 1922 iov_iter_init(i, type, iov, nr_segs, total_len); 1923 if (iov == *iovp) 1924 *iovp = NULL; 1925 else 1926 *iovp = iov; 1927 return total_len; 1928 } 1929 1930 /** 1931 * import_iovec() - Copy an array of &struct iovec from userspace 1932 * into the kernel, check that it is valid, and initialize a new 1933 * &struct iov_iter iterator to access it. 1934 * 1935 * @type: One of %READ or %WRITE. 1936 * @uvec: Pointer to the userspace array. 1937 * @nr_segs: Number of elements in userspace array. 1938 * @fast_segs: Number of elements in @iov. 1939 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1940 * on-stack) kernel array. 1941 * @i: Pointer to iterator that will be initialized on success. 1942 * 1943 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1944 * then this function places %NULL in *@iov on return. Otherwise, a new 1945 * array will be allocated and the result placed in *@iov. This means that 1946 * the caller may call kfree() on *@iov regardless of whether the small 1947 * on-stack array was used or not (and regardless of whether this function 1948 * returns an error or not). 1949 * 1950 * Return: Negative error code on error, bytes imported on success 1951 */ 1952 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1953 unsigned nr_segs, unsigned fast_segs, 1954 struct iovec **iovp, struct iov_iter *i) 1955 { 1956 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1957 in_compat_syscall()); 1958 } 1959 EXPORT_SYMBOL(import_iovec); 1960 1961 int import_single_range(int rw, void __user *buf, size_t len, 1962 struct iovec *iov, struct iov_iter *i) 1963 { 1964 if (len > MAX_RW_COUNT) 1965 len = MAX_RW_COUNT; 1966 if (unlikely(!access_ok(buf, len))) 1967 return -EFAULT; 1968 1969 iov->iov_base = buf; 1970 iov->iov_len = len; 1971 iov_iter_init(i, rw, iov, 1, len); 1972 return 0; 1973 } 1974 EXPORT_SYMBOL(import_single_range); 1975 1976 /** 1977 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1978 * iov_iter_save_state() was called. 1979 * 1980 * @i: &struct iov_iter to restore 1981 * @state: state to restore from 1982 * 1983 * Used after iov_iter_save_state() to bring restore @i, if operations may 1984 * have advanced it. 1985 * 1986 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1987 */ 1988 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1989 { 1990 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) && 1991 !iov_iter_is_kvec(i)) 1992 return; 1993 i->iov_offset = state->iov_offset; 1994 i->count = state->count; 1995 /* 1996 * For the *vec iters, nr_segs + iov is constant - if we increment 1997 * the vec, then we also decrement the nr_segs count. Hence we don't 1998 * need to track both of these, just one is enough and we can deduct 1999 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 2000 * size, so we can just increment the iov pointer as they are unionzed. 2001 * ITER_BVEC _may_ be the same size on some archs, but on others it is 2002 * not. Be safe and handle it separately. 2003 */ 2004 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 2005 if (iov_iter_is_bvec(i)) 2006 i->bvec -= state->nr_segs - i->nr_segs; 2007 else 2008 i->iov -= state->nr_segs - i->nr_segs; 2009 i->nr_segs = state->nr_segs; 2010 } 2011