1 /* 2 * Basic general purpose allocator for managing special purpose 3 * memory, for example, memory that is not managed by the regular 4 * kmalloc/kfree interface. Uses for this includes on-device special 5 * memory, uncached memory etc. 6 * 7 * It is safe to use the allocator in NMI handlers and other special 8 * unblockable contexts that could otherwise deadlock on locks. This 9 * is implemented by using atomic operations and retries on any 10 * conflicts. The disadvantage is that there may be livelocks in 11 * extreme cases. For better scalability, one allocator can be used 12 * for each CPU. 13 * 14 * The lockless operation only works if there is enough memory 15 * available. If new memory is added to the pool a lock has to be 16 * still taken. So any user relying on locklessness has to ensure 17 * that sufficient memory is preallocated. 18 * 19 * The basic atomic operation of this allocator is cmpxchg on long. 20 * On architectures that don't have NMI-safe cmpxchg implementation, 21 * the allocator can NOT be used in NMI handler. So code uses the 22 * allocator in NMI handler should depend on 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 24 * 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 26 * 27 * This source code is licensed under the GNU General Public License, 28 * Version 2. See the file COPYING for more details. 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/export.h> 33 #include <linux/bitmap.h> 34 #include <linux/rculist.h> 35 #include <linux/interrupt.h> 36 #include <linux/genalloc.h> 37 #include <linux/of_device.h> 38 39 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 40 { 41 return chunk->end_addr - chunk->start_addr + 1; 42 } 43 44 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 45 { 46 unsigned long val, nval; 47 48 nval = *addr; 49 do { 50 val = nval; 51 if (val & mask_to_set) 52 return -EBUSY; 53 cpu_relax(); 54 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 55 56 return 0; 57 } 58 59 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 60 { 61 unsigned long val, nval; 62 63 nval = *addr; 64 do { 65 val = nval; 66 if ((val & mask_to_clear) != mask_to_clear) 67 return -EBUSY; 68 cpu_relax(); 69 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 70 71 return 0; 72 } 73 74 /* 75 * bitmap_set_ll - set the specified number of bits at the specified position 76 * @map: pointer to a bitmap 77 * @start: a bit position in @map 78 * @nr: number of bits to set 79 * 80 * Set @nr bits start from @start in @map lock-lessly. Several users 81 * can set/clear the same bitmap simultaneously without lock. If two 82 * users set the same bit, one user will return remain bits, otherwise 83 * return 0. 84 */ 85 static int bitmap_set_ll(unsigned long *map, int start, int nr) 86 { 87 unsigned long *p = map + BIT_WORD(start); 88 const int size = start + nr; 89 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 90 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 91 92 while (nr - bits_to_set >= 0) { 93 if (set_bits_ll(p, mask_to_set)) 94 return nr; 95 nr -= bits_to_set; 96 bits_to_set = BITS_PER_LONG; 97 mask_to_set = ~0UL; 98 p++; 99 } 100 if (nr) { 101 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 102 if (set_bits_ll(p, mask_to_set)) 103 return nr; 104 } 105 106 return 0; 107 } 108 109 /* 110 * bitmap_clear_ll - clear the specified number of bits at the specified position 111 * @map: pointer to a bitmap 112 * @start: a bit position in @map 113 * @nr: number of bits to set 114 * 115 * Clear @nr bits start from @start in @map lock-lessly. Several users 116 * can set/clear the same bitmap simultaneously without lock. If two 117 * users clear the same bit, one user will return remain bits, 118 * otherwise return 0. 119 */ 120 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 121 { 122 unsigned long *p = map + BIT_WORD(start); 123 const int size = start + nr; 124 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 125 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 126 127 while (nr - bits_to_clear >= 0) { 128 if (clear_bits_ll(p, mask_to_clear)) 129 return nr; 130 nr -= bits_to_clear; 131 bits_to_clear = BITS_PER_LONG; 132 mask_to_clear = ~0UL; 133 p++; 134 } 135 if (nr) { 136 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 137 if (clear_bits_ll(p, mask_to_clear)) 138 return nr; 139 } 140 141 return 0; 142 } 143 144 /** 145 * gen_pool_create - create a new special memory pool 146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 147 * @nid: node id of the node the pool structure should be allocated on, or -1 148 * 149 * Create a new special memory pool that can be used to manage special purpose 150 * memory not managed by the regular kmalloc/kfree interface. 151 */ 152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 153 { 154 struct gen_pool *pool; 155 156 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 157 if (pool != NULL) { 158 spin_lock_init(&pool->lock); 159 INIT_LIST_HEAD(&pool->chunks); 160 pool->min_alloc_order = min_alloc_order; 161 pool->algo = gen_pool_first_fit; 162 pool->data = NULL; 163 } 164 return pool; 165 } 166 EXPORT_SYMBOL(gen_pool_create); 167 168 /** 169 * gen_pool_add_virt - add a new chunk of special memory to the pool 170 * @pool: pool to add new memory chunk to 171 * @virt: virtual starting address of memory chunk to add to pool 172 * @phys: physical starting address of memory chunk to add to pool 173 * @size: size in bytes of the memory chunk to add to pool 174 * @nid: node id of the node the chunk structure and bitmap should be 175 * allocated on, or -1 176 * 177 * Add a new chunk of special memory to the specified pool. 178 * 179 * Returns 0 on success or a -ve errno on failure. 180 */ 181 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 182 size_t size, int nid) 183 { 184 struct gen_pool_chunk *chunk; 185 int nbits = size >> pool->min_alloc_order; 186 int nbytes = sizeof(struct gen_pool_chunk) + 187 BITS_TO_LONGS(nbits) * sizeof(long); 188 189 chunk = kzalloc_node(nbytes, GFP_KERNEL, nid); 190 if (unlikely(chunk == NULL)) 191 return -ENOMEM; 192 193 chunk->phys_addr = phys; 194 chunk->start_addr = virt; 195 chunk->end_addr = virt + size - 1; 196 atomic_set(&chunk->avail, size); 197 198 spin_lock(&pool->lock); 199 list_add_rcu(&chunk->next_chunk, &pool->chunks); 200 spin_unlock(&pool->lock); 201 202 return 0; 203 } 204 EXPORT_SYMBOL(gen_pool_add_virt); 205 206 /** 207 * gen_pool_virt_to_phys - return the physical address of memory 208 * @pool: pool to allocate from 209 * @addr: starting address of memory 210 * 211 * Returns the physical address on success, or -1 on error. 212 */ 213 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 214 { 215 struct gen_pool_chunk *chunk; 216 phys_addr_t paddr = -1; 217 218 rcu_read_lock(); 219 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 220 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 221 paddr = chunk->phys_addr + (addr - chunk->start_addr); 222 break; 223 } 224 } 225 rcu_read_unlock(); 226 227 return paddr; 228 } 229 EXPORT_SYMBOL(gen_pool_virt_to_phys); 230 231 /** 232 * gen_pool_destroy - destroy a special memory pool 233 * @pool: pool to destroy 234 * 235 * Destroy the specified special memory pool. Verifies that there are no 236 * outstanding allocations. 237 */ 238 void gen_pool_destroy(struct gen_pool *pool) 239 { 240 struct list_head *_chunk, *_next_chunk; 241 struct gen_pool_chunk *chunk; 242 int order = pool->min_alloc_order; 243 int bit, end_bit; 244 245 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 246 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 247 list_del(&chunk->next_chunk); 248 249 end_bit = chunk_size(chunk) >> order; 250 bit = find_next_bit(chunk->bits, end_bit, 0); 251 BUG_ON(bit < end_bit); 252 253 kfree(chunk); 254 } 255 kfree(pool); 256 return; 257 } 258 EXPORT_SYMBOL(gen_pool_destroy); 259 260 /** 261 * gen_pool_alloc - allocate special memory from the pool 262 * @pool: pool to allocate from 263 * @size: number of bytes to allocate from the pool 264 * 265 * Allocate the requested number of bytes from the specified pool. 266 * Uses the pool allocation function (with first-fit algorithm by default). 267 * Can not be used in NMI handler on architectures without 268 * NMI-safe cmpxchg implementation. 269 */ 270 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) 271 { 272 struct gen_pool_chunk *chunk; 273 unsigned long addr = 0; 274 int order = pool->min_alloc_order; 275 int nbits, start_bit = 0, end_bit, remain; 276 277 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 278 BUG_ON(in_nmi()); 279 #endif 280 281 if (size == 0) 282 return 0; 283 284 nbits = (size + (1UL << order) - 1) >> order; 285 rcu_read_lock(); 286 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 287 if (size > atomic_read(&chunk->avail)) 288 continue; 289 290 end_bit = chunk_size(chunk) >> order; 291 retry: 292 start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits, 293 pool->data); 294 if (start_bit >= end_bit) 295 continue; 296 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 297 if (remain) { 298 remain = bitmap_clear_ll(chunk->bits, start_bit, 299 nbits - remain); 300 BUG_ON(remain); 301 goto retry; 302 } 303 304 addr = chunk->start_addr + ((unsigned long)start_bit << order); 305 size = nbits << order; 306 atomic_sub(size, &chunk->avail); 307 break; 308 } 309 rcu_read_unlock(); 310 return addr; 311 } 312 EXPORT_SYMBOL(gen_pool_alloc); 313 314 /** 315 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 316 * @pool: pool to allocate from 317 * @size: number of bytes to allocate from the pool 318 * @dma: dma-view physical address return value. Use NULL if unneeded. 319 * 320 * Allocate the requested number of bytes from the specified pool. 321 * Uses the pool allocation function (with first-fit algorithm by default). 322 * Can not be used in NMI handler on architectures without 323 * NMI-safe cmpxchg implementation. 324 */ 325 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 326 { 327 unsigned long vaddr; 328 329 if (!pool) 330 return NULL; 331 332 vaddr = gen_pool_alloc(pool, size); 333 if (!vaddr) 334 return NULL; 335 336 if (dma) 337 *dma = gen_pool_virt_to_phys(pool, vaddr); 338 339 return (void *)vaddr; 340 } 341 EXPORT_SYMBOL(gen_pool_dma_alloc); 342 343 /** 344 * gen_pool_free - free allocated special memory back to the pool 345 * @pool: pool to free to 346 * @addr: starting address of memory to free back to pool 347 * @size: size in bytes of memory to free 348 * 349 * Free previously allocated special memory back to the specified 350 * pool. Can not be used in NMI handler on architectures without 351 * NMI-safe cmpxchg implementation. 352 */ 353 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) 354 { 355 struct gen_pool_chunk *chunk; 356 int order = pool->min_alloc_order; 357 int start_bit, nbits, remain; 358 359 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 360 BUG_ON(in_nmi()); 361 #endif 362 363 nbits = (size + (1UL << order) - 1) >> order; 364 rcu_read_lock(); 365 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 366 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 367 BUG_ON(addr + size - 1 > chunk->end_addr); 368 start_bit = (addr - chunk->start_addr) >> order; 369 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 370 BUG_ON(remain); 371 size = nbits << order; 372 atomic_add(size, &chunk->avail); 373 rcu_read_unlock(); 374 return; 375 } 376 } 377 rcu_read_unlock(); 378 BUG(); 379 } 380 EXPORT_SYMBOL(gen_pool_free); 381 382 /** 383 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 384 * @pool: the generic memory pool 385 * @func: func to call 386 * @data: additional data used by @func 387 * 388 * Call @func for every chunk of generic memory pool. The @func is 389 * called with rcu_read_lock held. 390 */ 391 void gen_pool_for_each_chunk(struct gen_pool *pool, 392 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 393 void *data) 394 { 395 struct gen_pool_chunk *chunk; 396 397 rcu_read_lock(); 398 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 399 func(pool, chunk, data); 400 rcu_read_unlock(); 401 } 402 EXPORT_SYMBOL(gen_pool_for_each_chunk); 403 404 /** 405 * addr_in_gen_pool - checks if an address falls within the range of a pool 406 * @pool: the generic memory pool 407 * @start: start address 408 * @size: size of the region 409 * 410 * Check if the range of addresses falls within the specified pool. Returns 411 * true if the entire range is contained in the pool and false otherwise. 412 */ 413 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start, 414 size_t size) 415 { 416 bool found = false; 417 unsigned long end = start + size - 1; 418 struct gen_pool_chunk *chunk; 419 420 rcu_read_lock(); 421 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 422 if (start >= chunk->start_addr && start <= chunk->end_addr) { 423 if (end <= chunk->end_addr) { 424 found = true; 425 break; 426 } 427 } 428 } 429 rcu_read_unlock(); 430 return found; 431 } 432 433 /** 434 * gen_pool_avail - get available free space of the pool 435 * @pool: pool to get available free space 436 * 437 * Return available free space of the specified pool. 438 */ 439 size_t gen_pool_avail(struct gen_pool *pool) 440 { 441 struct gen_pool_chunk *chunk; 442 size_t avail = 0; 443 444 rcu_read_lock(); 445 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 446 avail += atomic_read(&chunk->avail); 447 rcu_read_unlock(); 448 return avail; 449 } 450 EXPORT_SYMBOL_GPL(gen_pool_avail); 451 452 /** 453 * gen_pool_size - get size in bytes of memory managed by the pool 454 * @pool: pool to get size 455 * 456 * Return size in bytes of memory managed by the pool. 457 */ 458 size_t gen_pool_size(struct gen_pool *pool) 459 { 460 struct gen_pool_chunk *chunk; 461 size_t size = 0; 462 463 rcu_read_lock(); 464 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 465 size += chunk_size(chunk); 466 rcu_read_unlock(); 467 return size; 468 } 469 EXPORT_SYMBOL_GPL(gen_pool_size); 470 471 /** 472 * gen_pool_set_algo - set the allocation algorithm 473 * @pool: pool to change allocation algorithm 474 * @algo: custom algorithm function 475 * @data: additional data used by @algo 476 * 477 * Call @algo for each memory allocation in the pool. 478 * If @algo is NULL use gen_pool_first_fit as default 479 * memory allocation function. 480 */ 481 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 482 { 483 rcu_read_lock(); 484 485 pool->algo = algo; 486 if (!pool->algo) 487 pool->algo = gen_pool_first_fit; 488 489 pool->data = data; 490 491 rcu_read_unlock(); 492 } 493 EXPORT_SYMBOL(gen_pool_set_algo); 494 495 /** 496 * gen_pool_first_fit - find the first available region 497 * of memory matching the size requirement (no alignment constraint) 498 * @map: The address to base the search on 499 * @size: The bitmap size in bits 500 * @start: The bitnumber to start searching at 501 * @nr: The number of zeroed bits we're looking for 502 * @data: additional data - unused 503 */ 504 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 505 unsigned long start, unsigned int nr, void *data) 506 { 507 return bitmap_find_next_zero_area(map, size, start, nr, 0); 508 } 509 EXPORT_SYMBOL(gen_pool_first_fit); 510 511 /** 512 * gen_pool_first_fit_order_align - find the first available region 513 * of memory matching the size requirement. The region will be aligned 514 * to the order of the size specified. 515 * @map: The address to base the search on 516 * @size: The bitmap size in bits 517 * @start: The bitnumber to start searching at 518 * @nr: The number of zeroed bits we're looking for 519 * @data: additional data - unused 520 */ 521 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 522 unsigned long size, unsigned long start, 523 unsigned int nr, void *data) 524 { 525 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 526 527 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 528 } 529 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 530 531 /** 532 * gen_pool_best_fit - find the best fitting region of memory 533 * macthing the size requirement (no alignment constraint) 534 * @map: The address to base the search on 535 * @size: The bitmap size in bits 536 * @start: The bitnumber to start searching at 537 * @nr: The number of zeroed bits we're looking for 538 * @data: additional data - unused 539 * 540 * Iterate over the bitmap to find the smallest free region 541 * which we can allocate the memory. 542 */ 543 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 544 unsigned long start, unsigned int nr, void *data) 545 { 546 unsigned long start_bit = size; 547 unsigned long len = size + 1; 548 unsigned long index; 549 550 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 551 552 while (index < size) { 553 int next_bit = find_next_bit(map, size, index + nr); 554 if ((next_bit - index) < len) { 555 len = next_bit - index; 556 start_bit = index; 557 if (len == nr) 558 return start_bit; 559 } 560 index = bitmap_find_next_zero_area(map, size, 561 next_bit + 1, nr, 0); 562 } 563 564 return start_bit; 565 } 566 EXPORT_SYMBOL(gen_pool_best_fit); 567 568 static void devm_gen_pool_release(struct device *dev, void *res) 569 { 570 gen_pool_destroy(*(struct gen_pool **)res); 571 } 572 573 /** 574 * devm_gen_pool_create - managed gen_pool_create 575 * @dev: device that provides the gen_pool 576 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 577 * @nid: node id of the node the pool structure should be allocated on, or -1 578 * 579 * Create a new special memory pool that can be used to manage special purpose 580 * memory not managed by the regular kmalloc/kfree interface. The pool will be 581 * automatically destroyed by the device management code. 582 */ 583 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 584 int nid) 585 { 586 struct gen_pool **ptr, *pool; 587 588 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 589 if (!ptr) 590 return NULL; 591 592 pool = gen_pool_create(min_alloc_order, nid); 593 if (pool) { 594 *ptr = pool; 595 devres_add(dev, ptr); 596 } else { 597 devres_free(ptr); 598 } 599 600 return pool; 601 } 602 EXPORT_SYMBOL(devm_gen_pool_create); 603 604 /** 605 * dev_get_gen_pool - Obtain the gen_pool (if any) for a device 606 * @dev: device to retrieve the gen_pool from 607 * 608 * Returns the gen_pool for the device if one is present, or NULL. 609 */ 610 struct gen_pool *dev_get_gen_pool(struct device *dev) 611 { 612 struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL, 613 NULL); 614 615 if (!p) 616 return NULL; 617 return *p; 618 } 619 EXPORT_SYMBOL_GPL(dev_get_gen_pool); 620 621 #ifdef CONFIG_OF 622 /** 623 * of_get_named_gen_pool - find a pool by phandle property 624 * @np: device node 625 * @propname: property name containing phandle(s) 626 * @index: index into the phandle array 627 * 628 * Returns the pool that contains the chunk starting at the physical 629 * address of the device tree node pointed at by the phandle property, 630 * or NULL if not found. 631 */ 632 struct gen_pool *of_get_named_gen_pool(struct device_node *np, 633 const char *propname, int index) 634 { 635 struct platform_device *pdev; 636 struct device_node *np_pool; 637 638 np_pool = of_parse_phandle(np, propname, index); 639 if (!np_pool) 640 return NULL; 641 pdev = of_find_device_by_node(np_pool); 642 of_node_put(np_pool); 643 if (!pdev) 644 return NULL; 645 return dev_get_gen_pool(&pdev->dev); 646 } 647 EXPORT_SYMBOL_GPL(of_get_named_gen_pool); 648 #endif /* CONFIG_OF */ 649