xref: /openbmc/linux/lib/iov_iter.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9 
10 #define PIPE_PARANOIA /* for now */
11 
12 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
13 	size_t left;					\
14 	size_t wanted = n;				\
15 	__p = i->iov;					\
16 	__v.iov_len = min(n, __p->iov_len - skip);	\
17 	if (likely(__v.iov_len)) {			\
18 		__v.iov_base = __p->iov_base + skip;	\
19 		left = (STEP);				\
20 		__v.iov_len -= left;			\
21 		skip += __v.iov_len;			\
22 		n -= __v.iov_len;			\
23 	} else {					\
24 		left = 0;				\
25 	}						\
26 	while (unlikely(!left && n)) {			\
27 		__p++;					\
28 		__v.iov_len = min(n, __p->iov_len);	\
29 		if (unlikely(!__v.iov_len))		\
30 			continue;			\
31 		__v.iov_base = __p->iov_base;		\
32 		left = (STEP);				\
33 		__v.iov_len -= left;			\
34 		skip = __v.iov_len;			\
35 		n -= __v.iov_len;			\
36 	}						\
37 	n = wanted - n;					\
38 }
39 
40 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
41 	size_t wanted = n;				\
42 	__p = i->kvec;					\
43 	__v.iov_len = min(n, __p->iov_len - skip);	\
44 	if (likely(__v.iov_len)) {			\
45 		__v.iov_base = __p->iov_base + skip;	\
46 		(void)(STEP);				\
47 		skip += __v.iov_len;			\
48 		n -= __v.iov_len;			\
49 	}						\
50 	while (unlikely(n)) {				\
51 		__p++;					\
52 		__v.iov_len = min(n, __p->iov_len);	\
53 		if (unlikely(!__v.iov_len))		\
54 			continue;			\
55 		__v.iov_base = __p->iov_base;		\
56 		(void)(STEP);				\
57 		skip = __v.iov_len;			\
58 		n -= __v.iov_len;			\
59 	}						\
60 	n = wanted;					\
61 }
62 
63 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
64 	struct bvec_iter __start;			\
65 	__start.bi_size = n;				\
66 	__start.bi_bvec_done = skip;			\
67 	__start.bi_idx = 0;				\
68 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
69 		if (!__v.bv_len)			\
70 			continue;			\
71 		(void)(STEP);				\
72 	}						\
73 }
74 
75 #define iterate_all_kinds(i, n, v, I, B, K) {			\
76 	if (likely(n)) {					\
77 		size_t skip = i->iov_offset;			\
78 		if (unlikely(i->type & ITER_BVEC)) {		\
79 			struct bio_vec v;			\
80 			struct bvec_iter __bi;			\
81 			iterate_bvec(i, n, v, __bi, skip, (B))	\
82 		} else if (unlikely(i->type & ITER_KVEC)) {	\
83 			const struct kvec *kvec;		\
84 			struct kvec v;				\
85 			iterate_kvec(i, n, v, kvec, skip, (K))	\
86 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
87 		} else {					\
88 			const struct iovec *iov;		\
89 			struct iovec v;				\
90 			iterate_iovec(i, n, v, iov, skip, (I))	\
91 		}						\
92 	}							\
93 }
94 
95 #define iterate_and_advance(i, n, v, I, B, K) {			\
96 	if (unlikely(i->count < n))				\
97 		n = i->count;					\
98 	if (i->count) {						\
99 		size_t skip = i->iov_offset;			\
100 		if (unlikely(i->type & ITER_BVEC)) {		\
101 			const struct bio_vec *bvec = i->bvec;	\
102 			struct bio_vec v;			\
103 			struct bvec_iter __bi;			\
104 			iterate_bvec(i, n, v, __bi, skip, (B))	\
105 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
106 			i->nr_segs -= i->bvec - bvec;		\
107 			skip = __bi.bi_bvec_done;		\
108 		} else if (unlikely(i->type & ITER_KVEC)) {	\
109 			const struct kvec *kvec;		\
110 			struct kvec v;				\
111 			iterate_kvec(i, n, v, kvec, skip, (K))	\
112 			if (skip == kvec->iov_len) {		\
113 				kvec++;				\
114 				skip = 0;			\
115 			}					\
116 			i->nr_segs -= kvec - i->kvec;		\
117 			i->kvec = kvec;				\
118 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
119 			skip += n;				\
120 		} else {					\
121 			const struct iovec *iov;		\
122 			struct iovec v;				\
123 			iterate_iovec(i, n, v, iov, skip, (I))	\
124 			if (skip == iov->iov_len) {		\
125 				iov++;				\
126 				skip = 0;			\
127 			}					\
128 			i->nr_segs -= iov - i->iov;		\
129 			i->iov = iov;				\
130 		}						\
131 		i->count -= n;					\
132 		i->iov_offset = skip;				\
133 	}							\
134 }
135 
136 static int copyout(void __user *to, const void *from, size_t n)
137 {
138 	if (access_ok(VERIFY_WRITE, to, n)) {
139 		kasan_check_read(from, n);
140 		n = raw_copy_to_user(to, from, n);
141 	}
142 	return n;
143 }
144 
145 static int copyin(void *to, const void __user *from, size_t n)
146 {
147 	if (access_ok(VERIFY_READ, from, n)) {
148 		kasan_check_write(to, n);
149 		n = raw_copy_from_user(to, from, n);
150 	}
151 	return n;
152 }
153 
154 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
155 			 struct iov_iter *i)
156 {
157 	size_t skip, copy, left, wanted;
158 	const struct iovec *iov;
159 	char __user *buf;
160 	void *kaddr, *from;
161 
162 	if (unlikely(bytes > i->count))
163 		bytes = i->count;
164 
165 	if (unlikely(!bytes))
166 		return 0;
167 
168 	might_fault();
169 	wanted = bytes;
170 	iov = i->iov;
171 	skip = i->iov_offset;
172 	buf = iov->iov_base + skip;
173 	copy = min(bytes, iov->iov_len - skip);
174 
175 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
176 		kaddr = kmap_atomic(page);
177 		from = kaddr + offset;
178 
179 		/* first chunk, usually the only one */
180 		left = copyout(buf, from, copy);
181 		copy -= left;
182 		skip += copy;
183 		from += copy;
184 		bytes -= copy;
185 
186 		while (unlikely(!left && bytes)) {
187 			iov++;
188 			buf = iov->iov_base;
189 			copy = min(bytes, iov->iov_len);
190 			left = copyout(buf, from, copy);
191 			copy -= left;
192 			skip = copy;
193 			from += copy;
194 			bytes -= copy;
195 		}
196 		if (likely(!bytes)) {
197 			kunmap_atomic(kaddr);
198 			goto done;
199 		}
200 		offset = from - kaddr;
201 		buf += copy;
202 		kunmap_atomic(kaddr);
203 		copy = min(bytes, iov->iov_len - skip);
204 	}
205 	/* Too bad - revert to non-atomic kmap */
206 
207 	kaddr = kmap(page);
208 	from = kaddr + offset;
209 	left = copyout(buf, from, copy);
210 	copy -= left;
211 	skip += copy;
212 	from += copy;
213 	bytes -= copy;
214 	while (unlikely(!left && bytes)) {
215 		iov++;
216 		buf = iov->iov_base;
217 		copy = min(bytes, iov->iov_len);
218 		left = copyout(buf, from, copy);
219 		copy -= left;
220 		skip = copy;
221 		from += copy;
222 		bytes -= copy;
223 	}
224 	kunmap(page);
225 
226 done:
227 	if (skip == iov->iov_len) {
228 		iov++;
229 		skip = 0;
230 	}
231 	i->count -= wanted - bytes;
232 	i->nr_segs -= iov - i->iov;
233 	i->iov = iov;
234 	i->iov_offset = skip;
235 	return wanted - bytes;
236 }
237 
238 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
239 			 struct iov_iter *i)
240 {
241 	size_t skip, copy, left, wanted;
242 	const struct iovec *iov;
243 	char __user *buf;
244 	void *kaddr, *to;
245 
246 	if (unlikely(bytes > i->count))
247 		bytes = i->count;
248 
249 	if (unlikely(!bytes))
250 		return 0;
251 
252 	might_fault();
253 	wanted = bytes;
254 	iov = i->iov;
255 	skip = i->iov_offset;
256 	buf = iov->iov_base + skip;
257 	copy = min(bytes, iov->iov_len - skip);
258 
259 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
260 		kaddr = kmap_atomic(page);
261 		to = kaddr + offset;
262 
263 		/* first chunk, usually the only one */
264 		left = copyin(to, buf, copy);
265 		copy -= left;
266 		skip += copy;
267 		to += copy;
268 		bytes -= copy;
269 
270 		while (unlikely(!left && bytes)) {
271 			iov++;
272 			buf = iov->iov_base;
273 			copy = min(bytes, iov->iov_len);
274 			left = copyin(to, buf, copy);
275 			copy -= left;
276 			skip = copy;
277 			to += copy;
278 			bytes -= copy;
279 		}
280 		if (likely(!bytes)) {
281 			kunmap_atomic(kaddr);
282 			goto done;
283 		}
284 		offset = to - kaddr;
285 		buf += copy;
286 		kunmap_atomic(kaddr);
287 		copy = min(bytes, iov->iov_len - skip);
288 	}
289 	/* Too bad - revert to non-atomic kmap */
290 
291 	kaddr = kmap(page);
292 	to = kaddr + offset;
293 	left = copyin(to, buf, copy);
294 	copy -= left;
295 	skip += copy;
296 	to += copy;
297 	bytes -= copy;
298 	while (unlikely(!left && bytes)) {
299 		iov++;
300 		buf = iov->iov_base;
301 		copy = min(bytes, iov->iov_len);
302 		left = copyin(to, buf, copy);
303 		copy -= left;
304 		skip = copy;
305 		to += copy;
306 		bytes -= copy;
307 	}
308 	kunmap(page);
309 
310 done:
311 	if (skip == iov->iov_len) {
312 		iov++;
313 		skip = 0;
314 	}
315 	i->count -= wanted - bytes;
316 	i->nr_segs -= iov - i->iov;
317 	i->iov = iov;
318 	i->iov_offset = skip;
319 	return wanted - bytes;
320 }
321 
322 #ifdef PIPE_PARANOIA
323 static bool sanity(const struct iov_iter *i)
324 {
325 	struct pipe_inode_info *pipe = i->pipe;
326 	int idx = i->idx;
327 	int next = pipe->curbuf + pipe->nrbufs;
328 	if (i->iov_offset) {
329 		struct pipe_buffer *p;
330 		if (unlikely(!pipe->nrbufs))
331 			goto Bad;	// pipe must be non-empty
332 		if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
333 			goto Bad;	// must be at the last buffer...
334 
335 		p = &pipe->bufs[idx];
336 		if (unlikely(p->offset + p->len != i->iov_offset))
337 			goto Bad;	// ... at the end of segment
338 	} else {
339 		if (idx != (next & (pipe->buffers - 1)))
340 			goto Bad;	// must be right after the last buffer
341 	}
342 	return true;
343 Bad:
344 	printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
345 	printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
346 			pipe->curbuf, pipe->nrbufs, pipe->buffers);
347 	for (idx = 0; idx < pipe->buffers; idx++)
348 		printk(KERN_ERR "[%p %p %d %d]\n",
349 			pipe->bufs[idx].ops,
350 			pipe->bufs[idx].page,
351 			pipe->bufs[idx].offset,
352 			pipe->bufs[idx].len);
353 	WARN_ON(1);
354 	return false;
355 }
356 #else
357 #define sanity(i) true
358 #endif
359 
360 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
361 {
362 	return (idx + 1) & (pipe->buffers - 1);
363 }
364 
365 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
366 			 struct iov_iter *i)
367 {
368 	struct pipe_inode_info *pipe = i->pipe;
369 	struct pipe_buffer *buf;
370 	size_t off;
371 	int idx;
372 
373 	if (unlikely(bytes > i->count))
374 		bytes = i->count;
375 
376 	if (unlikely(!bytes))
377 		return 0;
378 
379 	if (!sanity(i))
380 		return 0;
381 
382 	off = i->iov_offset;
383 	idx = i->idx;
384 	buf = &pipe->bufs[idx];
385 	if (off) {
386 		if (offset == off && buf->page == page) {
387 			/* merge with the last one */
388 			buf->len += bytes;
389 			i->iov_offset += bytes;
390 			goto out;
391 		}
392 		idx = next_idx(idx, pipe);
393 		buf = &pipe->bufs[idx];
394 	}
395 	if (idx == pipe->curbuf && pipe->nrbufs)
396 		return 0;
397 	pipe->nrbufs++;
398 	buf->ops = &page_cache_pipe_buf_ops;
399 	get_page(buf->page = page);
400 	buf->offset = offset;
401 	buf->len = bytes;
402 	i->iov_offset = offset + bytes;
403 	i->idx = idx;
404 out:
405 	i->count -= bytes;
406 	return bytes;
407 }
408 
409 /*
410  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
411  * bytes.  For each iovec, fault in each page that constitutes the iovec.
412  *
413  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
414  * because it is an invalid address).
415  */
416 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
417 {
418 	size_t skip = i->iov_offset;
419 	const struct iovec *iov;
420 	int err;
421 	struct iovec v;
422 
423 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
424 		iterate_iovec(i, bytes, v, iov, skip, ({
425 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
426 			if (unlikely(err))
427 			return err;
428 		0;}))
429 	}
430 	return 0;
431 }
432 EXPORT_SYMBOL(iov_iter_fault_in_readable);
433 
434 void iov_iter_init(struct iov_iter *i, unsigned int direction,
435 			const struct iovec *iov, unsigned long nr_segs,
436 			size_t count)
437 {
438 	WARN_ON(direction & ~(READ | WRITE));
439 	direction &= READ | WRITE;
440 
441 	/* It will get better.  Eventually... */
442 	if (uaccess_kernel()) {
443 		i->type = ITER_KVEC | direction;
444 		i->kvec = (struct kvec *)iov;
445 	} else {
446 		i->type = ITER_IOVEC | direction;
447 		i->iov = iov;
448 	}
449 	i->nr_segs = nr_segs;
450 	i->iov_offset = 0;
451 	i->count = count;
452 }
453 EXPORT_SYMBOL(iov_iter_init);
454 
455 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
456 {
457 	char *from = kmap_atomic(page);
458 	memcpy(to, from + offset, len);
459 	kunmap_atomic(from);
460 }
461 
462 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
463 {
464 	char *to = kmap_atomic(page);
465 	memcpy(to + offset, from, len);
466 	kunmap_atomic(to);
467 }
468 
469 static void memzero_page(struct page *page, size_t offset, size_t len)
470 {
471 	char *addr = kmap_atomic(page);
472 	memset(addr + offset, 0, len);
473 	kunmap_atomic(addr);
474 }
475 
476 static inline bool allocated(struct pipe_buffer *buf)
477 {
478 	return buf->ops == &default_pipe_buf_ops;
479 }
480 
481 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
482 {
483 	size_t off = i->iov_offset;
484 	int idx = i->idx;
485 	if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
486 		idx = next_idx(idx, i->pipe);
487 		off = 0;
488 	}
489 	*idxp = idx;
490 	*offp = off;
491 }
492 
493 static size_t push_pipe(struct iov_iter *i, size_t size,
494 			int *idxp, size_t *offp)
495 {
496 	struct pipe_inode_info *pipe = i->pipe;
497 	size_t off;
498 	int idx;
499 	ssize_t left;
500 
501 	if (unlikely(size > i->count))
502 		size = i->count;
503 	if (unlikely(!size))
504 		return 0;
505 
506 	left = size;
507 	data_start(i, &idx, &off);
508 	*idxp = idx;
509 	*offp = off;
510 	if (off) {
511 		left -= PAGE_SIZE - off;
512 		if (left <= 0) {
513 			pipe->bufs[idx].len += size;
514 			return size;
515 		}
516 		pipe->bufs[idx].len = PAGE_SIZE;
517 		idx = next_idx(idx, pipe);
518 	}
519 	while (idx != pipe->curbuf || !pipe->nrbufs) {
520 		struct page *page = alloc_page(GFP_USER);
521 		if (!page)
522 			break;
523 		pipe->nrbufs++;
524 		pipe->bufs[idx].ops = &default_pipe_buf_ops;
525 		pipe->bufs[idx].page = page;
526 		pipe->bufs[idx].offset = 0;
527 		if (left <= PAGE_SIZE) {
528 			pipe->bufs[idx].len = left;
529 			return size;
530 		}
531 		pipe->bufs[idx].len = PAGE_SIZE;
532 		left -= PAGE_SIZE;
533 		idx = next_idx(idx, pipe);
534 	}
535 	return size - left;
536 }
537 
538 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
539 				struct iov_iter *i)
540 {
541 	struct pipe_inode_info *pipe = i->pipe;
542 	size_t n, off;
543 	int idx;
544 
545 	if (!sanity(i))
546 		return 0;
547 
548 	bytes = n = push_pipe(i, bytes, &idx, &off);
549 	if (unlikely(!n))
550 		return 0;
551 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
552 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
553 		memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
554 		i->idx = idx;
555 		i->iov_offset = off + chunk;
556 		n -= chunk;
557 		addr += chunk;
558 	}
559 	i->count -= bytes;
560 	return bytes;
561 }
562 
563 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
564 				__wsum *csum, struct iov_iter *i)
565 {
566 	struct pipe_inode_info *pipe = i->pipe;
567 	size_t n, r;
568 	size_t off = 0;
569 	__wsum sum = *csum, next;
570 	int idx;
571 
572 	if (!sanity(i))
573 		return 0;
574 
575 	bytes = n = push_pipe(i, bytes, &idx, &r);
576 	if (unlikely(!n))
577 		return 0;
578 	for ( ; n; idx = next_idx(idx, pipe), r = 0) {
579 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
580 		char *p = kmap_atomic(pipe->bufs[idx].page);
581 		next = csum_partial_copy_nocheck(addr, p + r, chunk, 0);
582 		sum = csum_block_add(sum, next, off);
583 		kunmap_atomic(p);
584 		i->idx = idx;
585 		i->iov_offset = r + chunk;
586 		n -= chunk;
587 		off += chunk;
588 		addr += chunk;
589 	}
590 	i->count -= bytes;
591 	*csum = sum;
592 	return bytes;
593 }
594 
595 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
596 {
597 	const char *from = addr;
598 	if (unlikely(iov_iter_is_pipe(i)))
599 		return copy_pipe_to_iter(addr, bytes, i);
600 	if (iter_is_iovec(i))
601 		might_fault();
602 	iterate_and_advance(i, bytes, v,
603 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
604 		memcpy_to_page(v.bv_page, v.bv_offset,
605 			       (from += v.bv_len) - v.bv_len, v.bv_len),
606 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
607 	)
608 
609 	return bytes;
610 }
611 EXPORT_SYMBOL(_copy_to_iter);
612 
613 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
614 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
615 {
616 	if (access_ok(VERIFY_WRITE, to, n)) {
617 		kasan_check_read(from, n);
618 		n = copy_to_user_mcsafe((__force void *) to, from, n);
619 	}
620 	return n;
621 }
622 
623 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
624 		const char *from, size_t len)
625 {
626 	unsigned long ret;
627 	char *to;
628 
629 	to = kmap_atomic(page);
630 	ret = memcpy_mcsafe(to + offset, from, len);
631 	kunmap_atomic(to);
632 
633 	return ret;
634 }
635 
636 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
637 				struct iov_iter *i)
638 {
639 	struct pipe_inode_info *pipe = i->pipe;
640 	size_t n, off, xfer = 0;
641 	int idx;
642 
643 	if (!sanity(i))
644 		return 0;
645 
646 	bytes = n = push_pipe(i, bytes, &idx, &off);
647 	if (unlikely(!n))
648 		return 0;
649 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
650 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
651 		unsigned long rem;
652 
653 		rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
654 				chunk);
655 		i->idx = idx;
656 		i->iov_offset = off + chunk - rem;
657 		xfer += chunk - rem;
658 		if (rem)
659 			break;
660 		n -= chunk;
661 		addr += chunk;
662 	}
663 	i->count -= xfer;
664 	return xfer;
665 }
666 
667 /**
668  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
669  * @addr: source kernel address
670  * @bytes: total transfer length
671  * @iter: destination iterator
672  *
673  * The pmem driver arranges for filesystem-dax to use this facility via
674  * dax_copy_to_iter() for protecting read/write to persistent memory.
675  * Unless / until an architecture can guarantee identical performance
676  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
677  * performance regression to switch more users to the mcsafe version.
678  *
679  * Otherwise, the main differences between this and typical _copy_to_iter().
680  *
681  * * Typical tail/residue handling after a fault retries the copy
682  *   byte-by-byte until the fault happens again. Re-triggering machine
683  *   checks is potentially fatal so the implementation uses source
684  *   alignment and poison alignment assumptions to avoid re-triggering
685  *   hardware exceptions.
686  *
687  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
688  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
689  *   a short copy.
690  *
691  * See MCSAFE_TEST for self-test.
692  */
693 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
694 {
695 	const char *from = addr;
696 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
697 
698 	if (unlikely(iov_iter_is_pipe(i)))
699 		return copy_pipe_to_iter_mcsafe(addr, bytes, i);
700 	if (iter_is_iovec(i))
701 		might_fault();
702 	iterate_and_advance(i, bytes, v,
703 		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
704 		({
705 		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
706                                (from += v.bv_len) - v.bv_len, v.bv_len);
707 		if (rem) {
708 			curr_addr = (unsigned long) from;
709 			bytes = curr_addr - s_addr - rem;
710 			return bytes;
711 		}
712 		}),
713 		({
714 		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
715 				v.iov_len);
716 		if (rem) {
717 			curr_addr = (unsigned long) from;
718 			bytes = curr_addr - s_addr - rem;
719 			return bytes;
720 		}
721 		})
722 	)
723 
724 	return bytes;
725 }
726 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
727 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
728 
729 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
730 {
731 	char *to = addr;
732 	if (unlikely(iov_iter_is_pipe(i))) {
733 		WARN_ON(1);
734 		return 0;
735 	}
736 	if (iter_is_iovec(i))
737 		might_fault();
738 	iterate_and_advance(i, bytes, v,
739 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
740 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
741 				 v.bv_offset, v.bv_len),
742 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
743 	)
744 
745 	return bytes;
746 }
747 EXPORT_SYMBOL(_copy_from_iter);
748 
749 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
750 {
751 	char *to = addr;
752 	if (unlikely(iov_iter_is_pipe(i))) {
753 		WARN_ON(1);
754 		return false;
755 	}
756 	if (unlikely(i->count < bytes))
757 		return false;
758 
759 	if (iter_is_iovec(i))
760 		might_fault();
761 	iterate_all_kinds(i, bytes, v, ({
762 		if (copyin((to += v.iov_len) - v.iov_len,
763 				      v.iov_base, v.iov_len))
764 			return false;
765 		0;}),
766 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
767 				 v.bv_offset, v.bv_len),
768 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
769 	)
770 
771 	iov_iter_advance(i, bytes);
772 	return true;
773 }
774 EXPORT_SYMBOL(_copy_from_iter_full);
775 
776 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
777 {
778 	char *to = addr;
779 	if (unlikely(iov_iter_is_pipe(i))) {
780 		WARN_ON(1);
781 		return 0;
782 	}
783 	iterate_and_advance(i, bytes, v,
784 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
785 					 v.iov_base, v.iov_len),
786 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
787 				 v.bv_offset, v.bv_len),
788 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
789 	)
790 
791 	return bytes;
792 }
793 EXPORT_SYMBOL(_copy_from_iter_nocache);
794 
795 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
796 /**
797  * _copy_from_iter_flushcache - write destination through cpu cache
798  * @addr: destination kernel address
799  * @bytes: total transfer length
800  * @iter: source iterator
801  *
802  * The pmem driver arranges for filesystem-dax to use this facility via
803  * dax_copy_from_iter() for ensuring that writes to persistent memory
804  * are flushed through the CPU cache. It is differentiated from
805  * _copy_from_iter_nocache() in that guarantees all data is flushed for
806  * all iterator types. The _copy_from_iter_nocache() only attempts to
807  * bypass the cache for the ITER_IOVEC case, and on some archs may use
808  * instructions that strand dirty-data in the cache.
809  */
810 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
811 {
812 	char *to = addr;
813 	if (unlikely(iov_iter_is_pipe(i))) {
814 		WARN_ON(1);
815 		return 0;
816 	}
817 	iterate_and_advance(i, bytes, v,
818 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
819 					 v.iov_base, v.iov_len),
820 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
821 				 v.bv_offset, v.bv_len),
822 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
823 			v.iov_len)
824 	)
825 
826 	return bytes;
827 }
828 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
829 #endif
830 
831 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
832 {
833 	char *to = addr;
834 	if (unlikely(iov_iter_is_pipe(i))) {
835 		WARN_ON(1);
836 		return false;
837 	}
838 	if (unlikely(i->count < bytes))
839 		return false;
840 	iterate_all_kinds(i, bytes, v, ({
841 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
842 					     v.iov_base, v.iov_len))
843 			return false;
844 		0;}),
845 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
846 				 v.bv_offset, v.bv_len),
847 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
848 	)
849 
850 	iov_iter_advance(i, bytes);
851 	return true;
852 }
853 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
854 
855 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
856 {
857 	struct page *head = compound_head(page);
858 	size_t v = n + offset + page_address(page) - page_address(head);
859 
860 	if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
861 		return true;
862 	WARN_ON(1);
863 	return false;
864 }
865 
866 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
867 			 struct iov_iter *i)
868 {
869 	if (unlikely(!page_copy_sane(page, offset, bytes)))
870 		return 0;
871 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
872 		void *kaddr = kmap_atomic(page);
873 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
874 		kunmap_atomic(kaddr);
875 		return wanted;
876 	} else if (unlikely(iov_iter_is_discard(i)))
877 		return bytes;
878 	else if (likely(!iov_iter_is_pipe(i)))
879 		return copy_page_to_iter_iovec(page, offset, bytes, i);
880 	else
881 		return copy_page_to_iter_pipe(page, offset, bytes, i);
882 }
883 EXPORT_SYMBOL(copy_page_to_iter);
884 
885 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
886 			 struct iov_iter *i)
887 {
888 	if (unlikely(!page_copy_sane(page, offset, bytes)))
889 		return 0;
890 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
891 		WARN_ON(1);
892 		return 0;
893 	}
894 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
895 		void *kaddr = kmap_atomic(page);
896 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
897 		kunmap_atomic(kaddr);
898 		return wanted;
899 	} else
900 		return copy_page_from_iter_iovec(page, offset, bytes, i);
901 }
902 EXPORT_SYMBOL(copy_page_from_iter);
903 
904 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
905 {
906 	struct pipe_inode_info *pipe = i->pipe;
907 	size_t n, off;
908 	int idx;
909 
910 	if (!sanity(i))
911 		return 0;
912 
913 	bytes = n = push_pipe(i, bytes, &idx, &off);
914 	if (unlikely(!n))
915 		return 0;
916 
917 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
918 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
919 		memzero_page(pipe->bufs[idx].page, off, chunk);
920 		i->idx = idx;
921 		i->iov_offset = off + chunk;
922 		n -= chunk;
923 	}
924 	i->count -= bytes;
925 	return bytes;
926 }
927 
928 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
929 {
930 	if (unlikely(iov_iter_is_pipe(i)))
931 		return pipe_zero(bytes, i);
932 	iterate_and_advance(i, bytes, v,
933 		clear_user(v.iov_base, v.iov_len),
934 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
935 		memset(v.iov_base, 0, v.iov_len)
936 	)
937 
938 	return bytes;
939 }
940 EXPORT_SYMBOL(iov_iter_zero);
941 
942 size_t iov_iter_copy_from_user_atomic(struct page *page,
943 		struct iov_iter *i, unsigned long offset, size_t bytes)
944 {
945 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
946 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
947 		kunmap_atomic(kaddr);
948 		return 0;
949 	}
950 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
951 		kunmap_atomic(kaddr);
952 		WARN_ON(1);
953 		return 0;
954 	}
955 	iterate_all_kinds(i, bytes, v,
956 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
957 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
958 				 v.bv_offset, v.bv_len),
959 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
960 	)
961 	kunmap_atomic(kaddr);
962 	return bytes;
963 }
964 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
965 
966 static inline void pipe_truncate(struct iov_iter *i)
967 {
968 	struct pipe_inode_info *pipe = i->pipe;
969 	if (pipe->nrbufs) {
970 		size_t off = i->iov_offset;
971 		int idx = i->idx;
972 		int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
973 		if (off) {
974 			pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
975 			idx = next_idx(idx, pipe);
976 			nrbufs++;
977 		}
978 		while (pipe->nrbufs > nrbufs) {
979 			pipe_buf_release(pipe, &pipe->bufs[idx]);
980 			idx = next_idx(idx, pipe);
981 			pipe->nrbufs--;
982 		}
983 	}
984 }
985 
986 static void pipe_advance(struct iov_iter *i, size_t size)
987 {
988 	struct pipe_inode_info *pipe = i->pipe;
989 	if (unlikely(i->count < size))
990 		size = i->count;
991 	if (size) {
992 		struct pipe_buffer *buf;
993 		size_t off = i->iov_offset, left = size;
994 		int idx = i->idx;
995 		if (off) /* make it relative to the beginning of buffer */
996 			left += off - pipe->bufs[idx].offset;
997 		while (1) {
998 			buf = &pipe->bufs[idx];
999 			if (left <= buf->len)
1000 				break;
1001 			left -= buf->len;
1002 			idx = next_idx(idx, pipe);
1003 		}
1004 		i->idx = idx;
1005 		i->iov_offset = buf->offset + left;
1006 	}
1007 	i->count -= size;
1008 	/* ... and discard everything past that point */
1009 	pipe_truncate(i);
1010 }
1011 
1012 void iov_iter_advance(struct iov_iter *i, size_t size)
1013 {
1014 	if (unlikely(iov_iter_is_pipe(i))) {
1015 		pipe_advance(i, size);
1016 		return;
1017 	}
1018 	if (unlikely(iov_iter_is_discard(i))) {
1019 		i->count -= size;
1020 		return;
1021 	}
1022 	iterate_and_advance(i, size, v, 0, 0, 0)
1023 }
1024 EXPORT_SYMBOL(iov_iter_advance);
1025 
1026 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1027 {
1028 	if (!unroll)
1029 		return;
1030 	if (WARN_ON(unroll > MAX_RW_COUNT))
1031 		return;
1032 	i->count += unroll;
1033 	if (unlikely(iov_iter_is_pipe(i))) {
1034 		struct pipe_inode_info *pipe = i->pipe;
1035 		int idx = i->idx;
1036 		size_t off = i->iov_offset;
1037 		while (1) {
1038 			size_t n = off - pipe->bufs[idx].offset;
1039 			if (unroll < n) {
1040 				off -= unroll;
1041 				break;
1042 			}
1043 			unroll -= n;
1044 			if (!unroll && idx == i->start_idx) {
1045 				off = 0;
1046 				break;
1047 			}
1048 			if (!idx--)
1049 				idx = pipe->buffers - 1;
1050 			off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1051 		}
1052 		i->iov_offset = off;
1053 		i->idx = idx;
1054 		pipe_truncate(i);
1055 		return;
1056 	}
1057 	if (unlikely(iov_iter_is_discard(i)))
1058 		return;
1059 	if (unroll <= i->iov_offset) {
1060 		i->iov_offset -= unroll;
1061 		return;
1062 	}
1063 	unroll -= i->iov_offset;
1064 	if (iov_iter_is_bvec(i)) {
1065 		const struct bio_vec *bvec = i->bvec;
1066 		while (1) {
1067 			size_t n = (--bvec)->bv_len;
1068 			i->nr_segs++;
1069 			if (unroll <= n) {
1070 				i->bvec = bvec;
1071 				i->iov_offset = n - unroll;
1072 				return;
1073 			}
1074 			unroll -= n;
1075 		}
1076 	} else { /* same logics for iovec and kvec */
1077 		const struct iovec *iov = i->iov;
1078 		while (1) {
1079 			size_t n = (--iov)->iov_len;
1080 			i->nr_segs++;
1081 			if (unroll <= n) {
1082 				i->iov = iov;
1083 				i->iov_offset = n - unroll;
1084 				return;
1085 			}
1086 			unroll -= n;
1087 		}
1088 	}
1089 }
1090 EXPORT_SYMBOL(iov_iter_revert);
1091 
1092 /*
1093  * Return the count of just the current iov_iter segment.
1094  */
1095 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1096 {
1097 	if (unlikely(iov_iter_is_pipe(i)))
1098 		return i->count;	// it is a silly place, anyway
1099 	if (i->nr_segs == 1)
1100 		return i->count;
1101 	if (unlikely(iov_iter_is_discard(i)))
1102 		return i->count;
1103 	else if (iov_iter_is_bvec(i))
1104 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1105 	else
1106 		return min(i->count, i->iov->iov_len - i->iov_offset);
1107 }
1108 EXPORT_SYMBOL(iov_iter_single_seg_count);
1109 
1110 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1111 			const struct kvec *kvec, unsigned long nr_segs,
1112 			size_t count)
1113 {
1114 	WARN_ON(direction & ~(READ | WRITE));
1115 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1116 	i->kvec = kvec;
1117 	i->nr_segs = nr_segs;
1118 	i->iov_offset = 0;
1119 	i->count = count;
1120 }
1121 EXPORT_SYMBOL(iov_iter_kvec);
1122 
1123 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1124 			const struct bio_vec *bvec, unsigned long nr_segs,
1125 			size_t count)
1126 {
1127 	WARN_ON(direction & ~(READ | WRITE));
1128 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1129 	i->bvec = bvec;
1130 	i->nr_segs = nr_segs;
1131 	i->iov_offset = 0;
1132 	i->count = count;
1133 }
1134 EXPORT_SYMBOL(iov_iter_bvec);
1135 
1136 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1137 			struct pipe_inode_info *pipe,
1138 			size_t count)
1139 {
1140 	BUG_ON(direction != READ);
1141 	WARN_ON(pipe->nrbufs == pipe->buffers);
1142 	i->type = ITER_PIPE | READ;
1143 	i->pipe = pipe;
1144 	i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1145 	i->iov_offset = 0;
1146 	i->count = count;
1147 	i->start_idx = i->idx;
1148 }
1149 EXPORT_SYMBOL(iov_iter_pipe);
1150 
1151 /**
1152  * iov_iter_discard - Initialise an I/O iterator that discards data
1153  * @i: The iterator to initialise.
1154  * @direction: The direction of the transfer.
1155  * @count: The size of the I/O buffer in bytes.
1156  *
1157  * Set up an I/O iterator that just discards everything that's written to it.
1158  * It's only available as a READ iterator.
1159  */
1160 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1161 {
1162 	BUG_ON(direction != READ);
1163 	i->type = ITER_DISCARD | READ;
1164 	i->count = count;
1165 	i->iov_offset = 0;
1166 }
1167 EXPORT_SYMBOL(iov_iter_discard);
1168 
1169 unsigned long iov_iter_alignment(const struct iov_iter *i)
1170 {
1171 	unsigned long res = 0;
1172 	size_t size = i->count;
1173 
1174 	if (unlikely(iov_iter_is_pipe(i))) {
1175 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1176 			return size | i->iov_offset;
1177 		return size;
1178 	}
1179 	iterate_all_kinds(i, size, v,
1180 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1181 		res |= v.bv_offset | v.bv_len,
1182 		res |= (unsigned long)v.iov_base | v.iov_len
1183 	)
1184 	return res;
1185 }
1186 EXPORT_SYMBOL(iov_iter_alignment);
1187 
1188 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1189 {
1190 	unsigned long res = 0;
1191 	size_t size = i->count;
1192 
1193 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1194 		WARN_ON(1);
1195 		return ~0U;
1196 	}
1197 
1198 	iterate_all_kinds(i, size, v,
1199 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1200 			(size != v.iov_len ? size : 0), 0),
1201 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1202 			(size != v.bv_len ? size : 0)),
1203 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1204 			(size != v.iov_len ? size : 0))
1205 		);
1206 	return res;
1207 }
1208 EXPORT_SYMBOL(iov_iter_gap_alignment);
1209 
1210 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1211 				size_t maxsize,
1212 				struct page **pages,
1213 				int idx,
1214 				size_t *start)
1215 {
1216 	struct pipe_inode_info *pipe = i->pipe;
1217 	ssize_t n = push_pipe(i, maxsize, &idx, start);
1218 	if (!n)
1219 		return -EFAULT;
1220 
1221 	maxsize = n;
1222 	n += *start;
1223 	while (n > 0) {
1224 		get_page(*pages++ = pipe->bufs[idx].page);
1225 		idx = next_idx(idx, pipe);
1226 		n -= PAGE_SIZE;
1227 	}
1228 
1229 	return maxsize;
1230 }
1231 
1232 static ssize_t pipe_get_pages(struct iov_iter *i,
1233 		   struct page **pages, size_t maxsize, unsigned maxpages,
1234 		   size_t *start)
1235 {
1236 	unsigned npages;
1237 	size_t capacity;
1238 	int idx;
1239 
1240 	if (!maxsize)
1241 		return 0;
1242 
1243 	if (!sanity(i))
1244 		return -EFAULT;
1245 
1246 	data_start(i, &idx, start);
1247 	/* some of this one + all after this one */
1248 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1249 	capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1250 
1251 	return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1252 }
1253 
1254 ssize_t iov_iter_get_pages(struct iov_iter *i,
1255 		   struct page **pages, size_t maxsize, unsigned maxpages,
1256 		   size_t *start)
1257 {
1258 	if (maxsize > i->count)
1259 		maxsize = i->count;
1260 
1261 	if (unlikely(iov_iter_is_pipe(i)))
1262 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1263 	if (unlikely(iov_iter_is_discard(i)))
1264 		return -EFAULT;
1265 
1266 	iterate_all_kinds(i, maxsize, v, ({
1267 		unsigned long addr = (unsigned long)v.iov_base;
1268 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1269 		int n;
1270 		int res;
1271 
1272 		if (len > maxpages * PAGE_SIZE)
1273 			len = maxpages * PAGE_SIZE;
1274 		addr &= ~(PAGE_SIZE - 1);
1275 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1276 		res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, pages);
1277 		if (unlikely(res < 0))
1278 			return res;
1279 		return (res == n ? len : res * PAGE_SIZE) - *start;
1280 	0;}),({
1281 		/* can't be more than PAGE_SIZE */
1282 		*start = v.bv_offset;
1283 		get_page(*pages = v.bv_page);
1284 		return v.bv_len;
1285 	}),({
1286 		return -EFAULT;
1287 	})
1288 	)
1289 	return 0;
1290 }
1291 EXPORT_SYMBOL(iov_iter_get_pages);
1292 
1293 static struct page **get_pages_array(size_t n)
1294 {
1295 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1296 }
1297 
1298 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1299 		   struct page ***pages, size_t maxsize,
1300 		   size_t *start)
1301 {
1302 	struct page **p;
1303 	ssize_t n;
1304 	int idx;
1305 	int npages;
1306 
1307 	if (!maxsize)
1308 		return 0;
1309 
1310 	if (!sanity(i))
1311 		return -EFAULT;
1312 
1313 	data_start(i, &idx, start);
1314 	/* some of this one + all after this one */
1315 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1316 	n = npages * PAGE_SIZE - *start;
1317 	if (maxsize > n)
1318 		maxsize = n;
1319 	else
1320 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1321 	p = get_pages_array(npages);
1322 	if (!p)
1323 		return -ENOMEM;
1324 	n = __pipe_get_pages(i, maxsize, p, idx, start);
1325 	if (n > 0)
1326 		*pages = p;
1327 	else
1328 		kvfree(p);
1329 	return n;
1330 }
1331 
1332 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1333 		   struct page ***pages, size_t maxsize,
1334 		   size_t *start)
1335 {
1336 	struct page **p;
1337 
1338 	if (maxsize > i->count)
1339 		maxsize = i->count;
1340 
1341 	if (unlikely(iov_iter_is_pipe(i)))
1342 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1343 	if (unlikely(iov_iter_is_discard(i)))
1344 		return -EFAULT;
1345 
1346 	iterate_all_kinds(i, maxsize, v, ({
1347 		unsigned long addr = (unsigned long)v.iov_base;
1348 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1349 		int n;
1350 		int res;
1351 
1352 		addr &= ~(PAGE_SIZE - 1);
1353 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1354 		p = get_pages_array(n);
1355 		if (!p)
1356 			return -ENOMEM;
1357 		res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, p);
1358 		if (unlikely(res < 0)) {
1359 			kvfree(p);
1360 			return res;
1361 		}
1362 		*pages = p;
1363 		return (res == n ? len : res * PAGE_SIZE) - *start;
1364 	0;}),({
1365 		/* can't be more than PAGE_SIZE */
1366 		*start = v.bv_offset;
1367 		*pages = p = get_pages_array(1);
1368 		if (!p)
1369 			return -ENOMEM;
1370 		get_page(*p = v.bv_page);
1371 		return v.bv_len;
1372 	}),({
1373 		return -EFAULT;
1374 	})
1375 	)
1376 	return 0;
1377 }
1378 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1379 
1380 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1381 			       struct iov_iter *i)
1382 {
1383 	char *to = addr;
1384 	__wsum sum, next;
1385 	size_t off = 0;
1386 	sum = *csum;
1387 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1388 		WARN_ON(1);
1389 		return 0;
1390 	}
1391 	iterate_and_advance(i, bytes, v, ({
1392 		int err = 0;
1393 		next = csum_and_copy_from_user(v.iov_base,
1394 					       (to += v.iov_len) - v.iov_len,
1395 					       v.iov_len, 0, &err);
1396 		if (!err) {
1397 			sum = csum_block_add(sum, next, off);
1398 			off += v.iov_len;
1399 		}
1400 		err ? v.iov_len : 0;
1401 	}), ({
1402 		char *p = kmap_atomic(v.bv_page);
1403 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1404 						 (to += v.bv_len) - v.bv_len,
1405 						 v.bv_len, 0);
1406 		kunmap_atomic(p);
1407 		sum = csum_block_add(sum, next, off);
1408 		off += v.bv_len;
1409 	}),({
1410 		next = csum_partial_copy_nocheck(v.iov_base,
1411 						 (to += v.iov_len) - v.iov_len,
1412 						 v.iov_len, 0);
1413 		sum = csum_block_add(sum, next, off);
1414 		off += v.iov_len;
1415 	})
1416 	)
1417 	*csum = sum;
1418 	return bytes;
1419 }
1420 EXPORT_SYMBOL(csum_and_copy_from_iter);
1421 
1422 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1423 			       struct iov_iter *i)
1424 {
1425 	char *to = addr;
1426 	__wsum sum, next;
1427 	size_t off = 0;
1428 	sum = *csum;
1429 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1430 		WARN_ON(1);
1431 		return false;
1432 	}
1433 	if (unlikely(i->count < bytes))
1434 		return false;
1435 	iterate_all_kinds(i, bytes, v, ({
1436 		int err = 0;
1437 		next = csum_and_copy_from_user(v.iov_base,
1438 					       (to += v.iov_len) - v.iov_len,
1439 					       v.iov_len, 0, &err);
1440 		if (err)
1441 			return false;
1442 		sum = csum_block_add(sum, next, off);
1443 		off += v.iov_len;
1444 		0;
1445 	}), ({
1446 		char *p = kmap_atomic(v.bv_page);
1447 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1448 						 (to += v.bv_len) - v.bv_len,
1449 						 v.bv_len, 0);
1450 		kunmap_atomic(p);
1451 		sum = csum_block_add(sum, next, off);
1452 		off += v.bv_len;
1453 	}),({
1454 		next = csum_partial_copy_nocheck(v.iov_base,
1455 						 (to += v.iov_len) - v.iov_len,
1456 						 v.iov_len, 0);
1457 		sum = csum_block_add(sum, next, off);
1458 		off += v.iov_len;
1459 	})
1460 	)
1461 	*csum = sum;
1462 	iov_iter_advance(i, bytes);
1463 	return true;
1464 }
1465 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1466 
1467 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum,
1468 			     struct iov_iter *i)
1469 {
1470 	const char *from = addr;
1471 	__wsum sum, next;
1472 	size_t off = 0;
1473 
1474 	if (unlikely(iov_iter_is_pipe(i)))
1475 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1476 
1477 	sum = *csum;
1478 	if (unlikely(iov_iter_is_discard(i))) {
1479 		WARN_ON(1);	/* for now */
1480 		return 0;
1481 	}
1482 	iterate_and_advance(i, bytes, v, ({
1483 		int err = 0;
1484 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1485 					     v.iov_base,
1486 					     v.iov_len, 0, &err);
1487 		if (!err) {
1488 			sum = csum_block_add(sum, next, off);
1489 			off += v.iov_len;
1490 		}
1491 		err ? v.iov_len : 0;
1492 	}), ({
1493 		char *p = kmap_atomic(v.bv_page);
1494 		next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
1495 						 p + v.bv_offset,
1496 						 v.bv_len, 0);
1497 		kunmap_atomic(p);
1498 		sum = csum_block_add(sum, next, off);
1499 		off += v.bv_len;
1500 	}),({
1501 		next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
1502 						 v.iov_base,
1503 						 v.iov_len, 0);
1504 		sum = csum_block_add(sum, next, off);
1505 		off += v.iov_len;
1506 	})
1507 	)
1508 	*csum = sum;
1509 	return bytes;
1510 }
1511 EXPORT_SYMBOL(csum_and_copy_to_iter);
1512 
1513 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1514 {
1515 	size_t size = i->count;
1516 	int npages = 0;
1517 
1518 	if (!size)
1519 		return 0;
1520 	if (unlikely(iov_iter_is_discard(i)))
1521 		return 0;
1522 
1523 	if (unlikely(iov_iter_is_pipe(i))) {
1524 		struct pipe_inode_info *pipe = i->pipe;
1525 		size_t off;
1526 		int idx;
1527 
1528 		if (!sanity(i))
1529 			return 0;
1530 
1531 		data_start(i, &idx, &off);
1532 		/* some of this one + all after this one */
1533 		npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1534 		if (npages >= maxpages)
1535 			return maxpages;
1536 	} else iterate_all_kinds(i, size, v, ({
1537 		unsigned long p = (unsigned long)v.iov_base;
1538 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1539 			- p / PAGE_SIZE;
1540 		if (npages >= maxpages)
1541 			return maxpages;
1542 	0;}),({
1543 		npages++;
1544 		if (npages >= maxpages)
1545 			return maxpages;
1546 	}),({
1547 		unsigned long p = (unsigned long)v.iov_base;
1548 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1549 			- p / PAGE_SIZE;
1550 		if (npages >= maxpages)
1551 			return maxpages;
1552 	})
1553 	)
1554 	return npages;
1555 }
1556 EXPORT_SYMBOL(iov_iter_npages);
1557 
1558 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1559 {
1560 	*new = *old;
1561 	if (unlikely(iov_iter_is_pipe(new))) {
1562 		WARN_ON(1);
1563 		return NULL;
1564 	}
1565 	if (unlikely(iov_iter_is_discard(new)))
1566 		return NULL;
1567 	if (iov_iter_is_bvec(new))
1568 		return new->bvec = kmemdup(new->bvec,
1569 				    new->nr_segs * sizeof(struct bio_vec),
1570 				    flags);
1571 	else
1572 		/* iovec and kvec have identical layout */
1573 		return new->iov = kmemdup(new->iov,
1574 				   new->nr_segs * sizeof(struct iovec),
1575 				   flags);
1576 }
1577 EXPORT_SYMBOL(dup_iter);
1578 
1579 /**
1580  * import_iovec() - Copy an array of &struct iovec from userspace
1581  *     into the kernel, check that it is valid, and initialize a new
1582  *     &struct iov_iter iterator to access it.
1583  *
1584  * @type: One of %READ or %WRITE.
1585  * @uvector: Pointer to the userspace array.
1586  * @nr_segs: Number of elements in userspace array.
1587  * @fast_segs: Number of elements in @iov.
1588  * @iov: (input and output parameter) Pointer to pointer to (usually small
1589  *     on-stack) kernel array.
1590  * @i: Pointer to iterator that will be initialized on success.
1591  *
1592  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1593  * then this function places %NULL in *@iov on return. Otherwise, a new
1594  * array will be allocated and the result placed in *@iov. This means that
1595  * the caller may call kfree() on *@iov regardless of whether the small
1596  * on-stack array was used or not (and regardless of whether this function
1597  * returns an error or not).
1598  *
1599  * Return: 0 on success or negative error code on error.
1600  */
1601 int import_iovec(int type, const struct iovec __user * uvector,
1602 		 unsigned nr_segs, unsigned fast_segs,
1603 		 struct iovec **iov, struct iov_iter *i)
1604 {
1605 	ssize_t n;
1606 	struct iovec *p;
1607 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1608 				  *iov, &p);
1609 	if (n < 0) {
1610 		if (p != *iov)
1611 			kfree(p);
1612 		*iov = NULL;
1613 		return n;
1614 	}
1615 	iov_iter_init(i, type, p, nr_segs, n);
1616 	*iov = p == *iov ? NULL : p;
1617 	return 0;
1618 }
1619 EXPORT_SYMBOL(import_iovec);
1620 
1621 #ifdef CONFIG_COMPAT
1622 #include <linux/compat.h>
1623 
1624 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1625 		 unsigned nr_segs, unsigned fast_segs,
1626 		 struct iovec **iov, struct iov_iter *i)
1627 {
1628 	ssize_t n;
1629 	struct iovec *p;
1630 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1631 				  *iov, &p);
1632 	if (n < 0) {
1633 		if (p != *iov)
1634 			kfree(p);
1635 		*iov = NULL;
1636 		return n;
1637 	}
1638 	iov_iter_init(i, type, p, nr_segs, n);
1639 	*iov = p == *iov ? NULL : p;
1640 	return 0;
1641 }
1642 #endif
1643 
1644 int import_single_range(int rw, void __user *buf, size_t len,
1645 		 struct iovec *iov, struct iov_iter *i)
1646 {
1647 	if (len > MAX_RW_COUNT)
1648 		len = MAX_RW_COUNT;
1649 	if (unlikely(!access_ok(!rw, buf, len)))
1650 		return -EFAULT;
1651 
1652 	iov->iov_base = buf;
1653 	iov->iov_len = len;
1654 	iov_iter_init(i, rw, iov, 1, len);
1655 	return 0;
1656 }
1657 EXPORT_SYMBOL(import_single_range);
1658 
1659 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1660 			    int (*f)(struct kvec *vec, void *context),
1661 			    void *context)
1662 {
1663 	struct kvec w;
1664 	int err = -EINVAL;
1665 	if (!bytes)
1666 		return 0;
1667 
1668 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1669 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1670 		w.iov_len = v.bv_len;
1671 		err = f(&w, context);
1672 		kunmap(v.bv_page);
1673 		err;}), ({
1674 		w = v;
1675 		err = f(&w, context);})
1676 	)
1677 	return err;
1678 }
1679 EXPORT_SYMBOL(iov_iter_for_each_range);
1680