1 /* 2 * Basic general purpose allocator for managing special purpose 3 * memory, for example, memory that is not managed by the regular 4 * kmalloc/kfree interface. Uses for this includes on-device special 5 * memory, uncached memory etc. 6 * 7 * It is safe to use the allocator in NMI handlers and other special 8 * unblockable contexts that could otherwise deadlock on locks. This 9 * is implemented by using atomic operations and retries on any 10 * conflicts. The disadvantage is that there may be livelocks in 11 * extreme cases. For better scalability, one allocator can be used 12 * for each CPU. 13 * 14 * The lockless operation only works if there is enough memory 15 * available. If new memory is added to the pool a lock has to be 16 * still taken. So any user relying on locklessness has to ensure 17 * that sufficient memory is preallocated. 18 * 19 * The basic atomic operation of this allocator is cmpxchg on long. 20 * On architectures that don't have NMI-safe cmpxchg implementation, 21 * the allocator can NOT be used in NMI handler. So code uses the 22 * allocator in NMI handler should depend on 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 24 * 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 26 * 27 * This source code is licensed under the GNU General Public License, 28 * Version 2. See the file COPYING for more details. 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/export.h> 33 #include <linux/bitmap.h> 34 #include <linux/rculist.h> 35 #include <linux/interrupt.h> 36 #include <linux/genalloc.h> 37 #include <linux/of_device.h> 38 39 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 40 { 41 return chunk->end_addr - chunk->start_addr + 1; 42 } 43 44 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 45 { 46 unsigned long val, nval; 47 48 nval = *addr; 49 do { 50 val = nval; 51 if (val & mask_to_set) 52 return -EBUSY; 53 cpu_relax(); 54 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 55 56 return 0; 57 } 58 59 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 60 { 61 unsigned long val, nval; 62 63 nval = *addr; 64 do { 65 val = nval; 66 if ((val & mask_to_clear) != mask_to_clear) 67 return -EBUSY; 68 cpu_relax(); 69 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 70 71 return 0; 72 } 73 74 /* 75 * bitmap_set_ll - set the specified number of bits at the specified position 76 * @map: pointer to a bitmap 77 * @start: a bit position in @map 78 * @nr: number of bits to set 79 * 80 * Set @nr bits start from @start in @map lock-lessly. Several users 81 * can set/clear the same bitmap simultaneously without lock. If two 82 * users set the same bit, one user will return remain bits, otherwise 83 * return 0. 84 */ 85 static int bitmap_set_ll(unsigned long *map, int start, int nr) 86 { 87 unsigned long *p = map + BIT_WORD(start); 88 const int size = start + nr; 89 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 90 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 91 92 while (nr - bits_to_set >= 0) { 93 if (set_bits_ll(p, mask_to_set)) 94 return nr; 95 nr -= bits_to_set; 96 bits_to_set = BITS_PER_LONG; 97 mask_to_set = ~0UL; 98 p++; 99 } 100 if (nr) { 101 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 102 if (set_bits_ll(p, mask_to_set)) 103 return nr; 104 } 105 106 return 0; 107 } 108 109 /* 110 * bitmap_clear_ll - clear the specified number of bits at the specified position 111 * @map: pointer to a bitmap 112 * @start: a bit position in @map 113 * @nr: number of bits to set 114 * 115 * Clear @nr bits start from @start in @map lock-lessly. Several users 116 * can set/clear the same bitmap simultaneously without lock. If two 117 * users clear the same bit, one user will return remain bits, 118 * otherwise return 0. 119 */ 120 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 121 { 122 unsigned long *p = map + BIT_WORD(start); 123 const int size = start + nr; 124 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 125 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 126 127 while (nr - bits_to_clear >= 0) { 128 if (clear_bits_ll(p, mask_to_clear)) 129 return nr; 130 nr -= bits_to_clear; 131 bits_to_clear = BITS_PER_LONG; 132 mask_to_clear = ~0UL; 133 p++; 134 } 135 if (nr) { 136 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 137 if (clear_bits_ll(p, mask_to_clear)) 138 return nr; 139 } 140 141 return 0; 142 } 143 144 /** 145 * gen_pool_create - create a new special memory pool 146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 147 * @nid: node id of the node the pool structure should be allocated on, or -1 148 * 149 * Create a new special memory pool that can be used to manage special purpose 150 * memory not managed by the regular kmalloc/kfree interface. 151 */ 152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 153 { 154 struct gen_pool *pool; 155 156 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 157 if (pool != NULL) { 158 spin_lock_init(&pool->lock); 159 INIT_LIST_HEAD(&pool->chunks); 160 pool->min_alloc_order = min_alloc_order; 161 pool->algo = gen_pool_first_fit; 162 pool->data = NULL; 163 pool->name = NULL; 164 } 165 return pool; 166 } 167 EXPORT_SYMBOL(gen_pool_create); 168 169 /** 170 * gen_pool_add_virt - add a new chunk of special memory to the pool 171 * @pool: pool to add new memory chunk to 172 * @virt: virtual starting address of memory chunk to add to pool 173 * @phys: physical starting address of memory chunk to add to pool 174 * @size: size in bytes of the memory chunk to add to pool 175 * @nid: node id of the node the chunk structure and bitmap should be 176 * allocated on, or -1 177 * 178 * Add a new chunk of special memory to the specified pool. 179 * 180 * Returns 0 on success or a -ve errno on failure. 181 */ 182 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 183 size_t size, int nid) 184 { 185 struct gen_pool_chunk *chunk; 186 int nbits = size >> pool->min_alloc_order; 187 int nbytes = sizeof(struct gen_pool_chunk) + 188 BITS_TO_LONGS(nbits) * sizeof(long); 189 190 chunk = kzalloc_node(nbytes, GFP_KERNEL, nid); 191 if (unlikely(chunk == NULL)) 192 return -ENOMEM; 193 194 chunk->phys_addr = phys; 195 chunk->start_addr = virt; 196 chunk->end_addr = virt + size - 1; 197 atomic_set(&chunk->avail, size); 198 199 spin_lock(&pool->lock); 200 list_add_rcu(&chunk->next_chunk, &pool->chunks); 201 spin_unlock(&pool->lock); 202 203 return 0; 204 } 205 EXPORT_SYMBOL(gen_pool_add_virt); 206 207 /** 208 * gen_pool_virt_to_phys - return the physical address of memory 209 * @pool: pool to allocate from 210 * @addr: starting address of memory 211 * 212 * Returns the physical address on success, or -1 on error. 213 */ 214 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 215 { 216 struct gen_pool_chunk *chunk; 217 phys_addr_t paddr = -1; 218 219 rcu_read_lock(); 220 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 221 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 222 paddr = chunk->phys_addr + (addr - chunk->start_addr); 223 break; 224 } 225 } 226 rcu_read_unlock(); 227 228 return paddr; 229 } 230 EXPORT_SYMBOL(gen_pool_virt_to_phys); 231 232 /** 233 * gen_pool_destroy - destroy a special memory pool 234 * @pool: pool to destroy 235 * 236 * Destroy the specified special memory pool. Verifies that there are no 237 * outstanding allocations. 238 */ 239 void gen_pool_destroy(struct gen_pool *pool) 240 { 241 struct list_head *_chunk, *_next_chunk; 242 struct gen_pool_chunk *chunk; 243 int order = pool->min_alloc_order; 244 int bit, end_bit; 245 246 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 247 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 248 list_del(&chunk->next_chunk); 249 250 end_bit = chunk_size(chunk) >> order; 251 bit = find_next_bit(chunk->bits, end_bit, 0); 252 BUG_ON(bit < end_bit); 253 254 kfree(chunk); 255 } 256 kfree_const(pool->name); 257 kfree(pool); 258 } 259 EXPORT_SYMBOL(gen_pool_destroy); 260 261 /** 262 * gen_pool_alloc - allocate special memory from the pool 263 * @pool: pool to allocate from 264 * @size: number of bytes to allocate from the pool 265 * 266 * Allocate the requested number of bytes from the specified pool. 267 * Uses the pool allocation function (with first-fit algorithm by default). 268 * Can not be used in NMI handler on architectures without 269 * NMI-safe cmpxchg implementation. 270 */ 271 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) 272 { 273 return gen_pool_alloc_algo(pool, size, pool->algo, pool->data); 274 } 275 EXPORT_SYMBOL(gen_pool_alloc); 276 277 /** 278 * gen_pool_alloc_algo - allocate special memory from the pool 279 * @pool: pool to allocate from 280 * @size: number of bytes to allocate from the pool 281 * @algo: algorithm passed from caller 282 * @data: data passed to algorithm 283 * 284 * Allocate the requested number of bytes from the specified pool. 285 * Uses the pool allocation function (with first-fit algorithm by default). 286 * Can not be used in NMI handler on architectures without 287 * NMI-safe cmpxchg implementation. 288 */ 289 unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size, 290 genpool_algo_t algo, void *data) 291 { 292 struct gen_pool_chunk *chunk; 293 unsigned long addr = 0; 294 int order = pool->min_alloc_order; 295 int nbits, start_bit = 0, end_bit, remain; 296 297 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 298 BUG_ON(in_nmi()); 299 #endif 300 301 if (size == 0) 302 return 0; 303 304 nbits = (size + (1UL << order) - 1) >> order; 305 rcu_read_lock(); 306 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 307 if (size > atomic_read(&chunk->avail)) 308 continue; 309 310 end_bit = chunk_size(chunk) >> order; 311 retry: 312 start_bit = algo(chunk->bits, end_bit, start_bit, 313 nbits, data, pool); 314 if (start_bit >= end_bit) 315 continue; 316 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 317 if (remain) { 318 remain = bitmap_clear_ll(chunk->bits, start_bit, 319 nbits - remain); 320 BUG_ON(remain); 321 goto retry; 322 } 323 324 addr = chunk->start_addr + ((unsigned long)start_bit << order); 325 size = nbits << order; 326 atomic_sub(size, &chunk->avail); 327 break; 328 } 329 rcu_read_unlock(); 330 return addr; 331 } 332 EXPORT_SYMBOL(gen_pool_alloc_algo); 333 334 /** 335 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 336 * @pool: pool to allocate from 337 * @size: number of bytes to allocate from the pool 338 * @dma: dma-view physical address return value. Use NULL if unneeded. 339 * 340 * Allocate the requested number of bytes from the specified pool. 341 * Uses the pool allocation function (with first-fit algorithm by default). 342 * Can not be used in NMI handler on architectures without 343 * NMI-safe cmpxchg implementation. 344 */ 345 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 346 { 347 unsigned long vaddr; 348 349 if (!pool) 350 return NULL; 351 352 vaddr = gen_pool_alloc(pool, size); 353 if (!vaddr) 354 return NULL; 355 356 if (dma) 357 *dma = gen_pool_virt_to_phys(pool, vaddr); 358 359 return (void *)vaddr; 360 } 361 EXPORT_SYMBOL(gen_pool_dma_alloc); 362 363 /** 364 * gen_pool_free - free allocated special memory back to the pool 365 * @pool: pool to free to 366 * @addr: starting address of memory to free back to pool 367 * @size: size in bytes of memory to free 368 * 369 * Free previously allocated special memory back to the specified 370 * pool. Can not be used in NMI handler on architectures without 371 * NMI-safe cmpxchg implementation. 372 */ 373 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) 374 { 375 struct gen_pool_chunk *chunk; 376 int order = pool->min_alloc_order; 377 int start_bit, nbits, remain; 378 379 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 380 BUG_ON(in_nmi()); 381 #endif 382 383 nbits = (size + (1UL << order) - 1) >> order; 384 rcu_read_lock(); 385 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 386 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 387 BUG_ON(addr + size - 1 > chunk->end_addr); 388 start_bit = (addr - chunk->start_addr) >> order; 389 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 390 BUG_ON(remain); 391 size = nbits << order; 392 atomic_add(size, &chunk->avail); 393 rcu_read_unlock(); 394 return; 395 } 396 } 397 rcu_read_unlock(); 398 BUG(); 399 } 400 EXPORT_SYMBOL(gen_pool_free); 401 402 /** 403 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 404 * @pool: the generic memory pool 405 * @func: func to call 406 * @data: additional data used by @func 407 * 408 * Call @func for every chunk of generic memory pool. The @func is 409 * called with rcu_read_lock held. 410 */ 411 void gen_pool_for_each_chunk(struct gen_pool *pool, 412 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 413 void *data) 414 { 415 struct gen_pool_chunk *chunk; 416 417 rcu_read_lock(); 418 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 419 func(pool, chunk, data); 420 rcu_read_unlock(); 421 } 422 EXPORT_SYMBOL(gen_pool_for_each_chunk); 423 424 /** 425 * addr_in_gen_pool - checks if an address falls within the range of a pool 426 * @pool: the generic memory pool 427 * @start: start address 428 * @size: size of the region 429 * 430 * Check if the range of addresses falls within the specified pool. Returns 431 * true if the entire range is contained in the pool and false otherwise. 432 */ 433 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start, 434 size_t size) 435 { 436 bool found = false; 437 unsigned long end = start + size - 1; 438 struct gen_pool_chunk *chunk; 439 440 rcu_read_lock(); 441 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 442 if (start >= chunk->start_addr && start <= chunk->end_addr) { 443 if (end <= chunk->end_addr) { 444 found = true; 445 break; 446 } 447 } 448 } 449 rcu_read_unlock(); 450 return found; 451 } 452 453 /** 454 * gen_pool_avail - get available free space of the pool 455 * @pool: pool to get available free space 456 * 457 * Return available free space of the specified pool. 458 */ 459 size_t gen_pool_avail(struct gen_pool *pool) 460 { 461 struct gen_pool_chunk *chunk; 462 size_t avail = 0; 463 464 rcu_read_lock(); 465 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 466 avail += atomic_read(&chunk->avail); 467 rcu_read_unlock(); 468 return avail; 469 } 470 EXPORT_SYMBOL_GPL(gen_pool_avail); 471 472 /** 473 * gen_pool_size - get size in bytes of memory managed by the pool 474 * @pool: pool to get size 475 * 476 * Return size in bytes of memory managed by the pool. 477 */ 478 size_t gen_pool_size(struct gen_pool *pool) 479 { 480 struct gen_pool_chunk *chunk; 481 size_t size = 0; 482 483 rcu_read_lock(); 484 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 485 size += chunk_size(chunk); 486 rcu_read_unlock(); 487 return size; 488 } 489 EXPORT_SYMBOL_GPL(gen_pool_size); 490 491 /** 492 * gen_pool_set_algo - set the allocation algorithm 493 * @pool: pool to change allocation algorithm 494 * @algo: custom algorithm function 495 * @data: additional data used by @algo 496 * 497 * Call @algo for each memory allocation in the pool. 498 * If @algo is NULL use gen_pool_first_fit as default 499 * memory allocation function. 500 */ 501 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 502 { 503 rcu_read_lock(); 504 505 pool->algo = algo; 506 if (!pool->algo) 507 pool->algo = gen_pool_first_fit; 508 509 pool->data = data; 510 511 rcu_read_unlock(); 512 } 513 EXPORT_SYMBOL(gen_pool_set_algo); 514 515 /** 516 * gen_pool_first_fit - find the first available region 517 * of memory matching the size requirement (no alignment constraint) 518 * @map: The address to base the search on 519 * @size: The bitmap size in bits 520 * @start: The bitnumber to start searching at 521 * @nr: The number of zeroed bits we're looking for 522 * @data: additional data - unused 523 * @pool: pool to find the fit region memory from 524 */ 525 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 526 unsigned long start, unsigned int nr, void *data, 527 struct gen_pool *pool) 528 { 529 return bitmap_find_next_zero_area(map, size, start, nr, 0); 530 } 531 EXPORT_SYMBOL(gen_pool_first_fit); 532 533 /** 534 * gen_pool_first_fit_align - find the first available region 535 * of memory matching the size requirement (alignment constraint) 536 * @map: The address to base the search on 537 * @size: The bitmap size in bits 538 * @start: The bitnumber to start searching at 539 * @nr: The number of zeroed bits we're looking for 540 * @data: data for alignment 541 * @pool: pool to get order from 542 */ 543 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size, 544 unsigned long start, unsigned int nr, void *data, 545 struct gen_pool *pool) 546 { 547 struct genpool_data_align *alignment; 548 unsigned long align_mask; 549 int order; 550 551 alignment = data; 552 order = pool->min_alloc_order; 553 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1; 554 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 555 } 556 EXPORT_SYMBOL(gen_pool_first_fit_align); 557 558 /** 559 * gen_pool_fixed_alloc - reserve a specific region 560 * @map: The address to base the search on 561 * @size: The bitmap size in bits 562 * @start: The bitnumber to start searching at 563 * @nr: The number of zeroed bits we're looking for 564 * @data: data for alignment 565 * @pool: pool to get order from 566 */ 567 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size, 568 unsigned long start, unsigned int nr, void *data, 569 struct gen_pool *pool) 570 { 571 struct genpool_data_fixed *fixed_data; 572 int order; 573 unsigned long offset_bit; 574 unsigned long start_bit; 575 576 fixed_data = data; 577 order = pool->min_alloc_order; 578 offset_bit = fixed_data->offset >> order; 579 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1))) 580 return size; 581 582 start_bit = bitmap_find_next_zero_area(map, size, 583 start + offset_bit, nr, 0); 584 if (start_bit != offset_bit) 585 start_bit = size; 586 return start_bit; 587 } 588 EXPORT_SYMBOL(gen_pool_fixed_alloc); 589 590 /** 591 * gen_pool_first_fit_order_align - find the first available region 592 * of memory matching the size requirement. The region will be aligned 593 * to the order of the size specified. 594 * @map: The address to base the search on 595 * @size: The bitmap size in bits 596 * @start: The bitnumber to start searching at 597 * @nr: The number of zeroed bits we're looking for 598 * @data: additional data - unused 599 * @pool: pool to find the fit region memory from 600 */ 601 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 602 unsigned long size, unsigned long start, 603 unsigned int nr, void *data, struct gen_pool *pool) 604 { 605 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 606 607 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 608 } 609 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 610 611 /** 612 * gen_pool_best_fit - find the best fitting region of memory 613 * macthing the size requirement (no alignment constraint) 614 * @map: The address to base the search on 615 * @size: The bitmap size in bits 616 * @start: The bitnumber to start searching at 617 * @nr: The number of zeroed bits we're looking for 618 * @data: additional data - unused 619 * @pool: pool to find the fit region memory from 620 * 621 * Iterate over the bitmap to find the smallest free region 622 * which we can allocate the memory. 623 */ 624 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 625 unsigned long start, unsigned int nr, void *data, 626 struct gen_pool *pool) 627 { 628 unsigned long start_bit = size; 629 unsigned long len = size + 1; 630 unsigned long index; 631 632 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 633 634 while (index < size) { 635 int next_bit = find_next_bit(map, size, index + nr); 636 if ((next_bit - index) < len) { 637 len = next_bit - index; 638 start_bit = index; 639 if (len == nr) 640 return start_bit; 641 } 642 index = bitmap_find_next_zero_area(map, size, 643 next_bit + 1, nr, 0); 644 } 645 646 return start_bit; 647 } 648 EXPORT_SYMBOL(gen_pool_best_fit); 649 650 static void devm_gen_pool_release(struct device *dev, void *res) 651 { 652 gen_pool_destroy(*(struct gen_pool **)res); 653 } 654 655 static int devm_gen_pool_match(struct device *dev, void *res, void *data) 656 { 657 struct gen_pool **p = res; 658 659 /* NULL data matches only a pool without an assigned name */ 660 if (!data && !(*p)->name) 661 return 1; 662 663 if (!data || !(*p)->name) 664 return 0; 665 666 return !strcmp((*p)->name, data); 667 } 668 669 /** 670 * gen_pool_get - Obtain the gen_pool (if any) for a device 671 * @dev: device to retrieve the gen_pool from 672 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 673 * 674 * Returns the gen_pool for the device if one is present, or NULL. 675 */ 676 struct gen_pool *gen_pool_get(struct device *dev, const char *name) 677 { 678 struct gen_pool **p; 679 680 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match, 681 (void *)name); 682 if (!p) 683 return NULL; 684 return *p; 685 } 686 EXPORT_SYMBOL_GPL(gen_pool_get); 687 688 /** 689 * devm_gen_pool_create - managed gen_pool_create 690 * @dev: device that provides the gen_pool 691 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 692 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes 693 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 694 * 695 * Create a new special memory pool that can be used to manage special purpose 696 * memory not managed by the regular kmalloc/kfree interface. The pool will be 697 * automatically destroyed by the device management code. 698 */ 699 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 700 int nid, const char *name) 701 { 702 struct gen_pool **ptr, *pool; 703 const char *pool_name = NULL; 704 705 /* Check that genpool to be created is uniquely addressed on device */ 706 if (gen_pool_get(dev, name)) 707 return ERR_PTR(-EINVAL); 708 709 if (name) { 710 pool_name = kstrdup_const(name, GFP_KERNEL); 711 if (!pool_name) 712 return ERR_PTR(-ENOMEM); 713 } 714 715 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 716 if (!ptr) 717 goto free_pool_name; 718 719 pool = gen_pool_create(min_alloc_order, nid); 720 if (!pool) 721 goto free_devres; 722 723 *ptr = pool; 724 pool->name = pool_name; 725 devres_add(dev, ptr); 726 727 return pool; 728 729 free_devres: 730 devres_free(ptr); 731 free_pool_name: 732 kfree_const(pool_name); 733 734 return ERR_PTR(-ENOMEM); 735 } 736 EXPORT_SYMBOL(devm_gen_pool_create); 737 738 #ifdef CONFIG_OF 739 /** 740 * of_gen_pool_get - find a pool by phandle property 741 * @np: device node 742 * @propname: property name containing phandle(s) 743 * @index: index into the phandle array 744 * 745 * Returns the pool that contains the chunk starting at the physical 746 * address of the device tree node pointed at by the phandle property, 747 * or NULL if not found. 748 */ 749 struct gen_pool *of_gen_pool_get(struct device_node *np, 750 const char *propname, int index) 751 { 752 struct platform_device *pdev; 753 struct device_node *np_pool, *parent; 754 const char *name = NULL; 755 struct gen_pool *pool = NULL; 756 757 np_pool = of_parse_phandle(np, propname, index); 758 if (!np_pool) 759 return NULL; 760 761 pdev = of_find_device_by_node(np_pool); 762 if (!pdev) { 763 /* Check if named gen_pool is created by parent node device */ 764 parent = of_get_parent(np_pool); 765 pdev = of_find_device_by_node(parent); 766 of_node_put(parent); 767 768 of_property_read_string(np_pool, "label", &name); 769 if (!name) 770 name = np_pool->name; 771 } 772 if (pdev) 773 pool = gen_pool_get(&pdev->dev, name); 774 of_node_put(np_pool); 775 776 return pool; 777 } 778 EXPORT_SYMBOL_GPL(of_gen_pool_get); 779 #endif /* CONFIG_OF */ 780