xref: /openbmc/linux/lib/genalloc.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * Basic general purpose allocator for managing special purpose
3  * memory, for example, memory that is not managed by the regular
4  * kmalloc/kfree interface.  Uses for this includes on-device special
5  * memory, uncached memory etc.
6  *
7  * It is safe to use the allocator in NMI handlers and other special
8  * unblockable contexts that could otherwise deadlock on locks.  This
9  * is implemented by using atomic operations and retries on any
10  * conflicts.  The disadvantage is that there may be livelocks in
11  * extreme cases.  For better scalability, one allocator can be used
12  * for each CPU.
13  *
14  * The lockless operation only works if there is enough memory
15  * available.  If new memory is added to the pool a lock has to be
16  * still taken.  So any user relying on locklessness has to ensure
17  * that sufficient memory is preallocated.
18  *
19  * The basic atomic operation of this allocator is cmpxchg on long.
20  * On architectures that don't have NMI-safe cmpxchg implementation,
21  * the allocator can NOT be used in NMI handler.  So code uses the
22  * allocator in NMI handler should depend on
23  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24  *
25  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26  *
27  * This source code is licensed under the GNU General Public License,
28  * Version 2.  See the file COPYING for more details.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38 
39 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
40 {
41 	return chunk->end_addr - chunk->start_addr + 1;
42 }
43 
44 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
45 {
46 	unsigned long val, nval;
47 
48 	nval = *addr;
49 	do {
50 		val = nval;
51 		if (val & mask_to_set)
52 			return -EBUSY;
53 		cpu_relax();
54 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
55 
56 	return 0;
57 }
58 
59 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
60 {
61 	unsigned long val, nval;
62 
63 	nval = *addr;
64 	do {
65 		val = nval;
66 		if ((val & mask_to_clear) != mask_to_clear)
67 			return -EBUSY;
68 		cpu_relax();
69 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
70 
71 	return 0;
72 }
73 
74 /*
75  * bitmap_set_ll - set the specified number of bits at the specified position
76  * @map: pointer to a bitmap
77  * @start: a bit position in @map
78  * @nr: number of bits to set
79  *
80  * Set @nr bits start from @start in @map lock-lessly. Several users
81  * can set/clear the same bitmap simultaneously without lock. If two
82  * users set the same bit, one user will return remain bits, otherwise
83  * return 0.
84  */
85 static int bitmap_set_ll(unsigned long *map, int start, int nr)
86 {
87 	unsigned long *p = map + BIT_WORD(start);
88 	const int size = start + nr;
89 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
90 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
91 
92 	while (nr - bits_to_set >= 0) {
93 		if (set_bits_ll(p, mask_to_set))
94 			return nr;
95 		nr -= bits_to_set;
96 		bits_to_set = BITS_PER_LONG;
97 		mask_to_set = ~0UL;
98 		p++;
99 	}
100 	if (nr) {
101 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102 		if (set_bits_ll(p, mask_to_set))
103 			return nr;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * bitmap_clear_ll - clear the specified number of bits at the specified position
111  * @map: pointer to a bitmap
112  * @start: a bit position in @map
113  * @nr: number of bits to set
114  *
115  * Clear @nr bits start from @start in @map lock-lessly. Several users
116  * can set/clear the same bitmap simultaneously without lock. If two
117  * users clear the same bit, one user will return remain bits,
118  * otherwise return 0.
119  */
120 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
121 {
122 	unsigned long *p = map + BIT_WORD(start);
123 	const int size = start + nr;
124 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126 
127 	while (nr - bits_to_clear >= 0) {
128 		if (clear_bits_ll(p, mask_to_clear))
129 			return nr;
130 		nr -= bits_to_clear;
131 		bits_to_clear = BITS_PER_LONG;
132 		mask_to_clear = ~0UL;
133 		p++;
134 	}
135 	if (nr) {
136 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137 		if (clear_bits_ll(p, mask_to_clear))
138 			return nr;
139 	}
140 
141 	return 0;
142 }
143 
144 /**
145  * gen_pool_create - create a new special memory pool
146  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147  * @nid: node id of the node the pool structure should be allocated on, or -1
148  *
149  * Create a new special memory pool that can be used to manage special purpose
150  * memory not managed by the regular kmalloc/kfree interface.
151  */
152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153 {
154 	struct gen_pool *pool;
155 
156 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157 	if (pool != NULL) {
158 		spin_lock_init(&pool->lock);
159 		INIT_LIST_HEAD(&pool->chunks);
160 		pool->min_alloc_order = min_alloc_order;
161 		pool->algo = gen_pool_first_fit;
162 		pool->data = NULL;
163 	}
164 	return pool;
165 }
166 EXPORT_SYMBOL(gen_pool_create);
167 
168 /**
169  * gen_pool_add_virt - add a new chunk of special memory to the pool
170  * @pool: pool to add new memory chunk to
171  * @virt: virtual starting address of memory chunk to add to pool
172  * @phys: physical starting address of memory chunk to add to pool
173  * @size: size in bytes of the memory chunk to add to pool
174  * @nid: node id of the node the chunk structure and bitmap should be
175  *       allocated on, or -1
176  *
177  * Add a new chunk of special memory to the specified pool.
178  *
179  * Returns 0 on success or a -ve errno on failure.
180  */
181 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
182 		 size_t size, int nid)
183 {
184 	struct gen_pool_chunk *chunk;
185 	int nbits = size >> pool->min_alloc_order;
186 	int nbytes = sizeof(struct gen_pool_chunk) +
187 				BITS_TO_LONGS(nbits) * sizeof(long);
188 
189 	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
190 	if (unlikely(chunk == NULL))
191 		return -ENOMEM;
192 
193 	chunk->phys_addr = phys;
194 	chunk->start_addr = virt;
195 	chunk->end_addr = virt + size - 1;
196 	atomic_set(&chunk->avail, size);
197 
198 	spin_lock(&pool->lock);
199 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
200 	spin_unlock(&pool->lock);
201 
202 	return 0;
203 }
204 EXPORT_SYMBOL(gen_pool_add_virt);
205 
206 /**
207  * gen_pool_virt_to_phys - return the physical address of memory
208  * @pool: pool to allocate from
209  * @addr: starting address of memory
210  *
211  * Returns the physical address on success, or -1 on error.
212  */
213 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
214 {
215 	struct gen_pool_chunk *chunk;
216 	phys_addr_t paddr = -1;
217 
218 	rcu_read_lock();
219 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
220 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
221 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
222 			break;
223 		}
224 	}
225 	rcu_read_unlock();
226 
227 	return paddr;
228 }
229 EXPORT_SYMBOL(gen_pool_virt_to_phys);
230 
231 /**
232  * gen_pool_destroy - destroy a special memory pool
233  * @pool: pool to destroy
234  *
235  * Destroy the specified special memory pool. Verifies that there are no
236  * outstanding allocations.
237  */
238 void gen_pool_destroy(struct gen_pool *pool)
239 {
240 	struct list_head *_chunk, *_next_chunk;
241 	struct gen_pool_chunk *chunk;
242 	int order = pool->min_alloc_order;
243 	int bit, end_bit;
244 
245 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
246 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
247 		list_del(&chunk->next_chunk);
248 
249 		end_bit = chunk_size(chunk) >> order;
250 		bit = find_next_bit(chunk->bits, end_bit, 0);
251 		BUG_ON(bit < end_bit);
252 
253 		kfree(chunk);
254 	}
255 	kfree(pool);
256 	return;
257 }
258 EXPORT_SYMBOL(gen_pool_destroy);
259 
260 /**
261  * gen_pool_alloc - allocate special memory from the pool
262  * @pool: pool to allocate from
263  * @size: number of bytes to allocate from the pool
264  *
265  * Allocate the requested number of bytes from the specified pool.
266  * Uses the pool allocation function (with first-fit algorithm by default).
267  * Can not be used in NMI handler on architectures without
268  * NMI-safe cmpxchg implementation.
269  */
270 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
271 {
272 	struct gen_pool_chunk *chunk;
273 	unsigned long addr = 0;
274 	int order = pool->min_alloc_order;
275 	int nbits, start_bit = 0, end_bit, remain;
276 
277 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
278 	BUG_ON(in_nmi());
279 #endif
280 
281 	if (size == 0)
282 		return 0;
283 
284 	nbits = (size + (1UL << order) - 1) >> order;
285 	rcu_read_lock();
286 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
287 		if (size > atomic_read(&chunk->avail))
288 			continue;
289 
290 		end_bit = chunk_size(chunk) >> order;
291 retry:
292 		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
293 				pool->data);
294 		if (start_bit >= end_bit)
295 			continue;
296 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
297 		if (remain) {
298 			remain = bitmap_clear_ll(chunk->bits, start_bit,
299 						 nbits - remain);
300 			BUG_ON(remain);
301 			goto retry;
302 		}
303 
304 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
305 		size = nbits << order;
306 		atomic_sub(size, &chunk->avail);
307 		break;
308 	}
309 	rcu_read_unlock();
310 	return addr;
311 }
312 EXPORT_SYMBOL(gen_pool_alloc);
313 
314 /**
315  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
316  * @pool: pool to allocate from
317  * @size: number of bytes to allocate from the pool
318  * @dma: dma-view physical address return value.  Use NULL if unneeded.
319  *
320  * Allocate the requested number of bytes from the specified pool.
321  * Uses the pool allocation function (with first-fit algorithm by default).
322  * Can not be used in NMI handler on architectures without
323  * NMI-safe cmpxchg implementation.
324  */
325 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
326 {
327 	unsigned long vaddr;
328 
329 	if (!pool)
330 		return NULL;
331 
332 	vaddr = gen_pool_alloc(pool, size);
333 	if (!vaddr)
334 		return NULL;
335 
336 	if (dma)
337 		*dma = gen_pool_virt_to_phys(pool, vaddr);
338 
339 	return (void *)vaddr;
340 }
341 EXPORT_SYMBOL(gen_pool_dma_alloc);
342 
343 /**
344  * gen_pool_free - free allocated special memory back to the pool
345  * @pool: pool to free to
346  * @addr: starting address of memory to free back to pool
347  * @size: size in bytes of memory to free
348  *
349  * Free previously allocated special memory back to the specified
350  * pool.  Can not be used in NMI handler on architectures without
351  * NMI-safe cmpxchg implementation.
352  */
353 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
354 {
355 	struct gen_pool_chunk *chunk;
356 	int order = pool->min_alloc_order;
357 	int start_bit, nbits, remain;
358 
359 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
360 	BUG_ON(in_nmi());
361 #endif
362 
363 	nbits = (size + (1UL << order) - 1) >> order;
364 	rcu_read_lock();
365 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
366 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
367 			BUG_ON(addr + size - 1 > chunk->end_addr);
368 			start_bit = (addr - chunk->start_addr) >> order;
369 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
370 			BUG_ON(remain);
371 			size = nbits << order;
372 			atomic_add(size, &chunk->avail);
373 			rcu_read_unlock();
374 			return;
375 		}
376 	}
377 	rcu_read_unlock();
378 	BUG();
379 }
380 EXPORT_SYMBOL(gen_pool_free);
381 
382 /**
383  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
384  * @pool:	the generic memory pool
385  * @func:	func to call
386  * @data:	additional data used by @func
387  *
388  * Call @func for every chunk of generic memory pool.  The @func is
389  * called with rcu_read_lock held.
390  */
391 void gen_pool_for_each_chunk(struct gen_pool *pool,
392 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
393 	void *data)
394 {
395 	struct gen_pool_chunk *chunk;
396 
397 	rcu_read_lock();
398 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
399 		func(pool, chunk, data);
400 	rcu_read_unlock();
401 }
402 EXPORT_SYMBOL(gen_pool_for_each_chunk);
403 
404 /**
405  * addr_in_gen_pool - checks if an address falls within the range of a pool
406  * @pool:	the generic memory pool
407  * @start:	start address
408  * @size:	size of the region
409  *
410  * Check if the range of addresses falls within the specified pool. Returns
411  * true if the entire range is contained in the pool and false otherwise.
412  */
413 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
414 			size_t size)
415 {
416 	bool found = false;
417 	unsigned long end = start + size - 1;
418 	struct gen_pool_chunk *chunk;
419 
420 	rcu_read_lock();
421 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
422 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
423 			if (end <= chunk->end_addr) {
424 				found = true;
425 				break;
426 			}
427 		}
428 	}
429 	rcu_read_unlock();
430 	return found;
431 }
432 
433 /**
434  * gen_pool_avail - get available free space of the pool
435  * @pool: pool to get available free space
436  *
437  * Return available free space of the specified pool.
438  */
439 size_t gen_pool_avail(struct gen_pool *pool)
440 {
441 	struct gen_pool_chunk *chunk;
442 	size_t avail = 0;
443 
444 	rcu_read_lock();
445 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
446 		avail += atomic_read(&chunk->avail);
447 	rcu_read_unlock();
448 	return avail;
449 }
450 EXPORT_SYMBOL_GPL(gen_pool_avail);
451 
452 /**
453  * gen_pool_size - get size in bytes of memory managed by the pool
454  * @pool: pool to get size
455  *
456  * Return size in bytes of memory managed by the pool.
457  */
458 size_t gen_pool_size(struct gen_pool *pool)
459 {
460 	struct gen_pool_chunk *chunk;
461 	size_t size = 0;
462 
463 	rcu_read_lock();
464 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
465 		size += chunk_size(chunk);
466 	rcu_read_unlock();
467 	return size;
468 }
469 EXPORT_SYMBOL_GPL(gen_pool_size);
470 
471 /**
472  * gen_pool_set_algo - set the allocation algorithm
473  * @pool: pool to change allocation algorithm
474  * @algo: custom algorithm function
475  * @data: additional data used by @algo
476  *
477  * Call @algo for each memory allocation in the pool.
478  * If @algo is NULL use gen_pool_first_fit as default
479  * memory allocation function.
480  */
481 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
482 {
483 	rcu_read_lock();
484 
485 	pool->algo = algo;
486 	if (!pool->algo)
487 		pool->algo = gen_pool_first_fit;
488 
489 	pool->data = data;
490 
491 	rcu_read_unlock();
492 }
493 EXPORT_SYMBOL(gen_pool_set_algo);
494 
495 /**
496  * gen_pool_first_fit - find the first available region
497  * of memory matching the size requirement (no alignment constraint)
498  * @map: The address to base the search on
499  * @size: The bitmap size in bits
500  * @start: The bitnumber to start searching at
501  * @nr: The number of zeroed bits we're looking for
502  * @data: additional data - unused
503  */
504 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
505 		unsigned long start, unsigned int nr, void *data)
506 {
507 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
508 }
509 EXPORT_SYMBOL(gen_pool_first_fit);
510 
511 /**
512  * gen_pool_first_fit_order_align - find the first available region
513  * of memory matching the size requirement. The region will be aligned
514  * to the order of the size specified.
515  * @map: The address to base the search on
516  * @size: The bitmap size in bits
517  * @start: The bitnumber to start searching at
518  * @nr: The number of zeroed bits we're looking for
519  * @data: additional data - unused
520  */
521 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
522 		unsigned long size, unsigned long start,
523 		unsigned int nr, void *data)
524 {
525 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
526 
527 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
528 }
529 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
530 
531 /**
532  * gen_pool_best_fit - find the best fitting region of memory
533  * macthing the size requirement (no alignment constraint)
534  * @map: The address to base the search on
535  * @size: The bitmap size in bits
536  * @start: The bitnumber to start searching at
537  * @nr: The number of zeroed bits we're looking for
538  * @data: additional data - unused
539  *
540  * Iterate over the bitmap to find the smallest free region
541  * which we can allocate the memory.
542  */
543 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
544 		unsigned long start, unsigned int nr, void *data)
545 {
546 	unsigned long start_bit = size;
547 	unsigned long len = size + 1;
548 	unsigned long index;
549 
550 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
551 
552 	while (index < size) {
553 		int next_bit = find_next_bit(map, size, index + nr);
554 		if ((next_bit - index) < len) {
555 			len = next_bit - index;
556 			start_bit = index;
557 			if (len == nr)
558 				return start_bit;
559 		}
560 		index = bitmap_find_next_zero_area(map, size,
561 						   next_bit + 1, nr, 0);
562 	}
563 
564 	return start_bit;
565 }
566 EXPORT_SYMBOL(gen_pool_best_fit);
567 
568 static void devm_gen_pool_release(struct device *dev, void *res)
569 {
570 	gen_pool_destroy(*(struct gen_pool **)res);
571 }
572 
573 /**
574  * devm_gen_pool_create - managed gen_pool_create
575  * @dev: device that provides the gen_pool
576  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
577  * @nid: node id of the node the pool structure should be allocated on, or -1
578  *
579  * Create a new special memory pool that can be used to manage special purpose
580  * memory not managed by the regular kmalloc/kfree interface. The pool will be
581  * automatically destroyed by the device management code.
582  */
583 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
584 		int nid)
585 {
586 	struct gen_pool **ptr, *pool;
587 
588 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
589 	if (!ptr)
590 		return NULL;
591 
592 	pool = gen_pool_create(min_alloc_order, nid);
593 	if (pool) {
594 		*ptr = pool;
595 		devres_add(dev, ptr);
596 	} else {
597 		devres_free(ptr);
598 	}
599 
600 	return pool;
601 }
602 EXPORT_SYMBOL(devm_gen_pool_create);
603 
604 /**
605  * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
606  * @dev: device to retrieve the gen_pool from
607  *
608  * Returns the gen_pool for the device if one is present, or NULL.
609  */
610 struct gen_pool *dev_get_gen_pool(struct device *dev)
611 {
612 	struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
613 					NULL);
614 
615 	if (!p)
616 		return NULL;
617 	return *p;
618 }
619 EXPORT_SYMBOL_GPL(dev_get_gen_pool);
620 
621 #ifdef CONFIG_OF
622 /**
623  * of_get_named_gen_pool - find a pool by phandle property
624  * @np: device node
625  * @propname: property name containing phandle(s)
626  * @index: index into the phandle array
627  *
628  * Returns the pool that contains the chunk starting at the physical
629  * address of the device tree node pointed at by the phandle property,
630  * or NULL if not found.
631  */
632 struct gen_pool *of_get_named_gen_pool(struct device_node *np,
633 	const char *propname, int index)
634 {
635 	struct platform_device *pdev;
636 	struct device_node *np_pool;
637 
638 	np_pool = of_parse_phandle(np, propname, index);
639 	if (!np_pool)
640 		return NULL;
641 	pdev = of_find_device_by_node(np_pool);
642 	of_node_put(np_pool);
643 	if (!pdev)
644 		return NULL;
645 	return dev_get_gen_pool(&pdev->dev);
646 }
647 EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
648 #endif /* CONFIG_OF */
649