1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Basic general purpose allocator for managing special purpose 4 * memory, for example, memory that is not managed by the regular 5 * kmalloc/kfree interface. Uses for this includes on-device special 6 * memory, uncached memory etc. 7 * 8 * It is safe to use the allocator in NMI handlers and other special 9 * unblockable contexts that could otherwise deadlock on locks. This 10 * is implemented by using atomic operations and retries on any 11 * conflicts. The disadvantage is that there may be livelocks in 12 * extreme cases. For better scalability, one allocator can be used 13 * for each CPU. 14 * 15 * The lockless operation only works if there is enough memory 16 * available. If new memory is added to the pool a lock has to be 17 * still taken. So any user relying on locklessness has to ensure 18 * that sufficient memory is preallocated. 19 * 20 * The basic atomic operation of this allocator is cmpxchg on long. 21 * On architectures that don't have NMI-safe cmpxchg implementation, 22 * the allocator can NOT be used in NMI handler. So code uses the 23 * allocator in NMI handler should depend on 24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 25 * 26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 27 */ 28 29 #include <linux/slab.h> 30 #include <linux/export.h> 31 #include <linux/bitmap.h> 32 #include <linux/rculist.h> 33 #include <linux/interrupt.h> 34 #include <linux/genalloc.h> 35 #include <linux/of_device.h> 36 #include <linux/vmalloc.h> 37 38 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 39 { 40 return chunk->end_addr - chunk->start_addr + 1; 41 } 42 43 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 44 { 45 unsigned long val, nval; 46 47 nval = *addr; 48 do { 49 val = nval; 50 if (val & mask_to_set) 51 return -EBUSY; 52 cpu_relax(); 53 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 54 55 return 0; 56 } 57 58 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 59 { 60 unsigned long val, nval; 61 62 nval = *addr; 63 do { 64 val = nval; 65 if ((val & mask_to_clear) != mask_to_clear) 66 return -EBUSY; 67 cpu_relax(); 68 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 69 70 return 0; 71 } 72 73 /* 74 * bitmap_set_ll - set the specified number of bits at the specified position 75 * @map: pointer to a bitmap 76 * @start: a bit position in @map 77 * @nr: number of bits to set 78 * 79 * Set @nr bits start from @start in @map lock-lessly. Several users 80 * can set/clear the same bitmap simultaneously without lock. If two 81 * users set the same bit, one user will return remain bits, otherwise 82 * return 0. 83 */ 84 static unsigned long 85 bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr) 86 { 87 unsigned long *p = map + BIT_WORD(start); 88 const unsigned long size = start + nr; 89 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 90 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 91 92 while (nr >= bits_to_set) { 93 if (set_bits_ll(p, mask_to_set)) 94 return nr; 95 nr -= bits_to_set; 96 bits_to_set = BITS_PER_LONG; 97 mask_to_set = ~0UL; 98 p++; 99 } 100 if (nr) { 101 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 102 if (set_bits_ll(p, mask_to_set)) 103 return nr; 104 } 105 106 return 0; 107 } 108 109 /* 110 * bitmap_clear_ll - clear the specified number of bits at the specified position 111 * @map: pointer to a bitmap 112 * @start: a bit position in @map 113 * @nr: number of bits to set 114 * 115 * Clear @nr bits start from @start in @map lock-lessly. Several users 116 * can set/clear the same bitmap simultaneously without lock. If two 117 * users clear the same bit, one user will return remain bits, 118 * otherwise return 0. 119 */ 120 static unsigned long 121 bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr) 122 { 123 unsigned long *p = map + BIT_WORD(start); 124 const unsigned long size = start + nr; 125 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 126 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 127 128 while (nr >= bits_to_clear) { 129 if (clear_bits_ll(p, mask_to_clear)) 130 return nr; 131 nr -= bits_to_clear; 132 bits_to_clear = BITS_PER_LONG; 133 mask_to_clear = ~0UL; 134 p++; 135 } 136 if (nr) { 137 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 138 if (clear_bits_ll(p, mask_to_clear)) 139 return nr; 140 } 141 142 return 0; 143 } 144 145 /** 146 * gen_pool_create - create a new special memory pool 147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 148 * @nid: node id of the node the pool structure should be allocated on, or -1 149 * 150 * Create a new special memory pool that can be used to manage special purpose 151 * memory not managed by the regular kmalloc/kfree interface. 152 */ 153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 154 { 155 struct gen_pool *pool; 156 157 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 158 if (pool != NULL) { 159 spin_lock_init(&pool->lock); 160 INIT_LIST_HEAD(&pool->chunks); 161 pool->min_alloc_order = min_alloc_order; 162 pool->algo = gen_pool_first_fit; 163 pool->data = NULL; 164 pool->name = NULL; 165 } 166 return pool; 167 } 168 EXPORT_SYMBOL(gen_pool_create); 169 170 /** 171 * gen_pool_add_owner- add a new chunk of special memory to the pool 172 * @pool: pool to add new memory chunk to 173 * @virt: virtual starting address of memory chunk to add to pool 174 * @phys: physical starting address of memory chunk to add to pool 175 * @size: size in bytes of the memory chunk to add to pool 176 * @nid: node id of the node the chunk structure and bitmap should be 177 * allocated on, or -1 178 * @owner: private data the publisher would like to recall at alloc time 179 * 180 * Add a new chunk of special memory to the specified pool. 181 * 182 * Returns 0 on success or a -ve errno on failure. 183 */ 184 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 185 size_t size, int nid, void *owner) 186 { 187 struct gen_pool_chunk *chunk; 188 unsigned long nbits = size >> pool->min_alloc_order; 189 unsigned long nbytes = sizeof(struct gen_pool_chunk) + 190 BITS_TO_LONGS(nbits) * sizeof(long); 191 192 chunk = vzalloc_node(nbytes, nid); 193 if (unlikely(chunk == NULL)) 194 return -ENOMEM; 195 196 chunk->phys_addr = phys; 197 chunk->start_addr = virt; 198 chunk->end_addr = virt + size - 1; 199 chunk->owner = owner; 200 atomic_long_set(&chunk->avail, size); 201 202 spin_lock(&pool->lock); 203 list_add_rcu(&chunk->next_chunk, &pool->chunks); 204 spin_unlock(&pool->lock); 205 206 return 0; 207 } 208 EXPORT_SYMBOL(gen_pool_add_owner); 209 210 /** 211 * gen_pool_virt_to_phys - return the physical address of memory 212 * @pool: pool to allocate from 213 * @addr: starting address of memory 214 * 215 * Returns the physical address on success, or -1 on error. 216 */ 217 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 218 { 219 struct gen_pool_chunk *chunk; 220 phys_addr_t paddr = -1; 221 222 rcu_read_lock(); 223 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 224 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 225 paddr = chunk->phys_addr + (addr - chunk->start_addr); 226 break; 227 } 228 } 229 rcu_read_unlock(); 230 231 return paddr; 232 } 233 EXPORT_SYMBOL(gen_pool_virt_to_phys); 234 235 /** 236 * gen_pool_destroy - destroy a special memory pool 237 * @pool: pool to destroy 238 * 239 * Destroy the specified special memory pool. Verifies that there are no 240 * outstanding allocations. 241 */ 242 void gen_pool_destroy(struct gen_pool *pool) 243 { 244 struct list_head *_chunk, *_next_chunk; 245 struct gen_pool_chunk *chunk; 246 int order = pool->min_alloc_order; 247 unsigned long bit, end_bit; 248 249 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 250 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 251 list_del(&chunk->next_chunk); 252 253 end_bit = chunk_size(chunk) >> order; 254 bit = find_next_bit(chunk->bits, end_bit, 0); 255 BUG_ON(bit < end_bit); 256 257 vfree(chunk); 258 } 259 kfree_const(pool->name); 260 kfree(pool); 261 } 262 EXPORT_SYMBOL(gen_pool_destroy); 263 264 /** 265 * gen_pool_alloc_algo_owner - allocate special memory from the pool 266 * @pool: pool to allocate from 267 * @size: number of bytes to allocate from the pool 268 * @algo: algorithm passed from caller 269 * @data: data passed to algorithm 270 * @owner: optionally retrieve the chunk owner 271 * 272 * Allocate the requested number of bytes from the specified pool. 273 * Uses the pool allocation function (with first-fit algorithm by default). 274 * Can not be used in NMI handler on architectures without 275 * NMI-safe cmpxchg implementation. 276 */ 277 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size, 278 genpool_algo_t algo, void *data, void **owner) 279 { 280 struct gen_pool_chunk *chunk; 281 unsigned long addr = 0; 282 int order = pool->min_alloc_order; 283 unsigned long nbits, start_bit, end_bit, remain; 284 285 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 286 BUG_ON(in_nmi()); 287 #endif 288 289 if (owner) 290 *owner = NULL; 291 292 if (size == 0) 293 return 0; 294 295 nbits = (size + (1UL << order) - 1) >> order; 296 rcu_read_lock(); 297 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 298 if (size > atomic_long_read(&chunk->avail)) 299 continue; 300 301 start_bit = 0; 302 end_bit = chunk_size(chunk) >> order; 303 retry: 304 start_bit = algo(chunk->bits, end_bit, start_bit, 305 nbits, data, pool, chunk->start_addr); 306 if (start_bit >= end_bit) 307 continue; 308 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 309 if (remain) { 310 remain = bitmap_clear_ll(chunk->bits, start_bit, 311 nbits - remain); 312 BUG_ON(remain); 313 goto retry; 314 } 315 316 addr = chunk->start_addr + ((unsigned long)start_bit << order); 317 size = nbits << order; 318 atomic_long_sub(size, &chunk->avail); 319 if (owner) 320 *owner = chunk->owner; 321 break; 322 } 323 rcu_read_unlock(); 324 return addr; 325 } 326 EXPORT_SYMBOL(gen_pool_alloc_algo_owner); 327 328 /** 329 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 330 * @pool: pool to allocate from 331 * @size: number of bytes to allocate from the pool 332 * @dma: dma-view physical address return value. Use %NULL if unneeded. 333 * 334 * Allocate the requested number of bytes from the specified pool. 335 * Uses the pool allocation function (with first-fit algorithm by default). 336 * Can not be used in NMI handler on architectures without 337 * NMI-safe cmpxchg implementation. 338 * 339 * Return: virtual address of the allocated memory, or %NULL on failure 340 */ 341 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 342 { 343 return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data); 344 } 345 EXPORT_SYMBOL(gen_pool_dma_alloc); 346 347 /** 348 * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA 349 * usage with the given pool algorithm 350 * @pool: pool to allocate from 351 * @size: number of bytes to allocate from the pool 352 * @dma: DMA-view physical address return value. Use %NULL if unneeded. 353 * @algo: algorithm passed from caller 354 * @data: data passed to algorithm 355 * 356 * Allocate the requested number of bytes from the specified pool. Uses the 357 * given pool allocation function. Can not be used in NMI handler on 358 * architectures without NMI-safe cmpxchg implementation. 359 * 360 * Return: virtual address of the allocated memory, or %NULL on failure 361 */ 362 void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size, 363 dma_addr_t *dma, genpool_algo_t algo, void *data) 364 { 365 unsigned long vaddr; 366 367 if (!pool) 368 return NULL; 369 370 vaddr = gen_pool_alloc_algo(pool, size, algo, data); 371 if (!vaddr) 372 return NULL; 373 374 if (dma) 375 *dma = gen_pool_virt_to_phys(pool, vaddr); 376 377 return (void *)vaddr; 378 } 379 EXPORT_SYMBOL(gen_pool_dma_alloc_algo); 380 381 /** 382 * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA 383 * usage with the given alignment 384 * @pool: pool to allocate from 385 * @size: number of bytes to allocate from the pool 386 * @dma: DMA-view physical address return value. Use %NULL if unneeded. 387 * @align: alignment in bytes for starting address 388 * 389 * Allocate the requested number bytes from the specified pool, with the given 390 * alignment restriction. Can not be used in NMI handler on architectures 391 * without NMI-safe cmpxchg implementation. 392 * 393 * Return: virtual address of the allocated memory, or %NULL on failure 394 */ 395 void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size, 396 dma_addr_t *dma, int align) 397 { 398 struct genpool_data_align data = { .align = align }; 399 400 return gen_pool_dma_alloc_algo(pool, size, dma, 401 gen_pool_first_fit_align, &data); 402 } 403 EXPORT_SYMBOL(gen_pool_dma_alloc_align); 404 405 /** 406 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for 407 * DMA usage 408 * @pool: pool to allocate from 409 * @size: number of bytes to allocate from the pool 410 * @dma: dma-view physical address return value. Use %NULL if unneeded. 411 * 412 * Allocate the requested number of zeroed bytes from the specified pool. 413 * Uses the pool allocation function (with first-fit algorithm by default). 414 * Can not be used in NMI handler on architectures without 415 * NMI-safe cmpxchg implementation. 416 * 417 * Return: virtual address of the allocated zeroed memory, or %NULL on failure 418 */ 419 void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 420 { 421 return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data); 422 } 423 EXPORT_SYMBOL(gen_pool_dma_zalloc); 424 425 /** 426 * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for 427 * DMA usage with the given pool algorithm 428 * @pool: pool to allocate from 429 * @size: number of bytes to allocate from the pool 430 * @dma: DMA-view physical address return value. Use %NULL if unneeded. 431 * @algo: algorithm passed from caller 432 * @data: data passed to algorithm 433 * 434 * Allocate the requested number of zeroed bytes from the specified pool. Uses 435 * the given pool allocation function. Can not be used in NMI handler on 436 * architectures without NMI-safe cmpxchg implementation. 437 * 438 * Return: virtual address of the allocated zeroed memory, or %NULL on failure 439 */ 440 void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size, 441 dma_addr_t *dma, genpool_algo_t algo, void *data) 442 { 443 void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data); 444 445 if (vaddr) 446 memset(vaddr, 0, size); 447 448 return vaddr; 449 } 450 EXPORT_SYMBOL(gen_pool_dma_zalloc_algo); 451 452 /** 453 * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for 454 * DMA usage with the given alignment 455 * @pool: pool to allocate from 456 * @size: number of bytes to allocate from the pool 457 * @dma: DMA-view physical address return value. Use %NULL if unneeded. 458 * @align: alignment in bytes for starting address 459 * 460 * Allocate the requested number of zeroed bytes from the specified pool, 461 * with the given alignment restriction. Can not be used in NMI handler on 462 * architectures without NMI-safe cmpxchg implementation. 463 * 464 * Return: virtual address of the allocated zeroed memory, or %NULL on failure 465 */ 466 void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size, 467 dma_addr_t *dma, int align) 468 { 469 struct genpool_data_align data = { .align = align }; 470 471 return gen_pool_dma_zalloc_algo(pool, size, dma, 472 gen_pool_first_fit_align, &data); 473 } 474 EXPORT_SYMBOL(gen_pool_dma_zalloc_align); 475 476 /** 477 * gen_pool_free_owner - free allocated special memory back to the pool 478 * @pool: pool to free to 479 * @addr: starting address of memory to free back to pool 480 * @size: size in bytes of memory to free 481 * @owner: private data stashed at gen_pool_add() time 482 * 483 * Free previously allocated special memory back to the specified 484 * pool. Can not be used in NMI handler on architectures without 485 * NMI-safe cmpxchg implementation. 486 */ 487 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size, 488 void **owner) 489 { 490 struct gen_pool_chunk *chunk; 491 int order = pool->min_alloc_order; 492 unsigned long start_bit, nbits, remain; 493 494 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 495 BUG_ON(in_nmi()); 496 #endif 497 498 if (owner) 499 *owner = NULL; 500 501 nbits = (size + (1UL << order) - 1) >> order; 502 rcu_read_lock(); 503 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 504 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 505 BUG_ON(addr + size - 1 > chunk->end_addr); 506 start_bit = (addr - chunk->start_addr) >> order; 507 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 508 BUG_ON(remain); 509 size = nbits << order; 510 atomic_long_add(size, &chunk->avail); 511 if (owner) 512 *owner = chunk->owner; 513 rcu_read_unlock(); 514 return; 515 } 516 } 517 rcu_read_unlock(); 518 BUG(); 519 } 520 EXPORT_SYMBOL(gen_pool_free_owner); 521 522 /** 523 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 524 * @pool: the generic memory pool 525 * @func: func to call 526 * @data: additional data used by @func 527 * 528 * Call @func for every chunk of generic memory pool. The @func is 529 * called with rcu_read_lock held. 530 */ 531 void gen_pool_for_each_chunk(struct gen_pool *pool, 532 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 533 void *data) 534 { 535 struct gen_pool_chunk *chunk; 536 537 rcu_read_lock(); 538 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 539 func(pool, chunk, data); 540 rcu_read_unlock(); 541 } 542 EXPORT_SYMBOL(gen_pool_for_each_chunk); 543 544 /** 545 * gen_pool_has_addr - checks if an address falls within the range of a pool 546 * @pool: the generic memory pool 547 * @start: start address 548 * @size: size of the region 549 * 550 * Check if the range of addresses falls within the specified pool. Returns 551 * true if the entire range is contained in the pool and false otherwise. 552 */ 553 bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start, 554 size_t size) 555 { 556 bool found = false; 557 unsigned long end = start + size - 1; 558 struct gen_pool_chunk *chunk; 559 560 rcu_read_lock(); 561 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 562 if (start >= chunk->start_addr && start <= chunk->end_addr) { 563 if (end <= chunk->end_addr) { 564 found = true; 565 break; 566 } 567 } 568 } 569 rcu_read_unlock(); 570 return found; 571 } 572 EXPORT_SYMBOL(gen_pool_has_addr); 573 574 /** 575 * gen_pool_avail - get available free space of the pool 576 * @pool: pool to get available free space 577 * 578 * Return available free space of the specified pool. 579 */ 580 size_t gen_pool_avail(struct gen_pool *pool) 581 { 582 struct gen_pool_chunk *chunk; 583 size_t avail = 0; 584 585 rcu_read_lock(); 586 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 587 avail += atomic_long_read(&chunk->avail); 588 rcu_read_unlock(); 589 return avail; 590 } 591 EXPORT_SYMBOL_GPL(gen_pool_avail); 592 593 /** 594 * gen_pool_size - get size in bytes of memory managed by the pool 595 * @pool: pool to get size 596 * 597 * Return size in bytes of memory managed by the pool. 598 */ 599 size_t gen_pool_size(struct gen_pool *pool) 600 { 601 struct gen_pool_chunk *chunk; 602 size_t size = 0; 603 604 rcu_read_lock(); 605 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 606 size += chunk_size(chunk); 607 rcu_read_unlock(); 608 return size; 609 } 610 EXPORT_SYMBOL_GPL(gen_pool_size); 611 612 /** 613 * gen_pool_set_algo - set the allocation algorithm 614 * @pool: pool to change allocation algorithm 615 * @algo: custom algorithm function 616 * @data: additional data used by @algo 617 * 618 * Call @algo for each memory allocation in the pool. 619 * If @algo is NULL use gen_pool_first_fit as default 620 * memory allocation function. 621 */ 622 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 623 { 624 rcu_read_lock(); 625 626 pool->algo = algo; 627 if (!pool->algo) 628 pool->algo = gen_pool_first_fit; 629 630 pool->data = data; 631 632 rcu_read_unlock(); 633 } 634 EXPORT_SYMBOL(gen_pool_set_algo); 635 636 /** 637 * gen_pool_first_fit - find the first available region 638 * of memory matching the size requirement (no alignment constraint) 639 * @map: The address to base the search on 640 * @size: The bitmap size in bits 641 * @start: The bitnumber to start searching at 642 * @nr: The number of zeroed bits we're looking for 643 * @data: additional data - unused 644 * @pool: pool to find the fit region memory from 645 */ 646 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 647 unsigned long start, unsigned int nr, void *data, 648 struct gen_pool *pool, unsigned long start_addr) 649 { 650 return bitmap_find_next_zero_area(map, size, start, nr, 0); 651 } 652 EXPORT_SYMBOL(gen_pool_first_fit); 653 654 /** 655 * gen_pool_first_fit_align - find the first available region 656 * of memory matching the size requirement (alignment constraint) 657 * @map: The address to base the search on 658 * @size: The bitmap size in bits 659 * @start: The bitnumber to start searching at 660 * @nr: The number of zeroed bits we're looking for 661 * @data: data for alignment 662 * @pool: pool to get order from 663 */ 664 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size, 665 unsigned long start, unsigned int nr, void *data, 666 struct gen_pool *pool, unsigned long start_addr) 667 { 668 struct genpool_data_align *alignment; 669 unsigned long align_mask, align_off; 670 int order; 671 672 alignment = data; 673 order = pool->min_alloc_order; 674 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1; 675 align_off = (start_addr & (alignment->align - 1)) >> order; 676 677 return bitmap_find_next_zero_area_off(map, size, start, nr, 678 align_mask, align_off); 679 } 680 EXPORT_SYMBOL(gen_pool_first_fit_align); 681 682 /** 683 * gen_pool_fixed_alloc - reserve a specific region 684 * @map: The address to base the search on 685 * @size: The bitmap size in bits 686 * @start: The bitnumber to start searching at 687 * @nr: The number of zeroed bits we're looking for 688 * @data: data for alignment 689 * @pool: pool to get order from 690 */ 691 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size, 692 unsigned long start, unsigned int nr, void *data, 693 struct gen_pool *pool, unsigned long start_addr) 694 { 695 struct genpool_data_fixed *fixed_data; 696 int order; 697 unsigned long offset_bit; 698 unsigned long start_bit; 699 700 fixed_data = data; 701 order = pool->min_alloc_order; 702 offset_bit = fixed_data->offset >> order; 703 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1))) 704 return size; 705 706 start_bit = bitmap_find_next_zero_area(map, size, 707 start + offset_bit, nr, 0); 708 if (start_bit != offset_bit) 709 start_bit = size; 710 return start_bit; 711 } 712 EXPORT_SYMBOL(gen_pool_fixed_alloc); 713 714 /** 715 * gen_pool_first_fit_order_align - find the first available region 716 * of memory matching the size requirement. The region will be aligned 717 * to the order of the size specified. 718 * @map: The address to base the search on 719 * @size: The bitmap size in bits 720 * @start: The bitnumber to start searching at 721 * @nr: The number of zeroed bits we're looking for 722 * @data: additional data - unused 723 * @pool: pool to find the fit region memory from 724 */ 725 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 726 unsigned long size, unsigned long start, 727 unsigned int nr, void *data, struct gen_pool *pool, 728 unsigned long start_addr) 729 { 730 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 731 732 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 733 } 734 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 735 736 /** 737 * gen_pool_best_fit - find the best fitting region of memory 738 * macthing the size requirement (no alignment constraint) 739 * @map: The address to base the search on 740 * @size: The bitmap size in bits 741 * @start: The bitnumber to start searching at 742 * @nr: The number of zeroed bits we're looking for 743 * @data: additional data - unused 744 * @pool: pool to find the fit region memory from 745 * 746 * Iterate over the bitmap to find the smallest free region 747 * which we can allocate the memory. 748 */ 749 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 750 unsigned long start, unsigned int nr, void *data, 751 struct gen_pool *pool, unsigned long start_addr) 752 { 753 unsigned long start_bit = size; 754 unsigned long len = size + 1; 755 unsigned long index; 756 757 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 758 759 while (index < size) { 760 unsigned long next_bit = find_next_bit(map, size, index + nr); 761 if ((next_bit - index) < len) { 762 len = next_bit - index; 763 start_bit = index; 764 if (len == nr) 765 return start_bit; 766 } 767 index = bitmap_find_next_zero_area(map, size, 768 next_bit + 1, nr, 0); 769 } 770 771 return start_bit; 772 } 773 EXPORT_SYMBOL(gen_pool_best_fit); 774 775 static void devm_gen_pool_release(struct device *dev, void *res) 776 { 777 gen_pool_destroy(*(struct gen_pool **)res); 778 } 779 780 static int devm_gen_pool_match(struct device *dev, void *res, void *data) 781 { 782 struct gen_pool **p = res; 783 784 /* NULL data matches only a pool without an assigned name */ 785 if (!data && !(*p)->name) 786 return 1; 787 788 if (!data || !(*p)->name) 789 return 0; 790 791 return !strcmp((*p)->name, data); 792 } 793 794 /** 795 * gen_pool_get - Obtain the gen_pool (if any) for a device 796 * @dev: device to retrieve the gen_pool from 797 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 798 * 799 * Returns the gen_pool for the device if one is present, or NULL. 800 */ 801 struct gen_pool *gen_pool_get(struct device *dev, const char *name) 802 { 803 struct gen_pool **p; 804 805 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match, 806 (void *)name); 807 if (!p) 808 return NULL; 809 return *p; 810 } 811 EXPORT_SYMBOL_GPL(gen_pool_get); 812 813 /** 814 * devm_gen_pool_create - managed gen_pool_create 815 * @dev: device that provides the gen_pool 816 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 817 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes 818 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 819 * 820 * Create a new special memory pool that can be used to manage special purpose 821 * memory not managed by the regular kmalloc/kfree interface. The pool will be 822 * automatically destroyed by the device management code. 823 */ 824 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 825 int nid, const char *name) 826 { 827 struct gen_pool **ptr, *pool; 828 const char *pool_name = NULL; 829 830 /* Check that genpool to be created is uniquely addressed on device */ 831 if (gen_pool_get(dev, name)) 832 return ERR_PTR(-EINVAL); 833 834 if (name) { 835 pool_name = kstrdup_const(name, GFP_KERNEL); 836 if (!pool_name) 837 return ERR_PTR(-ENOMEM); 838 } 839 840 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 841 if (!ptr) 842 goto free_pool_name; 843 844 pool = gen_pool_create(min_alloc_order, nid); 845 if (!pool) 846 goto free_devres; 847 848 *ptr = pool; 849 pool->name = pool_name; 850 devres_add(dev, ptr); 851 852 return pool; 853 854 free_devres: 855 devres_free(ptr); 856 free_pool_name: 857 kfree_const(pool_name); 858 859 return ERR_PTR(-ENOMEM); 860 } 861 EXPORT_SYMBOL(devm_gen_pool_create); 862 863 #ifdef CONFIG_OF 864 /** 865 * of_gen_pool_get - find a pool by phandle property 866 * @np: device node 867 * @propname: property name containing phandle(s) 868 * @index: index into the phandle array 869 * 870 * Returns the pool that contains the chunk starting at the physical 871 * address of the device tree node pointed at by the phandle property, 872 * or NULL if not found. 873 */ 874 struct gen_pool *of_gen_pool_get(struct device_node *np, 875 const char *propname, int index) 876 { 877 struct platform_device *pdev; 878 struct device_node *np_pool, *parent; 879 const char *name = NULL; 880 struct gen_pool *pool = NULL; 881 882 np_pool = of_parse_phandle(np, propname, index); 883 if (!np_pool) 884 return NULL; 885 886 pdev = of_find_device_by_node(np_pool); 887 if (!pdev) { 888 /* Check if named gen_pool is created by parent node device */ 889 parent = of_get_parent(np_pool); 890 pdev = of_find_device_by_node(parent); 891 of_node_put(parent); 892 893 of_property_read_string(np_pool, "label", &name); 894 if (!name) 895 name = np_pool->name; 896 } 897 if (pdev) 898 pool = gen_pool_get(&pdev->dev, name); 899 of_node_put(np_pool); 900 901 return pool; 902 } 903 EXPORT_SYMBOL_GPL(of_gen_pool_get); 904 #endif /* CONFIG_OF */ 905