xref: /openbmc/linux/lib/genalloc.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Basic general purpose allocator for managing special purpose
4  * memory, for example, memory that is not managed by the regular
5  * kmalloc/kfree interface.  Uses for this includes on-device special
6  * memory, uncached memory etc.
7  *
8  * It is safe to use the allocator in NMI handlers and other special
9  * unblockable contexts that could otherwise deadlock on locks.  This
10  * is implemented by using atomic operations and retries on any
11  * conflicts.  The disadvantage is that there may be livelocks in
12  * extreme cases.  For better scalability, one allocator can be used
13  * for each CPU.
14  *
15  * The lockless operation only works if there is enough memory
16  * available.  If new memory is added to the pool a lock has to be
17  * still taken.  So any user relying on locklessness has to ensure
18  * that sufficient memory is preallocated.
19  *
20  * The basic atomic operation of this allocator is cmpxchg on long.
21  * On architectures that don't have NMI-safe cmpxchg implementation,
22  * the allocator can NOT be used in NMI handler.  So code uses the
23  * allocator in NMI handler should depend on
24  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
25  *
26  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
27  */
28 
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/bitmap.h>
32 #include <linux/rculist.h>
33 #include <linux/interrupt.h>
34 #include <linux/genalloc.h>
35 #include <linux/of_device.h>
36 #include <linux/vmalloc.h>
37 
38 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
39 {
40 	return chunk->end_addr - chunk->start_addr + 1;
41 }
42 
43 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
44 {
45 	unsigned long val, nval;
46 
47 	nval = *addr;
48 	do {
49 		val = nval;
50 		if (val & mask_to_set)
51 			return -EBUSY;
52 		cpu_relax();
53 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
54 
55 	return 0;
56 }
57 
58 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
59 {
60 	unsigned long val, nval;
61 
62 	nval = *addr;
63 	do {
64 		val = nval;
65 		if ((val & mask_to_clear) != mask_to_clear)
66 			return -EBUSY;
67 		cpu_relax();
68 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
69 
70 	return 0;
71 }
72 
73 /*
74  * bitmap_set_ll - set the specified number of bits at the specified position
75  * @map: pointer to a bitmap
76  * @start: a bit position in @map
77  * @nr: number of bits to set
78  *
79  * Set @nr bits start from @start in @map lock-lessly. Several users
80  * can set/clear the same bitmap simultaneously without lock. If two
81  * users set the same bit, one user will return remain bits, otherwise
82  * return 0.
83  */
84 static int bitmap_set_ll(unsigned long *map, int start, int nr)
85 {
86 	unsigned long *p = map + BIT_WORD(start);
87 	const int size = start + nr;
88 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
89 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
90 
91 	while (nr - bits_to_set >= 0) {
92 		if (set_bits_ll(p, mask_to_set))
93 			return nr;
94 		nr -= bits_to_set;
95 		bits_to_set = BITS_PER_LONG;
96 		mask_to_set = ~0UL;
97 		p++;
98 	}
99 	if (nr) {
100 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
101 		if (set_bits_ll(p, mask_to_set))
102 			return nr;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * bitmap_clear_ll - clear the specified number of bits at the specified position
110  * @map: pointer to a bitmap
111  * @start: a bit position in @map
112  * @nr: number of bits to set
113  *
114  * Clear @nr bits start from @start in @map lock-lessly. Several users
115  * can set/clear the same bitmap simultaneously without lock. If two
116  * users clear the same bit, one user will return remain bits,
117  * otherwise return 0.
118  */
119 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
120 {
121 	unsigned long *p = map + BIT_WORD(start);
122 	const int size = start + nr;
123 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
124 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
125 
126 	while (nr - bits_to_clear >= 0) {
127 		if (clear_bits_ll(p, mask_to_clear))
128 			return nr;
129 		nr -= bits_to_clear;
130 		bits_to_clear = BITS_PER_LONG;
131 		mask_to_clear = ~0UL;
132 		p++;
133 	}
134 	if (nr) {
135 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
136 		if (clear_bits_ll(p, mask_to_clear))
137 			return nr;
138 	}
139 
140 	return 0;
141 }
142 
143 /**
144  * gen_pool_create - create a new special memory pool
145  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
146  * @nid: node id of the node the pool structure should be allocated on, or -1
147  *
148  * Create a new special memory pool that can be used to manage special purpose
149  * memory not managed by the regular kmalloc/kfree interface.
150  */
151 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
152 {
153 	struct gen_pool *pool;
154 
155 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
156 	if (pool != NULL) {
157 		spin_lock_init(&pool->lock);
158 		INIT_LIST_HEAD(&pool->chunks);
159 		pool->min_alloc_order = min_alloc_order;
160 		pool->algo = gen_pool_first_fit;
161 		pool->data = NULL;
162 		pool->name = NULL;
163 	}
164 	return pool;
165 }
166 EXPORT_SYMBOL(gen_pool_create);
167 
168 /**
169  * gen_pool_add_owner- add a new chunk of special memory to the pool
170  * @pool: pool to add new memory chunk to
171  * @virt: virtual starting address of memory chunk to add to pool
172  * @phys: physical starting address of memory chunk to add to pool
173  * @size: size in bytes of the memory chunk to add to pool
174  * @nid: node id of the node the chunk structure and bitmap should be
175  *       allocated on, or -1
176  * @owner: private data the publisher would like to recall at alloc time
177  *
178  * Add a new chunk of special memory to the specified pool.
179  *
180  * Returns 0 on success or a -ve errno on failure.
181  */
182 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
183 		 size_t size, int nid, void *owner)
184 {
185 	struct gen_pool_chunk *chunk;
186 	int nbits = size >> pool->min_alloc_order;
187 	int nbytes = sizeof(struct gen_pool_chunk) +
188 				BITS_TO_LONGS(nbits) * sizeof(long);
189 
190 	chunk = vzalloc_node(nbytes, nid);
191 	if (unlikely(chunk == NULL))
192 		return -ENOMEM;
193 
194 	chunk->phys_addr = phys;
195 	chunk->start_addr = virt;
196 	chunk->end_addr = virt + size - 1;
197 	chunk->owner = owner;
198 	atomic_long_set(&chunk->avail, size);
199 
200 	spin_lock(&pool->lock);
201 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
202 	spin_unlock(&pool->lock);
203 
204 	return 0;
205 }
206 EXPORT_SYMBOL(gen_pool_add_owner);
207 
208 /**
209  * gen_pool_virt_to_phys - return the physical address of memory
210  * @pool: pool to allocate from
211  * @addr: starting address of memory
212  *
213  * Returns the physical address on success, or -1 on error.
214  */
215 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
216 {
217 	struct gen_pool_chunk *chunk;
218 	phys_addr_t paddr = -1;
219 
220 	rcu_read_lock();
221 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
222 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
223 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
224 			break;
225 		}
226 	}
227 	rcu_read_unlock();
228 
229 	return paddr;
230 }
231 EXPORT_SYMBOL(gen_pool_virt_to_phys);
232 
233 /**
234  * gen_pool_destroy - destroy a special memory pool
235  * @pool: pool to destroy
236  *
237  * Destroy the specified special memory pool. Verifies that there are no
238  * outstanding allocations.
239  */
240 void gen_pool_destroy(struct gen_pool *pool)
241 {
242 	struct list_head *_chunk, *_next_chunk;
243 	struct gen_pool_chunk *chunk;
244 	int order = pool->min_alloc_order;
245 	int bit, end_bit;
246 
247 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
248 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
249 		list_del(&chunk->next_chunk);
250 
251 		end_bit = chunk_size(chunk) >> order;
252 		bit = find_next_bit(chunk->bits, end_bit, 0);
253 		BUG_ON(bit < end_bit);
254 
255 		vfree(chunk);
256 	}
257 	kfree_const(pool->name);
258 	kfree(pool);
259 }
260 EXPORT_SYMBOL(gen_pool_destroy);
261 
262 /**
263  * gen_pool_alloc_algo_owner - allocate special memory from the pool
264  * @pool: pool to allocate from
265  * @size: number of bytes to allocate from the pool
266  * @algo: algorithm passed from caller
267  * @data: data passed to algorithm
268  * @owner: optionally retrieve the chunk owner
269  *
270  * Allocate the requested number of bytes from the specified pool.
271  * Uses the pool allocation function (with first-fit algorithm by default).
272  * Can not be used in NMI handler on architectures without
273  * NMI-safe cmpxchg implementation.
274  */
275 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
276 		genpool_algo_t algo, void *data, void **owner)
277 {
278 	struct gen_pool_chunk *chunk;
279 	unsigned long addr = 0;
280 	int order = pool->min_alloc_order;
281 	int nbits, start_bit, end_bit, remain;
282 
283 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
284 	BUG_ON(in_nmi());
285 #endif
286 
287 	if (owner)
288 		*owner = NULL;
289 
290 	if (size == 0)
291 		return 0;
292 
293 	nbits = (size + (1UL << order) - 1) >> order;
294 	rcu_read_lock();
295 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
296 		if (size > atomic_long_read(&chunk->avail))
297 			continue;
298 
299 		start_bit = 0;
300 		end_bit = chunk_size(chunk) >> order;
301 retry:
302 		start_bit = algo(chunk->bits, end_bit, start_bit,
303 				 nbits, data, pool, chunk->start_addr);
304 		if (start_bit >= end_bit)
305 			continue;
306 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
307 		if (remain) {
308 			remain = bitmap_clear_ll(chunk->bits, start_bit,
309 						 nbits - remain);
310 			BUG_ON(remain);
311 			goto retry;
312 		}
313 
314 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
315 		size = nbits << order;
316 		atomic_long_sub(size, &chunk->avail);
317 		if (owner)
318 			*owner = chunk->owner;
319 		break;
320 	}
321 	rcu_read_unlock();
322 	return addr;
323 }
324 EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
325 
326 /**
327  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
328  * @pool: pool to allocate from
329  * @size: number of bytes to allocate from the pool
330  * @dma: dma-view physical address return value.  Use NULL if unneeded.
331  *
332  * Allocate the requested number of bytes from the specified pool.
333  * Uses the pool allocation function (with first-fit algorithm by default).
334  * Can not be used in NMI handler on architectures without
335  * NMI-safe cmpxchg implementation.
336  */
337 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
338 {
339 	unsigned long vaddr;
340 
341 	if (!pool)
342 		return NULL;
343 
344 	vaddr = gen_pool_alloc(pool, size);
345 	if (!vaddr)
346 		return NULL;
347 
348 	if (dma)
349 		*dma = gen_pool_virt_to_phys(pool, vaddr);
350 
351 	return (void *)vaddr;
352 }
353 EXPORT_SYMBOL(gen_pool_dma_alloc);
354 
355 /**
356  * gen_pool_free - free allocated special memory back to the pool
357  * @pool: pool to free to
358  * @addr: starting address of memory to free back to pool
359  * @size: size in bytes of memory to free
360  * @owner: private data stashed at gen_pool_add() time
361  *
362  * Free previously allocated special memory back to the specified
363  * pool.  Can not be used in NMI handler on architectures without
364  * NMI-safe cmpxchg implementation.
365  */
366 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
367 		void **owner)
368 {
369 	struct gen_pool_chunk *chunk;
370 	int order = pool->min_alloc_order;
371 	int start_bit, nbits, remain;
372 
373 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
374 	BUG_ON(in_nmi());
375 #endif
376 
377 	if (owner)
378 		*owner = NULL;
379 
380 	nbits = (size + (1UL << order) - 1) >> order;
381 	rcu_read_lock();
382 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
383 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
384 			BUG_ON(addr + size - 1 > chunk->end_addr);
385 			start_bit = (addr - chunk->start_addr) >> order;
386 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
387 			BUG_ON(remain);
388 			size = nbits << order;
389 			atomic_long_add(size, &chunk->avail);
390 			if (owner)
391 				*owner = chunk->owner;
392 			rcu_read_unlock();
393 			return;
394 		}
395 	}
396 	rcu_read_unlock();
397 	BUG();
398 }
399 EXPORT_SYMBOL(gen_pool_free_owner);
400 
401 /**
402  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
403  * @pool:	the generic memory pool
404  * @func:	func to call
405  * @data:	additional data used by @func
406  *
407  * Call @func for every chunk of generic memory pool.  The @func is
408  * called with rcu_read_lock held.
409  */
410 void gen_pool_for_each_chunk(struct gen_pool *pool,
411 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
412 	void *data)
413 {
414 	struct gen_pool_chunk *chunk;
415 
416 	rcu_read_lock();
417 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
418 		func(pool, chunk, data);
419 	rcu_read_unlock();
420 }
421 EXPORT_SYMBOL(gen_pool_for_each_chunk);
422 
423 /**
424  * addr_in_gen_pool - checks if an address falls within the range of a pool
425  * @pool:	the generic memory pool
426  * @start:	start address
427  * @size:	size of the region
428  *
429  * Check if the range of addresses falls within the specified pool. Returns
430  * true if the entire range is contained in the pool and false otherwise.
431  */
432 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
433 			size_t size)
434 {
435 	bool found = false;
436 	unsigned long end = start + size - 1;
437 	struct gen_pool_chunk *chunk;
438 
439 	rcu_read_lock();
440 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
441 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
442 			if (end <= chunk->end_addr) {
443 				found = true;
444 				break;
445 			}
446 		}
447 	}
448 	rcu_read_unlock();
449 	return found;
450 }
451 
452 /**
453  * gen_pool_avail - get available free space of the pool
454  * @pool: pool to get available free space
455  *
456  * Return available free space of the specified pool.
457  */
458 size_t gen_pool_avail(struct gen_pool *pool)
459 {
460 	struct gen_pool_chunk *chunk;
461 	size_t avail = 0;
462 
463 	rcu_read_lock();
464 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
465 		avail += atomic_long_read(&chunk->avail);
466 	rcu_read_unlock();
467 	return avail;
468 }
469 EXPORT_SYMBOL_GPL(gen_pool_avail);
470 
471 /**
472  * gen_pool_size - get size in bytes of memory managed by the pool
473  * @pool: pool to get size
474  *
475  * Return size in bytes of memory managed by the pool.
476  */
477 size_t gen_pool_size(struct gen_pool *pool)
478 {
479 	struct gen_pool_chunk *chunk;
480 	size_t size = 0;
481 
482 	rcu_read_lock();
483 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
484 		size += chunk_size(chunk);
485 	rcu_read_unlock();
486 	return size;
487 }
488 EXPORT_SYMBOL_GPL(gen_pool_size);
489 
490 /**
491  * gen_pool_set_algo - set the allocation algorithm
492  * @pool: pool to change allocation algorithm
493  * @algo: custom algorithm function
494  * @data: additional data used by @algo
495  *
496  * Call @algo for each memory allocation in the pool.
497  * If @algo is NULL use gen_pool_first_fit as default
498  * memory allocation function.
499  */
500 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
501 {
502 	rcu_read_lock();
503 
504 	pool->algo = algo;
505 	if (!pool->algo)
506 		pool->algo = gen_pool_first_fit;
507 
508 	pool->data = data;
509 
510 	rcu_read_unlock();
511 }
512 EXPORT_SYMBOL(gen_pool_set_algo);
513 
514 /**
515  * gen_pool_first_fit - find the first available region
516  * of memory matching the size requirement (no alignment constraint)
517  * @map: The address to base the search on
518  * @size: The bitmap size in bits
519  * @start: The bitnumber to start searching at
520  * @nr: The number of zeroed bits we're looking for
521  * @data: additional data - unused
522  * @pool: pool to find the fit region memory from
523  */
524 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
525 		unsigned long start, unsigned int nr, void *data,
526 		struct gen_pool *pool, unsigned long start_addr)
527 {
528 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
529 }
530 EXPORT_SYMBOL(gen_pool_first_fit);
531 
532 /**
533  * gen_pool_first_fit_align - find the first available region
534  * of memory matching the size requirement (alignment constraint)
535  * @map: The address to base the search on
536  * @size: The bitmap size in bits
537  * @start: The bitnumber to start searching at
538  * @nr: The number of zeroed bits we're looking for
539  * @data: data for alignment
540  * @pool: pool to get order from
541  */
542 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
543 		unsigned long start, unsigned int nr, void *data,
544 		struct gen_pool *pool, unsigned long start_addr)
545 {
546 	struct genpool_data_align *alignment;
547 	unsigned long align_mask, align_off;
548 	int order;
549 
550 	alignment = data;
551 	order = pool->min_alloc_order;
552 	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
553 	align_off = (start_addr & (alignment->align - 1)) >> order;
554 
555 	return bitmap_find_next_zero_area_off(map, size, start, nr,
556 					      align_mask, align_off);
557 }
558 EXPORT_SYMBOL(gen_pool_first_fit_align);
559 
560 /**
561  * gen_pool_fixed_alloc - reserve a specific region
562  * @map: The address to base the search on
563  * @size: The bitmap size in bits
564  * @start: The bitnumber to start searching at
565  * @nr: The number of zeroed bits we're looking for
566  * @data: data for alignment
567  * @pool: pool to get order from
568  */
569 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
570 		unsigned long start, unsigned int nr, void *data,
571 		struct gen_pool *pool, unsigned long start_addr)
572 {
573 	struct genpool_data_fixed *fixed_data;
574 	int order;
575 	unsigned long offset_bit;
576 	unsigned long start_bit;
577 
578 	fixed_data = data;
579 	order = pool->min_alloc_order;
580 	offset_bit = fixed_data->offset >> order;
581 	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
582 		return size;
583 
584 	start_bit = bitmap_find_next_zero_area(map, size,
585 			start + offset_bit, nr, 0);
586 	if (start_bit != offset_bit)
587 		start_bit = size;
588 	return start_bit;
589 }
590 EXPORT_SYMBOL(gen_pool_fixed_alloc);
591 
592 /**
593  * gen_pool_first_fit_order_align - find the first available region
594  * of memory matching the size requirement. The region will be aligned
595  * to the order of the size specified.
596  * @map: The address to base the search on
597  * @size: The bitmap size in bits
598  * @start: The bitnumber to start searching at
599  * @nr: The number of zeroed bits we're looking for
600  * @data: additional data - unused
601  * @pool: pool to find the fit region memory from
602  */
603 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
604 		unsigned long size, unsigned long start,
605 		unsigned int nr, void *data, struct gen_pool *pool,
606 		unsigned long start_addr)
607 {
608 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
609 
610 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
611 }
612 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
613 
614 /**
615  * gen_pool_best_fit - find the best fitting region of memory
616  * macthing the size requirement (no alignment constraint)
617  * @map: The address to base the search on
618  * @size: The bitmap size in bits
619  * @start: The bitnumber to start searching at
620  * @nr: The number of zeroed bits we're looking for
621  * @data: additional data - unused
622  * @pool: pool to find the fit region memory from
623  *
624  * Iterate over the bitmap to find the smallest free region
625  * which we can allocate the memory.
626  */
627 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
628 		unsigned long start, unsigned int nr, void *data,
629 		struct gen_pool *pool, unsigned long start_addr)
630 {
631 	unsigned long start_bit = size;
632 	unsigned long len = size + 1;
633 	unsigned long index;
634 
635 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
636 
637 	while (index < size) {
638 		int next_bit = find_next_bit(map, size, index + nr);
639 		if ((next_bit - index) < len) {
640 			len = next_bit - index;
641 			start_bit = index;
642 			if (len == nr)
643 				return start_bit;
644 		}
645 		index = bitmap_find_next_zero_area(map, size,
646 						   next_bit + 1, nr, 0);
647 	}
648 
649 	return start_bit;
650 }
651 EXPORT_SYMBOL(gen_pool_best_fit);
652 
653 static void devm_gen_pool_release(struct device *dev, void *res)
654 {
655 	gen_pool_destroy(*(struct gen_pool **)res);
656 }
657 
658 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
659 {
660 	struct gen_pool **p = res;
661 
662 	/* NULL data matches only a pool without an assigned name */
663 	if (!data && !(*p)->name)
664 		return 1;
665 
666 	if (!data || !(*p)->name)
667 		return 0;
668 
669 	return !strcmp((*p)->name, data);
670 }
671 
672 /**
673  * gen_pool_get - Obtain the gen_pool (if any) for a device
674  * @dev: device to retrieve the gen_pool from
675  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
676  *
677  * Returns the gen_pool for the device if one is present, or NULL.
678  */
679 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
680 {
681 	struct gen_pool **p;
682 
683 	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
684 			(void *)name);
685 	if (!p)
686 		return NULL;
687 	return *p;
688 }
689 EXPORT_SYMBOL_GPL(gen_pool_get);
690 
691 /**
692  * devm_gen_pool_create - managed gen_pool_create
693  * @dev: device that provides the gen_pool
694  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
695  * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
696  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
697  *
698  * Create a new special memory pool that can be used to manage special purpose
699  * memory not managed by the regular kmalloc/kfree interface. The pool will be
700  * automatically destroyed by the device management code.
701  */
702 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
703 				      int nid, const char *name)
704 {
705 	struct gen_pool **ptr, *pool;
706 	const char *pool_name = NULL;
707 
708 	/* Check that genpool to be created is uniquely addressed on device */
709 	if (gen_pool_get(dev, name))
710 		return ERR_PTR(-EINVAL);
711 
712 	if (name) {
713 		pool_name = kstrdup_const(name, GFP_KERNEL);
714 		if (!pool_name)
715 			return ERR_PTR(-ENOMEM);
716 	}
717 
718 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
719 	if (!ptr)
720 		goto free_pool_name;
721 
722 	pool = gen_pool_create(min_alloc_order, nid);
723 	if (!pool)
724 		goto free_devres;
725 
726 	*ptr = pool;
727 	pool->name = pool_name;
728 	devres_add(dev, ptr);
729 
730 	return pool;
731 
732 free_devres:
733 	devres_free(ptr);
734 free_pool_name:
735 	kfree_const(pool_name);
736 
737 	return ERR_PTR(-ENOMEM);
738 }
739 EXPORT_SYMBOL(devm_gen_pool_create);
740 
741 #ifdef CONFIG_OF
742 /**
743  * of_gen_pool_get - find a pool by phandle property
744  * @np: device node
745  * @propname: property name containing phandle(s)
746  * @index: index into the phandle array
747  *
748  * Returns the pool that contains the chunk starting at the physical
749  * address of the device tree node pointed at by the phandle property,
750  * or NULL if not found.
751  */
752 struct gen_pool *of_gen_pool_get(struct device_node *np,
753 	const char *propname, int index)
754 {
755 	struct platform_device *pdev;
756 	struct device_node *np_pool, *parent;
757 	const char *name = NULL;
758 	struct gen_pool *pool = NULL;
759 
760 	np_pool = of_parse_phandle(np, propname, index);
761 	if (!np_pool)
762 		return NULL;
763 
764 	pdev = of_find_device_by_node(np_pool);
765 	if (!pdev) {
766 		/* Check if named gen_pool is created by parent node device */
767 		parent = of_get_parent(np_pool);
768 		pdev = of_find_device_by_node(parent);
769 		of_node_put(parent);
770 
771 		of_property_read_string(np_pool, "label", &name);
772 		if (!name)
773 			name = np_pool->name;
774 	}
775 	if (pdev)
776 		pool = gen_pool_get(&pdev->dev, name);
777 	of_node_put(np_pool);
778 
779 	return pool;
780 }
781 EXPORT_SYMBOL_GPL(of_gen_pool_get);
782 #endif /* CONFIG_OF */
783