xref: /openbmc/linux/lib/genalloc.c (revision 7e60e389)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Basic general purpose allocator for managing special purpose
4  * memory, for example, memory that is not managed by the regular
5  * kmalloc/kfree interface.  Uses for this includes on-device special
6  * memory, uncached memory etc.
7  *
8  * It is safe to use the allocator in NMI handlers and other special
9  * unblockable contexts that could otherwise deadlock on locks.  This
10  * is implemented by using atomic operations and retries on any
11  * conflicts.  The disadvantage is that there may be livelocks in
12  * extreme cases.  For better scalability, one allocator can be used
13  * for each CPU.
14  *
15  * The lockless operation only works if there is enough memory
16  * available.  If new memory is added to the pool a lock has to be
17  * still taken.  So any user relying on locklessness has to ensure
18  * that sufficient memory is preallocated.
19  *
20  * The basic atomic operation of this allocator is cmpxchg on long.
21  * On architectures that don't have NMI-safe cmpxchg implementation,
22  * the allocator can NOT be used in NMI handler.  So code uses the
23  * allocator in NMI handler should depend on
24  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
25  *
26  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
27  */
28 
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/bitmap.h>
32 #include <linux/rculist.h>
33 #include <linux/interrupt.h>
34 #include <linux/genalloc.h>
35 #include <linux/of_device.h>
36 #include <linux/vmalloc.h>
37 
38 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
39 {
40 	return chunk->end_addr - chunk->start_addr + 1;
41 }
42 
43 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
44 {
45 	unsigned long val, nval;
46 
47 	nval = *addr;
48 	do {
49 		val = nval;
50 		if (val & mask_to_set)
51 			return -EBUSY;
52 		cpu_relax();
53 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
54 
55 	return 0;
56 }
57 
58 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
59 {
60 	unsigned long val, nval;
61 
62 	nval = *addr;
63 	do {
64 		val = nval;
65 		if ((val & mask_to_clear) != mask_to_clear)
66 			return -EBUSY;
67 		cpu_relax();
68 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
69 
70 	return 0;
71 }
72 
73 /*
74  * bitmap_set_ll - set the specified number of bits at the specified position
75  * @map: pointer to a bitmap
76  * @start: a bit position in @map
77  * @nr: number of bits to set
78  *
79  * Set @nr bits start from @start in @map lock-lessly. Several users
80  * can set/clear the same bitmap simultaneously without lock. If two
81  * users set the same bit, one user will return remain bits, otherwise
82  * return 0.
83  */
84 static int bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
85 {
86 	unsigned long *p = map + BIT_WORD(start);
87 	const unsigned long size = start + nr;
88 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
89 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
90 
91 	while (nr >= bits_to_set) {
92 		if (set_bits_ll(p, mask_to_set))
93 			return nr;
94 		nr -= bits_to_set;
95 		bits_to_set = BITS_PER_LONG;
96 		mask_to_set = ~0UL;
97 		p++;
98 	}
99 	if (nr) {
100 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
101 		if (set_bits_ll(p, mask_to_set))
102 			return nr;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * bitmap_clear_ll - clear the specified number of bits at the specified position
110  * @map: pointer to a bitmap
111  * @start: a bit position in @map
112  * @nr: number of bits to set
113  *
114  * Clear @nr bits start from @start in @map lock-lessly. Several users
115  * can set/clear the same bitmap simultaneously without lock. If two
116  * users clear the same bit, one user will return remain bits,
117  * otherwise return 0.
118  */
119 static unsigned long
120 bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
121 {
122 	unsigned long *p = map + BIT_WORD(start);
123 	const unsigned long size = start + nr;
124 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126 
127 	while (nr >= bits_to_clear) {
128 		if (clear_bits_ll(p, mask_to_clear))
129 			return nr;
130 		nr -= bits_to_clear;
131 		bits_to_clear = BITS_PER_LONG;
132 		mask_to_clear = ~0UL;
133 		p++;
134 	}
135 	if (nr) {
136 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137 		if (clear_bits_ll(p, mask_to_clear))
138 			return nr;
139 	}
140 
141 	return 0;
142 }
143 
144 /**
145  * gen_pool_create - create a new special memory pool
146  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147  * @nid: node id of the node the pool structure should be allocated on, or -1
148  *
149  * Create a new special memory pool that can be used to manage special purpose
150  * memory not managed by the regular kmalloc/kfree interface.
151  */
152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153 {
154 	struct gen_pool *pool;
155 
156 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157 	if (pool != NULL) {
158 		spin_lock_init(&pool->lock);
159 		INIT_LIST_HEAD(&pool->chunks);
160 		pool->min_alloc_order = min_alloc_order;
161 		pool->algo = gen_pool_first_fit;
162 		pool->data = NULL;
163 		pool->name = NULL;
164 	}
165 	return pool;
166 }
167 EXPORT_SYMBOL(gen_pool_create);
168 
169 /**
170  * gen_pool_add_owner- add a new chunk of special memory to the pool
171  * @pool: pool to add new memory chunk to
172  * @virt: virtual starting address of memory chunk to add to pool
173  * @phys: physical starting address of memory chunk to add to pool
174  * @size: size in bytes of the memory chunk to add to pool
175  * @nid: node id of the node the chunk structure and bitmap should be
176  *       allocated on, or -1
177  * @owner: private data the publisher would like to recall at alloc time
178  *
179  * Add a new chunk of special memory to the specified pool.
180  *
181  * Returns 0 on success or a -ve errno on failure.
182  */
183 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
184 		 size_t size, int nid, void *owner)
185 {
186 	struct gen_pool_chunk *chunk;
187 	unsigned long nbits = size >> pool->min_alloc_order;
188 	unsigned long nbytes = sizeof(struct gen_pool_chunk) +
189 				BITS_TO_LONGS(nbits) * sizeof(long);
190 
191 	chunk = vzalloc_node(nbytes, nid);
192 	if (unlikely(chunk == NULL))
193 		return -ENOMEM;
194 
195 	chunk->phys_addr = phys;
196 	chunk->start_addr = virt;
197 	chunk->end_addr = virt + size - 1;
198 	chunk->owner = owner;
199 	atomic_long_set(&chunk->avail, size);
200 
201 	spin_lock(&pool->lock);
202 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
203 	spin_unlock(&pool->lock);
204 
205 	return 0;
206 }
207 EXPORT_SYMBOL(gen_pool_add_owner);
208 
209 /**
210  * gen_pool_virt_to_phys - return the physical address of memory
211  * @pool: pool to allocate from
212  * @addr: starting address of memory
213  *
214  * Returns the physical address on success, or -1 on error.
215  */
216 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
217 {
218 	struct gen_pool_chunk *chunk;
219 	phys_addr_t paddr = -1;
220 
221 	rcu_read_lock();
222 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
223 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
224 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
225 			break;
226 		}
227 	}
228 	rcu_read_unlock();
229 
230 	return paddr;
231 }
232 EXPORT_SYMBOL(gen_pool_virt_to_phys);
233 
234 /**
235  * gen_pool_destroy - destroy a special memory pool
236  * @pool: pool to destroy
237  *
238  * Destroy the specified special memory pool. Verifies that there are no
239  * outstanding allocations.
240  */
241 void gen_pool_destroy(struct gen_pool *pool)
242 {
243 	struct list_head *_chunk, *_next_chunk;
244 	struct gen_pool_chunk *chunk;
245 	int order = pool->min_alloc_order;
246 	unsigned long bit, end_bit;
247 
248 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
249 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
250 		list_del(&chunk->next_chunk);
251 
252 		end_bit = chunk_size(chunk) >> order;
253 		bit = find_next_bit(chunk->bits, end_bit, 0);
254 		BUG_ON(bit < end_bit);
255 
256 		vfree(chunk);
257 	}
258 	kfree_const(pool->name);
259 	kfree(pool);
260 }
261 EXPORT_SYMBOL(gen_pool_destroy);
262 
263 /**
264  * gen_pool_alloc_algo_owner - allocate special memory from the pool
265  * @pool: pool to allocate from
266  * @size: number of bytes to allocate from the pool
267  * @algo: algorithm passed from caller
268  * @data: data passed to algorithm
269  * @owner: optionally retrieve the chunk owner
270  *
271  * Allocate the requested number of bytes from the specified pool.
272  * Uses the pool allocation function (with first-fit algorithm by default).
273  * Can not be used in NMI handler on architectures without
274  * NMI-safe cmpxchg implementation.
275  */
276 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
277 		genpool_algo_t algo, void *data, void **owner)
278 {
279 	struct gen_pool_chunk *chunk;
280 	unsigned long addr = 0;
281 	int order = pool->min_alloc_order;
282 	unsigned long nbits, start_bit, end_bit, remain;
283 
284 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
285 	BUG_ON(in_nmi());
286 #endif
287 
288 	if (owner)
289 		*owner = NULL;
290 
291 	if (size == 0)
292 		return 0;
293 
294 	nbits = (size + (1UL << order) - 1) >> order;
295 	rcu_read_lock();
296 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
297 		if (size > atomic_long_read(&chunk->avail))
298 			continue;
299 
300 		start_bit = 0;
301 		end_bit = chunk_size(chunk) >> order;
302 retry:
303 		start_bit = algo(chunk->bits, end_bit, start_bit,
304 				 nbits, data, pool, chunk->start_addr);
305 		if (start_bit >= end_bit)
306 			continue;
307 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
308 		if (remain) {
309 			remain = bitmap_clear_ll(chunk->bits, start_bit,
310 						 nbits - remain);
311 			BUG_ON(remain);
312 			goto retry;
313 		}
314 
315 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
316 		size = nbits << order;
317 		atomic_long_sub(size, &chunk->avail);
318 		if (owner)
319 			*owner = chunk->owner;
320 		break;
321 	}
322 	rcu_read_unlock();
323 	return addr;
324 }
325 EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
326 
327 /**
328  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
329  * @pool: pool to allocate from
330  * @size: number of bytes to allocate from the pool
331  * @dma: dma-view physical address return value.  Use %NULL if unneeded.
332  *
333  * Allocate the requested number of bytes from the specified pool.
334  * Uses the pool allocation function (with first-fit algorithm by default).
335  * Can not be used in NMI handler on architectures without
336  * NMI-safe cmpxchg implementation.
337  *
338  * Return: virtual address of the allocated memory, or %NULL on failure
339  */
340 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
341 {
342 	return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
343 }
344 EXPORT_SYMBOL(gen_pool_dma_alloc);
345 
346 /**
347  * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
348  * usage with the given pool algorithm
349  * @pool: pool to allocate from
350  * @size: number of bytes to allocate from the pool
351  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
352  * @algo: algorithm passed from caller
353  * @data: data passed to algorithm
354  *
355  * Allocate the requested number of bytes from the specified pool. Uses the
356  * given pool allocation function. Can not be used in NMI handler on
357  * architectures without NMI-safe cmpxchg implementation.
358  *
359  * Return: virtual address of the allocated memory, or %NULL on failure
360  */
361 void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
362 		dma_addr_t *dma, genpool_algo_t algo, void *data)
363 {
364 	unsigned long vaddr;
365 
366 	if (!pool)
367 		return NULL;
368 
369 	vaddr = gen_pool_alloc_algo(pool, size, algo, data);
370 	if (!vaddr)
371 		return NULL;
372 
373 	if (dma)
374 		*dma = gen_pool_virt_to_phys(pool, vaddr);
375 
376 	return (void *)vaddr;
377 }
378 EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
379 
380 /**
381  * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
382  * usage with the given alignment
383  * @pool: pool to allocate from
384  * @size: number of bytes to allocate from the pool
385  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
386  * @align: alignment in bytes for starting address
387  *
388  * Allocate the requested number bytes from the specified pool, with the given
389  * alignment restriction. Can not be used in NMI handler on architectures
390  * without NMI-safe cmpxchg implementation.
391  *
392  * Return: virtual address of the allocated memory, or %NULL on failure
393  */
394 void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
395 		dma_addr_t *dma, int align)
396 {
397 	struct genpool_data_align data = { .align = align };
398 
399 	return gen_pool_dma_alloc_algo(pool, size, dma,
400 			gen_pool_first_fit_align, &data);
401 }
402 EXPORT_SYMBOL(gen_pool_dma_alloc_align);
403 
404 /**
405  * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
406  * DMA usage
407  * @pool: pool to allocate from
408  * @size: number of bytes to allocate from the pool
409  * @dma: dma-view physical address return value.  Use %NULL if unneeded.
410  *
411  * Allocate the requested number of zeroed bytes from the specified pool.
412  * Uses the pool allocation function (with first-fit algorithm by default).
413  * Can not be used in NMI handler on architectures without
414  * NMI-safe cmpxchg implementation.
415  *
416  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
417  */
418 void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
419 {
420 	return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
421 }
422 EXPORT_SYMBOL(gen_pool_dma_zalloc);
423 
424 /**
425  * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
426  * DMA usage with the given pool algorithm
427  * @pool: pool to allocate from
428  * @size: number of bytes to allocate from the pool
429  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
430  * @algo: algorithm passed from caller
431  * @data: data passed to algorithm
432  *
433  * Allocate the requested number of zeroed bytes from the specified pool. Uses
434  * the given pool allocation function. Can not be used in NMI handler on
435  * architectures without NMI-safe cmpxchg implementation.
436  *
437  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
438  */
439 void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
440 		dma_addr_t *dma, genpool_algo_t algo, void *data)
441 {
442 	void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
443 
444 	if (vaddr)
445 		memset(vaddr, 0, size);
446 
447 	return vaddr;
448 }
449 EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
450 
451 /**
452  * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
453  * DMA usage with the given alignment
454  * @pool: pool to allocate from
455  * @size: number of bytes to allocate from the pool
456  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
457  * @align: alignment in bytes for starting address
458  *
459  * Allocate the requested number of zeroed bytes from the specified pool,
460  * with the given alignment restriction. Can not be used in NMI handler on
461  * architectures without NMI-safe cmpxchg implementation.
462  *
463  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
464  */
465 void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
466 		dma_addr_t *dma, int align)
467 {
468 	struct genpool_data_align data = { .align = align };
469 
470 	return gen_pool_dma_zalloc_algo(pool, size, dma,
471 			gen_pool_first_fit_align, &data);
472 }
473 EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
474 
475 /**
476  * gen_pool_free_owner - free allocated special memory back to the pool
477  * @pool: pool to free to
478  * @addr: starting address of memory to free back to pool
479  * @size: size in bytes of memory to free
480  * @owner: private data stashed at gen_pool_add() time
481  *
482  * Free previously allocated special memory back to the specified
483  * pool.  Can not be used in NMI handler on architectures without
484  * NMI-safe cmpxchg implementation.
485  */
486 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
487 		void **owner)
488 {
489 	struct gen_pool_chunk *chunk;
490 	int order = pool->min_alloc_order;
491 	unsigned long start_bit, nbits, remain;
492 
493 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
494 	BUG_ON(in_nmi());
495 #endif
496 
497 	if (owner)
498 		*owner = NULL;
499 
500 	nbits = (size + (1UL << order) - 1) >> order;
501 	rcu_read_lock();
502 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
503 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
504 			BUG_ON(addr + size - 1 > chunk->end_addr);
505 			start_bit = (addr - chunk->start_addr) >> order;
506 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
507 			BUG_ON(remain);
508 			size = nbits << order;
509 			atomic_long_add(size, &chunk->avail);
510 			if (owner)
511 				*owner = chunk->owner;
512 			rcu_read_unlock();
513 			return;
514 		}
515 	}
516 	rcu_read_unlock();
517 	BUG();
518 }
519 EXPORT_SYMBOL(gen_pool_free_owner);
520 
521 /**
522  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
523  * @pool:	the generic memory pool
524  * @func:	func to call
525  * @data:	additional data used by @func
526  *
527  * Call @func for every chunk of generic memory pool.  The @func is
528  * called with rcu_read_lock held.
529  */
530 void gen_pool_for_each_chunk(struct gen_pool *pool,
531 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
532 	void *data)
533 {
534 	struct gen_pool_chunk *chunk;
535 
536 	rcu_read_lock();
537 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
538 		func(pool, chunk, data);
539 	rcu_read_unlock();
540 }
541 EXPORT_SYMBOL(gen_pool_for_each_chunk);
542 
543 /**
544  * gen_pool_has_addr - checks if an address falls within the range of a pool
545  * @pool:	the generic memory pool
546  * @start:	start address
547  * @size:	size of the region
548  *
549  * Check if the range of addresses falls within the specified pool. Returns
550  * true if the entire range is contained in the pool and false otherwise.
551  */
552 bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start,
553 			size_t size)
554 {
555 	bool found = false;
556 	unsigned long end = start + size - 1;
557 	struct gen_pool_chunk *chunk;
558 
559 	rcu_read_lock();
560 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
561 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
562 			if (end <= chunk->end_addr) {
563 				found = true;
564 				break;
565 			}
566 		}
567 	}
568 	rcu_read_unlock();
569 	return found;
570 }
571 EXPORT_SYMBOL(gen_pool_has_addr);
572 
573 /**
574  * gen_pool_avail - get available free space of the pool
575  * @pool: pool to get available free space
576  *
577  * Return available free space of the specified pool.
578  */
579 size_t gen_pool_avail(struct gen_pool *pool)
580 {
581 	struct gen_pool_chunk *chunk;
582 	size_t avail = 0;
583 
584 	rcu_read_lock();
585 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
586 		avail += atomic_long_read(&chunk->avail);
587 	rcu_read_unlock();
588 	return avail;
589 }
590 EXPORT_SYMBOL_GPL(gen_pool_avail);
591 
592 /**
593  * gen_pool_size - get size in bytes of memory managed by the pool
594  * @pool: pool to get size
595  *
596  * Return size in bytes of memory managed by the pool.
597  */
598 size_t gen_pool_size(struct gen_pool *pool)
599 {
600 	struct gen_pool_chunk *chunk;
601 	size_t size = 0;
602 
603 	rcu_read_lock();
604 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
605 		size += chunk_size(chunk);
606 	rcu_read_unlock();
607 	return size;
608 }
609 EXPORT_SYMBOL_GPL(gen_pool_size);
610 
611 /**
612  * gen_pool_set_algo - set the allocation algorithm
613  * @pool: pool to change allocation algorithm
614  * @algo: custom algorithm function
615  * @data: additional data used by @algo
616  *
617  * Call @algo for each memory allocation in the pool.
618  * If @algo is NULL use gen_pool_first_fit as default
619  * memory allocation function.
620  */
621 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
622 {
623 	rcu_read_lock();
624 
625 	pool->algo = algo;
626 	if (!pool->algo)
627 		pool->algo = gen_pool_first_fit;
628 
629 	pool->data = data;
630 
631 	rcu_read_unlock();
632 }
633 EXPORT_SYMBOL(gen_pool_set_algo);
634 
635 /**
636  * gen_pool_first_fit - find the first available region
637  * of memory matching the size requirement (no alignment constraint)
638  * @map: The address to base the search on
639  * @size: The bitmap size in bits
640  * @start: The bitnumber to start searching at
641  * @nr: The number of zeroed bits we're looking for
642  * @data: additional data - unused
643  * @pool: pool to find the fit region memory from
644  */
645 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
646 		unsigned long start, unsigned int nr, void *data,
647 		struct gen_pool *pool, unsigned long start_addr)
648 {
649 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
650 }
651 EXPORT_SYMBOL(gen_pool_first_fit);
652 
653 /**
654  * gen_pool_first_fit_align - find the first available region
655  * of memory matching the size requirement (alignment constraint)
656  * @map: The address to base the search on
657  * @size: The bitmap size in bits
658  * @start: The bitnumber to start searching at
659  * @nr: The number of zeroed bits we're looking for
660  * @data: data for alignment
661  * @pool: pool to get order from
662  */
663 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
664 		unsigned long start, unsigned int nr, void *data,
665 		struct gen_pool *pool, unsigned long start_addr)
666 {
667 	struct genpool_data_align *alignment;
668 	unsigned long align_mask, align_off;
669 	int order;
670 
671 	alignment = data;
672 	order = pool->min_alloc_order;
673 	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
674 	align_off = (start_addr & (alignment->align - 1)) >> order;
675 
676 	return bitmap_find_next_zero_area_off(map, size, start, nr,
677 					      align_mask, align_off);
678 }
679 EXPORT_SYMBOL(gen_pool_first_fit_align);
680 
681 /**
682  * gen_pool_fixed_alloc - reserve a specific region
683  * @map: The address to base the search on
684  * @size: The bitmap size in bits
685  * @start: The bitnumber to start searching at
686  * @nr: The number of zeroed bits we're looking for
687  * @data: data for alignment
688  * @pool: pool to get order from
689  */
690 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
691 		unsigned long start, unsigned int nr, void *data,
692 		struct gen_pool *pool, unsigned long start_addr)
693 {
694 	struct genpool_data_fixed *fixed_data;
695 	int order;
696 	unsigned long offset_bit;
697 	unsigned long start_bit;
698 
699 	fixed_data = data;
700 	order = pool->min_alloc_order;
701 	offset_bit = fixed_data->offset >> order;
702 	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
703 		return size;
704 
705 	start_bit = bitmap_find_next_zero_area(map, size,
706 			start + offset_bit, nr, 0);
707 	if (start_bit != offset_bit)
708 		start_bit = size;
709 	return start_bit;
710 }
711 EXPORT_SYMBOL(gen_pool_fixed_alloc);
712 
713 /**
714  * gen_pool_first_fit_order_align - find the first available region
715  * of memory matching the size requirement. The region will be aligned
716  * to the order of the size specified.
717  * @map: The address to base the search on
718  * @size: The bitmap size in bits
719  * @start: The bitnumber to start searching at
720  * @nr: The number of zeroed bits we're looking for
721  * @data: additional data - unused
722  * @pool: pool to find the fit region memory from
723  */
724 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
725 		unsigned long size, unsigned long start,
726 		unsigned int nr, void *data, struct gen_pool *pool,
727 		unsigned long start_addr)
728 {
729 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
730 
731 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
732 }
733 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
734 
735 /**
736  * gen_pool_best_fit - find the best fitting region of memory
737  * macthing the size requirement (no alignment constraint)
738  * @map: The address to base the search on
739  * @size: The bitmap size in bits
740  * @start: The bitnumber to start searching at
741  * @nr: The number of zeroed bits we're looking for
742  * @data: additional data - unused
743  * @pool: pool to find the fit region memory from
744  *
745  * Iterate over the bitmap to find the smallest free region
746  * which we can allocate the memory.
747  */
748 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
749 		unsigned long start, unsigned int nr, void *data,
750 		struct gen_pool *pool, unsigned long start_addr)
751 {
752 	unsigned long start_bit = size;
753 	unsigned long len = size + 1;
754 	unsigned long index;
755 
756 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
757 
758 	while (index < size) {
759 		unsigned long next_bit = find_next_bit(map, size, index + nr);
760 		if ((next_bit - index) < len) {
761 			len = next_bit - index;
762 			start_bit = index;
763 			if (len == nr)
764 				return start_bit;
765 		}
766 		index = bitmap_find_next_zero_area(map, size,
767 						   next_bit + 1, nr, 0);
768 	}
769 
770 	return start_bit;
771 }
772 EXPORT_SYMBOL(gen_pool_best_fit);
773 
774 static void devm_gen_pool_release(struct device *dev, void *res)
775 {
776 	gen_pool_destroy(*(struct gen_pool **)res);
777 }
778 
779 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
780 {
781 	struct gen_pool **p = res;
782 
783 	/* NULL data matches only a pool without an assigned name */
784 	if (!data && !(*p)->name)
785 		return 1;
786 
787 	if (!data || !(*p)->name)
788 		return 0;
789 
790 	return !strcmp((*p)->name, data);
791 }
792 
793 /**
794  * gen_pool_get - Obtain the gen_pool (if any) for a device
795  * @dev: device to retrieve the gen_pool from
796  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
797  *
798  * Returns the gen_pool for the device if one is present, or NULL.
799  */
800 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
801 {
802 	struct gen_pool **p;
803 
804 	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
805 			(void *)name);
806 	if (!p)
807 		return NULL;
808 	return *p;
809 }
810 EXPORT_SYMBOL_GPL(gen_pool_get);
811 
812 /**
813  * devm_gen_pool_create - managed gen_pool_create
814  * @dev: device that provides the gen_pool
815  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
816  * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
817  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
818  *
819  * Create a new special memory pool that can be used to manage special purpose
820  * memory not managed by the regular kmalloc/kfree interface. The pool will be
821  * automatically destroyed by the device management code.
822  */
823 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
824 				      int nid, const char *name)
825 {
826 	struct gen_pool **ptr, *pool;
827 	const char *pool_name = NULL;
828 
829 	/* Check that genpool to be created is uniquely addressed on device */
830 	if (gen_pool_get(dev, name))
831 		return ERR_PTR(-EINVAL);
832 
833 	if (name) {
834 		pool_name = kstrdup_const(name, GFP_KERNEL);
835 		if (!pool_name)
836 			return ERR_PTR(-ENOMEM);
837 	}
838 
839 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
840 	if (!ptr)
841 		goto free_pool_name;
842 
843 	pool = gen_pool_create(min_alloc_order, nid);
844 	if (!pool)
845 		goto free_devres;
846 
847 	*ptr = pool;
848 	pool->name = pool_name;
849 	devres_add(dev, ptr);
850 
851 	return pool;
852 
853 free_devres:
854 	devres_free(ptr);
855 free_pool_name:
856 	kfree_const(pool_name);
857 
858 	return ERR_PTR(-ENOMEM);
859 }
860 EXPORT_SYMBOL(devm_gen_pool_create);
861 
862 #ifdef CONFIG_OF
863 /**
864  * of_gen_pool_get - find a pool by phandle property
865  * @np: device node
866  * @propname: property name containing phandle(s)
867  * @index: index into the phandle array
868  *
869  * Returns the pool that contains the chunk starting at the physical
870  * address of the device tree node pointed at by the phandle property,
871  * or NULL if not found.
872  */
873 struct gen_pool *of_gen_pool_get(struct device_node *np,
874 	const char *propname, int index)
875 {
876 	struct platform_device *pdev;
877 	struct device_node *np_pool, *parent;
878 	const char *name = NULL;
879 	struct gen_pool *pool = NULL;
880 
881 	np_pool = of_parse_phandle(np, propname, index);
882 	if (!np_pool)
883 		return NULL;
884 
885 	pdev = of_find_device_by_node(np_pool);
886 	if (!pdev) {
887 		/* Check if named gen_pool is created by parent node device */
888 		parent = of_get_parent(np_pool);
889 		pdev = of_find_device_by_node(parent);
890 		of_node_put(parent);
891 
892 		of_property_read_string(np_pool, "label", &name);
893 		if (!name)
894 			name = np_pool->name;
895 	}
896 	if (pdev)
897 		pool = gen_pool_get(&pdev->dev, name);
898 	of_node_put(np_pool);
899 
900 	return pool;
901 }
902 EXPORT_SYMBOL_GPL(of_gen_pool_get);
903 #endif /* CONFIG_OF */
904