xref: /openbmc/linux/lib/genalloc.c (revision 738f6ba1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Basic general purpose allocator for managing special purpose
4  * memory, for example, memory that is not managed by the regular
5  * kmalloc/kfree interface.  Uses for this includes on-device special
6  * memory, uncached memory etc.
7  *
8  * It is safe to use the allocator in NMI handlers and other special
9  * unblockable contexts that could otherwise deadlock on locks.  This
10  * is implemented by using atomic operations and retries on any
11  * conflicts.  The disadvantage is that there may be livelocks in
12  * extreme cases.  For better scalability, one allocator can be used
13  * for each CPU.
14  *
15  * The lockless operation only works if there is enough memory
16  * available.  If new memory is added to the pool a lock has to be
17  * still taken.  So any user relying on locklessness has to ensure
18  * that sufficient memory is preallocated.
19  *
20  * The basic atomic operation of this allocator is cmpxchg on long.
21  * On architectures that don't have NMI-safe cmpxchg implementation,
22  * the allocator can NOT be used in NMI handler.  So code uses the
23  * allocator in NMI handler should depend on
24  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
25  *
26  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
27  */
28 
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/bitmap.h>
32 #include <linux/rculist.h>
33 #include <linux/interrupt.h>
34 #include <linux/genalloc.h>
35 #include <linux/of_device.h>
36 #include <linux/vmalloc.h>
37 
38 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
39 {
40 	return chunk->end_addr - chunk->start_addr + 1;
41 }
42 
43 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
44 {
45 	unsigned long val, nval;
46 
47 	nval = *addr;
48 	do {
49 		val = nval;
50 		if (val & mask_to_set)
51 			return -EBUSY;
52 		cpu_relax();
53 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
54 
55 	return 0;
56 }
57 
58 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
59 {
60 	unsigned long val, nval;
61 
62 	nval = *addr;
63 	do {
64 		val = nval;
65 		if ((val & mask_to_clear) != mask_to_clear)
66 			return -EBUSY;
67 		cpu_relax();
68 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
69 
70 	return 0;
71 }
72 
73 /*
74  * bitmap_set_ll - set the specified number of bits at the specified position
75  * @map: pointer to a bitmap
76  * @start: a bit position in @map
77  * @nr: number of bits to set
78  *
79  * Set @nr bits start from @start in @map lock-lessly. Several users
80  * can set/clear the same bitmap simultaneously without lock. If two
81  * users set the same bit, one user will return remain bits, otherwise
82  * return 0.
83  */
84 static unsigned long
85 bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
86 {
87 	unsigned long *p = map + BIT_WORD(start);
88 	const unsigned long size = start + nr;
89 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
90 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
91 
92 	while (nr >= bits_to_set) {
93 		if (set_bits_ll(p, mask_to_set))
94 			return nr;
95 		nr -= bits_to_set;
96 		bits_to_set = BITS_PER_LONG;
97 		mask_to_set = ~0UL;
98 		p++;
99 	}
100 	if (nr) {
101 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102 		if (set_bits_ll(p, mask_to_set))
103 			return nr;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * bitmap_clear_ll - clear the specified number of bits at the specified position
111  * @map: pointer to a bitmap
112  * @start: a bit position in @map
113  * @nr: number of bits to set
114  *
115  * Clear @nr bits start from @start in @map lock-lessly. Several users
116  * can set/clear the same bitmap simultaneously without lock. If two
117  * users clear the same bit, one user will return remain bits,
118  * otherwise return 0.
119  */
120 static unsigned long
121 bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
122 {
123 	unsigned long *p = map + BIT_WORD(start);
124 	const unsigned long size = start + nr;
125 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127 
128 	while (nr >= bits_to_clear) {
129 		if (clear_bits_ll(p, mask_to_clear))
130 			return nr;
131 		nr -= bits_to_clear;
132 		bits_to_clear = BITS_PER_LONG;
133 		mask_to_clear = ~0UL;
134 		p++;
135 	}
136 	if (nr) {
137 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138 		if (clear_bits_ll(p, mask_to_clear))
139 			return nr;
140 	}
141 
142 	return 0;
143 }
144 
145 /**
146  * gen_pool_create - create a new special memory pool
147  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148  * @nid: node id of the node the pool structure should be allocated on, or -1
149  *
150  * Create a new special memory pool that can be used to manage special purpose
151  * memory not managed by the regular kmalloc/kfree interface.
152  */
153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154 {
155 	struct gen_pool *pool;
156 
157 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158 	if (pool != NULL) {
159 		spin_lock_init(&pool->lock);
160 		INIT_LIST_HEAD(&pool->chunks);
161 		pool->min_alloc_order = min_alloc_order;
162 		pool->algo = gen_pool_first_fit;
163 		pool->data = NULL;
164 		pool->name = NULL;
165 	}
166 	return pool;
167 }
168 EXPORT_SYMBOL(gen_pool_create);
169 
170 /**
171  * gen_pool_add_owner- add a new chunk of special memory to the pool
172  * @pool: pool to add new memory chunk to
173  * @virt: virtual starting address of memory chunk to add to pool
174  * @phys: physical starting address of memory chunk to add to pool
175  * @size: size in bytes of the memory chunk to add to pool
176  * @nid: node id of the node the chunk structure and bitmap should be
177  *       allocated on, or -1
178  * @owner: private data the publisher would like to recall at alloc time
179  *
180  * Add a new chunk of special memory to the specified pool.
181  *
182  * Returns 0 on success or a -ve errno on failure.
183  */
184 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
185 		 size_t size, int nid, void *owner)
186 {
187 	struct gen_pool_chunk *chunk;
188 	unsigned long nbits = size >> pool->min_alloc_order;
189 	unsigned long nbytes = sizeof(struct gen_pool_chunk) +
190 				BITS_TO_LONGS(nbits) * sizeof(long);
191 
192 	chunk = vzalloc_node(nbytes, nid);
193 	if (unlikely(chunk == NULL))
194 		return -ENOMEM;
195 
196 	chunk->phys_addr = phys;
197 	chunk->start_addr = virt;
198 	chunk->end_addr = virt + size - 1;
199 	chunk->owner = owner;
200 	atomic_long_set(&chunk->avail, size);
201 
202 	spin_lock(&pool->lock);
203 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
204 	spin_unlock(&pool->lock);
205 
206 	return 0;
207 }
208 EXPORT_SYMBOL(gen_pool_add_owner);
209 
210 /**
211  * gen_pool_virt_to_phys - return the physical address of memory
212  * @pool: pool to allocate from
213  * @addr: starting address of memory
214  *
215  * Returns the physical address on success, or -1 on error.
216  */
217 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
218 {
219 	struct gen_pool_chunk *chunk;
220 	phys_addr_t paddr = -1;
221 
222 	rcu_read_lock();
223 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
224 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
225 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
226 			break;
227 		}
228 	}
229 	rcu_read_unlock();
230 
231 	return paddr;
232 }
233 EXPORT_SYMBOL(gen_pool_virt_to_phys);
234 
235 /**
236  * gen_pool_destroy - destroy a special memory pool
237  * @pool: pool to destroy
238  *
239  * Destroy the specified special memory pool. Verifies that there are no
240  * outstanding allocations.
241  */
242 void gen_pool_destroy(struct gen_pool *pool)
243 {
244 	struct list_head *_chunk, *_next_chunk;
245 	struct gen_pool_chunk *chunk;
246 	int order = pool->min_alloc_order;
247 	unsigned long bit, end_bit;
248 
249 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
250 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
251 		list_del(&chunk->next_chunk);
252 
253 		end_bit = chunk_size(chunk) >> order;
254 		bit = find_next_bit(chunk->bits, end_bit, 0);
255 		BUG_ON(bit < end_bit);
256 
257 		vfree(chunk);
258 	}
259 	kfree_const(pool->name);
260 	kfree(pool);
261 }
262 EXPORT_SYMBOL(gen_pool_destroy);
263 
264 /**
265  * gen_pool_alloc_algo_owner - allocate special memory from the pool
266  * @pool: pool to allocate from
267  * @size: number of bytes to allocate from the pool
268  * @algo: algorithm passed from caller
269  * @data: data passed to algorithm
270  * @owner: optionally retrieve the chunk owner
271  *
272  * Allocate the requested number of bytes from the specified pool.
273  * Uses the pool allocation function (with first-fit algorithm by default).
274  * Can not be used in NMI handler on architectures without
275  * NMI-safe cmpxchg implementation.
276  */
277 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
278 		genpool_algo_t algo, void *data, void **owner)
279 {
280 	struct gen_pool_chunk *chunk;
281 	unsigned long addr = 0;
282 	int order = pool->min_alloc_order;
283 	unsigned long nbits, start_bit, end_bit, remain;
284 
285 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
286 	BUG_ON(in_nmi());
287 #endif
288 
289 	if (owner)
290 		*owner = NULL;
291 
292 	if (size == 0)
293 		return 0;
294 
295 	nbits = (size + (1UL << order) - 1) >> order;
296 	rcu_read_lock();
297 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
298 		if (size > atomic_long_read(&chunk->avail))
299 			continue;
300 
301 		start_bit = 0;
302 		end_bit = chunk_size(chunk) >> order;
303 retry:
304 		start_bit = algo(chunk->bits, end_bit, start_bit,
305 				 nbits, data, pool, chunk->start_addr);
306 		if (start_bit >= end_bit)
307 			continue;
308 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
309 		if (remain) {
310 			remain = bitmap_clear_ll(chunk->bits, start_bit,
311 						 nbits - remain);
312 			BUG_ON(remain);
313 			goto retry;
314 		}
315 
316 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
317 		size = nbits << order;
318 		atomic_long_sub(size, &chunk->avail);
319 		if (owner)
320 			*owner = chunk->owner;
321 		break;
322 	}
323 	rcu_read_unlock();
324 	return addr;
325 }
326 EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
327 
328 /**
329  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
330  * @pool: pool to allocate from
331  * @size: number of bytes to allocate from the pool
332  * @dma: dma-view physical address return value.  Use %NULL if unneeded.
333  *
334  * Allocate the requested number of bytes from the specified pool.
335  * Uses the pool allocation function (with first-fit algorithm by default).
336  * Can not be used in NMI handler on architectures without
337  * NMI-safe cmpxchg implementation.
338  *
339  * Return: virtual address of the allocated memory, or %NULL on failure
340  */
341 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
342 {
343 	return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
344 }
345 EXPORT_SYMBOL(gen_pool_dma_alloc);
346 
347 /**
348  * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
349  * usage with the given pool algorithm
350  * @pool: pool to allocate from
351  * @size: number of bytes to allocate from the pool
352  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
353  * @algo: algorithm passed from caller
354  * @data: data passed to algorithm
355  *
356  * Allocate the requested number of bytes from the specified pool. Uses the
357  * given pool allocation function. Can not be used in NMI handler on
358  * architectures without NMI-safe cmpxchg implementation.
359  *
360  * Return: virtual address of the allocated memory, or %NULL on failure
361  */
362 void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
363 		dma_addr_t *dma, genpool_algo_t algo, void *data)
364 {
365 	unsigned long vaddr;
366 
367 	if (!pool)
368 		return NULL;
369 
370 	vaddr = gen_pool_alloc_algo(pool, size, algo, data);
371 	if (!vaddr)
372 		return NULL;
373 
374 	if (dma)
375 		*dma = gen_pool_virt_to_phys(pool, vaddr);
376 
377 	return (void *)vaddr;
378 }
379 EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
380 
381 /**
382  * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
383  * usage with the given alignment
384  * @pool: pool to allocate from
385  * @size: number of bytes to allocate from the pool
386  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
387  * @align: alignment in bytes for starting address
388  *
389  * Allocate the requested number bytes from the specified pool, with the given
390  * alignment restriction. Can not be used in NMI handler on architectures
391  * without NMI-safe cmpxchg implementation.
392  *
393  * Return: virtual address of the allocated memory, or %NULL on failure
394  */
395 void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
396 		dma_addr_t *dma, int align)
397 {
398 	struct genpool_data_align data = { .align = align };
399 
400 	return gen_pool_dma_alloc_algo(pool, size, dma,
401 			gen_pool_first_fit_align, &data);
402 }
403 EXPORT_SYMBOL(gen_pool_dma_alloc_align);
404 
405 /**
406  * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
407  * DMA usage
408  * @pool: pool to allocate from
409  * @size: number of bytes to allocate from the pool
410  * @dma: dma-view physical address return value.  Use %NULL if unneeded.
411  *
412  * Allocate the requested number of zeroed bytes from the specified pool.
413  * Uses the pool allocation function (with first-fit algorithm by default).
414  * Can not be used in NMI handler on architectures without
415  * NMI-safe cmpxchg implementation.
416  *
417  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
418  */
419 void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
420 {
421 	return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
422 }
423 EXPORT_SYMBOL(gen_pool_dma_zalloc);
424 
425 /**
426  * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
427  * DMA usage with the given pool algorithm
428  * @pool: pool to allocate from
429  * @size: number of bytes to allocate from the pool
430  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
431  * @algo: algorithm passed from caller
432  * @data: data passed to algorithm
433  *
434  * Allocate the requested number of zeroed bytes from the specified pool. Uses
435  * the given pool allocation function. Can not be used in NMI handler on
436  * architectures without NMI-safe cmpxchg implementation.
437  *
438  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
439  */
440 void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
441 		dma_addr_t *dma, genpool_algo_t algo, void *data)
442 {
443 	void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
444 
445 	if (vaddr)
446 		memset(vaddr, 0, size);
447 
448 	return vaddr;
449 }
450 EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
451 
452 /**
453  * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
454  * DMA usage with the given alignment
455  * @pool: pool to allocate from
456  * @size: number of bytes to allocate from the pool
457  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
458  * @align: alignment in bytes for starting address
459  *
460  * Allocate the requested number of zeroed bytes from the specified pool,
461  * with the given alignment restriction. Can not be used in NMI handler on
462  * architectures without NMI-safe cmpxchg implementation.
463  *
464  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
465  */
466 void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
467 		dma_addr_t *dma, int align)
468 {
469 	struct genpool_data_align data = { .align = align };
470 
471 	return gen_pool_dma_zalloc_algo(pool, size, dma,
472 			gen_pool_first_fit_align, &data);
473 }
474 EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
475 
476 /**
477  * gen_pool_free_owner - free allocated special memory back to the pool
478  * @pool: pool to free to
479  * @addr: starting address of memory to free back to pool
480  * @size: size in bytes of memory to free
481  * @owner: private data stashed at gen_pool_add() time
482  *
483  * Free previously allocated special memory back to the specified
484  * pool.  Can not be used in NMI handler on architectures without
485  * NMI-safe cmpxchg implementation.
486  */
487 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
488 		void **owner)
489 {
490 	struct gen_pool_chunk *chunk;
491 	int order = pool->min_alloc_order;
492 	unsigned long start_bit, nbits, remain;
493 
494 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
495 	BUG_ON(in_nmi());
496 #endif
497 
498 	if (owner)
499 		*owner = NULL;
500 
501 	nbits = (size + (1UL << order) - 1) >> order;
502 	rcu_read_lock();
503 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
504 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
505 			BUG_ON(addr + size - 1 > chunk->end_addr);
506 			start_bit = (addr - chunk->start_addr) >> order;
507 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
508 			BUG_ON(remain);
509 			size = nbits << order;
510 			atomic_long_add(size, &chunk->avail);
511 			if (owner)
512 				*owner = chunk->owner;
513 			rcu_read_unlock();
514 			return;
515 		}
516 	}
517 	rcu_read_unlock();
518 	BUG();
519 }
520 EXPORT_SYMBOL(gen_pool_free_owner);
521 
522 /**
523  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
524  * @pool:	the generic memory pool
525  * @func:	func to call
526  * @data:	additional data used by @func
527  *
528  * Call @func for every chunk of generic memory pool.  The @func is
529  * called with rcu_read_lock held.
530  */
531 void gen_pool_for_each_chunk(struct gen_pool *pool,
532 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
533 	void *data)
534 {
535 	struct gen_pool_chunk *chunk;
536 
537 	rcu_read_lock();
538 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
539 		func(pool, chunk, data);
540 	rcu_read_unlock();
541 }
542 EXPORT_SYMBOL(gen_pool_for_each_chunk);
543 
544 /**
545  * gen_pool_has_addr - checks if an address falls within the range of a pool
546  * @pool:	the generic memory pool
547  * @start:	start address
548  * @size:	size of the region
549  *
550  * Check if the range of addresses falls within the specified pool. Returns
551  * true if the entire range is contained in the pool and false otherwise.
552  */
553 bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start,
554 			size_t size)
555 {
556 	bool found = false;
557 	unsigned long end = start + size - 1;
558 	struct gen_pool_chunk *chunk;
559 
560 	rcu_read_lock();
561 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
562 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
563 			if (end <= chunk->end_addr) {
564 				found = true;
565 				break;
566 			}
567 		}
568 	}
569 	rcu_read_unlock();
570 	return found;
571 }
572 EXPORT_SYMBOL(gen_pool_has_addr);
573 
574 /**
575  * gen_pool_avail - get available free space of the pool
576  * @pool: pool to get available free space
577  *
578  * Return available free space of the specified pool.
579  */
580 size_t gen_pool_avail(struct gen_pool *pool)
581 {
582 	struct gen_pool_chunk *chunk;
583 	size_t avail = 0;
584 
585 	rcu_read_lock();
586 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
587 		avail += atomic_long_read(&chunk->avail);
588 	rcu_read_unlock();
589 	return avail;
590 }
591 EXPORT_SYMBOL_GPL(gen_pool_avail);
592 
593 /**
594  * gen_pool_size - get size in bytes of memory managed by the pool
595  * @pool: pool to get size
596  *
597  * Return size in bytes of memory managed by the pool.
598  */
599 size_t gen_pool_size(struct gen_pool *pool)
600 {
601 	struct gen_pool_chunk *chunk;
602 	size_t size = 0;
603 
604 	rcu_read_lock();
605 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
606 		size += chunk_size(chunk);
607 	rcu_read_unlock();
608 	return size;
609 }
610 EXPORT_SYMBOL_GPL(gen_pool_size);
611 
612 /**
613  * gen_pool_set_algo - set the allocation algorithm
614  * @pool: pool to change allocation algorithm
615  * @algo: custom algorithm function
616  * @data: additional data used by @algo
617  *
618  * Call @algo for each memory allocation in the pool.
619  * If @algo is NULL use gen_pool_first_fit as default
620  * memory allocation function.
621  */
622 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
623 {
624 	rcu_read_lock();
625 
626 	pool->algo = algo;
627 	if (!pool->algo)
628 		pool->algo = gen_pool_first_fit;
629 
630 	pool->data = data;
631 
632 	rcu_read_unlock();
633 }
634 EXPORT_SYMBOL(gen_pool_set_algo);
635 
636 /**
637  * gen_pool_first_fit - find the first available region
638  * of memory matching the size requirement (no alignment constraint)
639  * @map: The address to base the search on
640  * @size: The bitmap size in bits
641  * @start: The bitnumber to start searching at
642  * @nr: The number of zeroed bits we're looking for
643  * @data: additional data - unused
644  * @pool: pool to find the fit region memory from
645  */
646 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
647 		unsigned long start, unsigned int nr, void *data,
648 		struct gen_pool *pool, unsigned long start_addr)
649 {
650 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
651 }
652 EXPORT_SYMBOL(gen_pool_first_fit);
653 
654 /**
655  * gen_pool_first_fit_align - find the first available region
656  * of memory matching the size requirement (alignment constraint)
657  * @map: The address to base the search on
658  * @size: The bitmap size in bits
659  * @start: The bitnumber to start searching at
660  * @nr: The number of zeroed bits we're looking for
661  * @data: data for alignment
662  * @pool: pool to get order from
663  */
664 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
665 		unsigned long start, unsigned int nr, void *data,
666 		struct gen_pool *pool, unsigned long start_addr)
667 {
668 	struct genpool_data_align *alignment;
669 	unsigned long align_mask, align_off;
670 	int order;
671 
672 	alignment = data;
673 	order = pool->min_alloc_order;
674 	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
675 	align_off = (start_addr & (alignment->align - 1)) >> order;
676 
677 	return bitmap_find_next_zero_area_off(map, size, start, nr,
678 					      align_mask, align_off);
679 }
680 EXPORT_SYMBOL(gen_pool_first_fit_align);
681 
682 /**
683  * gen_pool_fixed_alloc - reserve a specific region
684  * @map: The address to base the search on
685  * @size: The bitmap size in bits
686  * @start: The bitnumber to start searching at
687  * @nr: The number of zeroed bits we're looking for
688  * @data: data for alignment
689  * @pool: pool to get order from
690  */
691 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
692 		unsigned long start, unsigned int nr, void *data,
693 		struct gen_pool *pool, unsigned long start_addr)
694 {
695 	struct genpool_data_fixed *fixed_data;
696 	int order;
697 	unsigned long offset_bit;
698 	unsigned long start_bit;
699 
700 	fixed_data = data;
701 	order = pool->min_alloc_order;
702 	offset_bit = fixed_data->offset >> order;
703 	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
704 		return size;
705 
706 	start_bit = bitmap_find_next_zero_area(map, size,
707 			start + offset_bit, nr, 0);
708 	if (start_bit != offset_bit)
709 		start_bit = size;
710 	return start_bit;
711 }
712 EXPORT_SYMBOL(gen_pool_fixed_alloc);
713 
714 /**
715  * gen_pool_first_fit_order_align - find the first available region
716  * of memory matching the size requirement. The region will be aligned
717  * to the order of the size specified.
718  * @map: The address to base the search on
719  * @size: The bitmap size in bits
720  * @start: The bitnumber to start searching at
721  * @nr: The number of zeroed bits we're looking for
722  * @data: additional data - unused
723  * @pool: pool to find the fit region memory from
724  */
725 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
726 		unsigned long size, unsigned long start,
727 		unsigned int nr, void *data, struct gen_pool *pool,
728 		unsigned long start_addr)
729 {
730 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
731 
732 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
733 }
734 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
735 
736 /**
737  * gen_pool_best_fit - find the best fitting region of memory
738  * macthing the size requirement (no alignment constraint)
739  * @map: The address to base the search on
740  * @size: The bitmap size in bits
741  * @start: The bitnumber to start searching at
742  * @nr: The number of zeroed bits we're looking for
743  * @data: additional data - unused
744  * @pool: pool to find the fit region memory from
745  *
746  * Iterate over the bitmap to find the smallest free region
747  * which we can allocate the memory.
748  */
749 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
750 		unsigned long start, unsigned int nr, void *data,
751 		struct gen_pool *pool, unsigned long start_addr)
752 {
753 	unsigned long start_bit = size;
754 	unsigned long len = size + 1;
755 	unsigned long index;
756 
757 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
758 
759 	while (index < size) {
760 		unsigned long next_bit = find_next_bit(map, size, index + nr);
761 		if ((next_bit - index) < len) {
762 			len = next_bit - index;
763 			start_bit = index;
764 			if (len == nr)
765 				return start_bit;
766 		}
767 		index = bitmap_find_next_zero_area(map, size,
768 						   next_bit + 1, nr, 0);
769 	}
770 
771 	return start_bit;
772 }
773 EXPORT_SYMBOL(gen_pool_best_fit);
774 
775 static void devm_gen_pool_release(struct device *dev, void *res)
776 {
777 	gen_pool_destroy(*(struct gen_pool **)res);
778 }
779 
780 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
781 {
782 	struct gen_pool **p = res;
783 
784 	/* NULL data matches only a pool without an assigned name */
785 	if (!data && !(*p)->name)
786 		return 1;
787 
788 	if (!data || !(*p)->name)
789 		return 0;
790 
791 	return !strcmp((*p)->name, data);
792 }
793 
794 /**
795  * gen_pool_get - Obtain the gen_pool (if any) for a device
796  * @dev: device to retrieve the gen_pool from
797  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
798  *
799  * Returns the gen_pool for the device if one is present, or NULL.
800  */
801 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
802 {
803 	struct gen_pool **p;
804 
805 	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
806 			(void *)name);
807 	if (!p)
808 		return NULL;
809 	return *p;
810 }
811 EXPORT_SYMBOL_GPL(gen_pool_get);
812 
813 /**
814  * devm_gen_pool_create - managed gen_pool_create
815  * @dev: device that provides the gen_pool
816  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
817  * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
818  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
819  *
820  * Create a new special memory pool that can be used to manage special purpose
821  * memory not managed by the regular kmalloc/kfree interface. The pool will be
822  * automatically destroyed by the device management code.
823  */
824 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
825 				      int nid, const char *name)
826 {
827 	struct gen_pool **ptr, *pool;
828 	const char *pool_name = NULL;
829 
830 	/* Check that genpool to be created is uniquely addressed on device */
831 	if (gen_pool_get(dev, name))
832 		return ERR_PTR(-EINVAL);
833 
834 	if (name) {
835 		pool_name = kstrdup_const(name, GFP_KERNEL);
836 		if (!pool_name)
837 			return ERR_PTR(-ENOMEM);
838 	}
839 
840 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
841 	if (!ptr)
842 		goto free_pool_name;
843 
844 	pool = gen_pool_create(min_alloc_order, nid);
845 	if (!pool)
846 		goto free_devres;
847 
848 	*ptr = pool;
849 	pool->name = pool_name;
850 	devres_add(dev, ptr);
851 
852 	return pool;
853 
854 free_devres:
855 	devres_free(ptr);
856 free_pool_name:
857 	kfree_const(pool_name);
858 
859 	return ERR_PTR(-ENOMEM);
860 }
861 EXPORT_SYMBOL(devm_gen_pool_create);
862 
863 #ifdef CONFIG_OF
864 /**
865  * of_gen_pool_get - find a pool by phandle property
866  * @np: device node
867  * @propname: property name containing phandle(s)
868  * @index: index into the phandle array
869  *
870  * Returns the pool that contains the chunk starting at the physical
871  * address of the device tree node pointed at by the phandle property,
872  * or NULL if not found.
873  */
874 struct gen_pool *of_gen_pool_get(struct device_node *np,
875 	const char *propname, int index)
876 {
877 	struct platform_device *pdev;
878 	struct device_node *np_pool, *parent;
879 	const char *name = NULL;
880 	struct gen_pool *pool = NULL;
881 
882 	np_pool = of_parse_phandle(np, propname, index);
883 	if (!np_pool)
884 		return NULL;
885 
886 	pdev = of_find_device_by_node(np_pool);
887 	if (!pdev) {
888 		/* Check if named gen_pool is created by parent node device */
889 		parent = of_get_parent(np_pool);
890 		pdev = of_find_device_by_node(parent);
891 		of_node_put(parent);
892 
893 		of_property_read_string(np_pool, "label", &name);
894 		if (!name)
895 			name = np_pool->name;
896 	}
897 	if (pdev)
898 		pool = gen_pool_get(&pdev->dev, name);
899 	of_node_put(np_pool);
900 
901 	return pool;
902 }
903 EXPORT_SYMBOL_GPL(of_gen_pool_get);
904 #endif /* CONFIG_OF */
905