1 /* 2 * Basic general purpose allocator for managing special purpose 3 * memory, for example, memory that is not managed by the regular 4 * kmalloc/kfree interface. Uses for this includes on-device special 5 * memory, uncached memory etc. 6 * 7 * It is safe to use the allocator in NMI handlers and other special 8 * unblockable contexts that could otherwise deadlock on locks. This 9 * is implemented by using atomic operations and retries on any 10 * conflicts. The disadvantage is that there may be livelocks in 11 * extreme cases. For better scalability, one allocator can be used 12 * for each CPU. 13 * 14 * The lockless operation only works if there is enough memory 15 * available. If new memory is added to the pool a lock has to be 16 * still taken. So any user relying on locklessness has to ensure 17 * that sufficient memory is preallocated. 18 * 19 * The basic atomic operation of this allocator is cmpxchg on long. 20 * On architectures that don't have NMI-safe cmpxchg implementation, 21 * the allocator can NOT be used in NMI handler. So code uses the 22 * allocator in NMI handler should depend on 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 24 * 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 26 * 27 * This source code is licensed under the GNU General Public License, 28 * Version 2. See the file COPYING for more details. 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/export.h> 33 #include <linux/bitmap.h> 34 #include <linux/rculist.h> 35 #include <linux/interrupt.h> 36 #include <linux/genalloc.h> 37 38 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 39 { 40 unsigned long val, nval; 41 42 nval = *addr; 43 do { 44 val = nval; 45 if (val & mask_to_set) 46 return -EBUSY; 47 cpu_relax(); 48 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 49 50 return 0; 51 } 52 53 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 54 { 55 unsigned long val, nval; 56 57 nval = *addr; 58 do { 59 val = nval; 60 if ((val & mask_to_clear) != mask_to_clear) 61 return -EBUSY; 62 cpu_relax(); 63 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 64 65 return 0; 66 } 67 68 /* 69 * bitmap_set_ll - set the specified number of bits at the specified position 70 * @map: pointer to a bitmap 71 * @start: a bit position in @map 72 * @nr: number of bits to set 73 * 74 * Set @nr bits start from @start in @map lock-lessly. Several users 75 * can set/clear the same bitmap simultaneously without lock. If two 76 * users set the same bit, one user will return remain bits, otherwise 77 * return 0. 78 */ 79 static int bitmap_set_ll(unsigned long *map, int start, int nr) 80 { 81 unsigned long *p = map + BIT_WORD(start); 82 const int size = start + nr; 83 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 84 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 85 86 while (nr - bits_to_set >= 0) { 87 if (set_bits_ll(p, mask_to_set)) 88 return nr; 89 nr -= bits_to_set; 90 bits_to_set = BITS_PER_LONG; 91 mask_to_set = ~0UL; 92 p++; 93 } 94 if (nr) { 95 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 96 if (set_bits_ll(p, mask_to_set)) 97 return nr; 98 } 99 100 return 0; 101 } 102 103 /* 104 * bitmap_clear_ll - clear the specified number of bits at the specified position 105 * @map: pointer to a bitmap 106 * @start: a bit position in @map 107 * @nr: number of bits to set 108 * 109 * Clear @nr bits start from @start in @map lock-lessly. Several users 110 * can set/clear the same bitmap simultaneously without lock. If two 111 * users clear the same bit, one user will return remain bits, 112 * otherwise return 0. 113 */ 114 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 115 { 116 unsigned long *p = map + BIT_WORD(start); 117 const int size = start + nr; 118 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 119 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 120 121 while (nr - bits_to_clear >= 0) { 122 if (clear_bits_ll(p, mask_to_clear)) 123 return nr; 124 nr -= bits_to_clear; 125 bits_to_clear = BITS_PER_LONG; 126 mask_to_clear = ~0UL; 127 p++; 128 } 129 if (nr) { 130 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 131 if (clear_bits_ll(p, mask_to_clear)) 132 return nr; 133 } 134 135 return 0; 136 } 137 138 /** 139 * gen_pool_create - create a new special memory pool 140 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 141 * @nid: node id of the node the pool structure should be allocated on, or -1 142 * 143 * Create a new special memory pool that can be used to manage special purpose 144 * memory not managed by the regular kmalloc/kfree interface. 145 */ 146 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 147 { 148 struct gen_pool *pool; 149 150 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 151 if (pool != NULL) { 152 spin_lock_init(&pool->lock); 153 INIT_LIST_HEAD(&pool->chunks); 154 pool->min_alloc_order = min_alloc_order; 155 } 156 return pool; 157 } 158 EXPORT_SYMBOL(gen_pool_create); 159 160 /** 161 * gen_pool_add_virt - add a new chunk of special memory to the pool 162 * @pool: pool to add new memory chunk to 163 * @virt: virtual starting address of memory chunk to add to pool 164 * @phys: physical starting address of memory chunk to add to pool 165 * @size: size in bytes of the memory chunk to add to pool 166 * @nid: node id of the node the chunk structure and bitmap should be 167 * allocated on, or -1 168 * 169 * Add a new chunk of special memory to the specified pool. 170 * 171 * Returns 0 on success or a -ve errno on failure. 172 */ 173 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 174 size_t size, int nid) 175 { 176 struct gen_pool_chunk *chunk; 177 int nbits = size >> pool->min_alloc_order; 178 int nbytes = sizeof(struct gen_pool_chunk) + 179 (nbits + BITS_PER_BYTE - 1) / BITS_PER_BYTE; 180 181 chunk = kmalloc_node(nbytes, GFP_KERNEL | __GFP_ZERO, nid); 182 if (unlikely(chunk == NULL)) 183 return -ENOMEM; 184 185 chunk->phys_addr = phys; 186 chunk->start_addr = virt; 187 chunk->end_addr = virt + size; 188 atomic_set(&chunk->avail, size); 189 190 spin_lock(&pool->lock); 191 list_add_rcu(&chunk->next_chunk, &pool->chunks); 192 spin_unlock(&pool->lock); 193 194 return 0; 195 } 196 EXPORT_SYMBOL(gen_pool_add_virt); 197 198 /** 199 * gen_pool_virt_to_phys - return the physical address of memory 200 * @pool: pool to allocate from 201 * @addr: starting address of memory 202 * 203 * Returns the physical address on success, or -1 on error. 204 */ 205 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 206 { 207 struct gen_pool_chunk *chunk; 208 phys_addr_t paddr = -1; 209 210 rcu_read_lock(); 211 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 212 if (addr >= chunk->start_addr && addr < chunk->end_addr) { 213 paddr = chunk->phys_addr + (addr - chunk->start_addr); 214 break; 215 } 216 } 217 rcu_read_unlock(); 218 219 return paddr; 220 } 221 EXPORT_SYMBOL(gen_pool_virt_to_phys); 222 223 /** 224 * gen_pool_destroy - destroy a special memory pool 225 * @pool: pool to destroy 226 * 227 * Destroy the specified special memory pool. Verifies that there are no 228 * outstanding allocations. 229 */ 230 void gen_pool_destroy(struct gen_pool *pool) 231 { 232 struct list_head *_chunk, *_next_chunk; 233 struct gen_pool_chunk *chunk; 234 int order = pool->min_alloc_order; 235 int bit, end_bit; 236 237 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 238 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 239 list_del(&chunk->next_chunk); 240 241 end_bit = (chunk->end_addr - chunk->start_addr) >> order; 242 bit = find_next_bit(chunk->bits, end_bit, 0); 243 BUG_ON(bit < end_bit); 244 245 kfree(chunk); 246 } 247 kfree(pool); 248 return; 249 } 250 EXPORT_SYMBOL(gen_pool_destroy); 251 252 /** 253 * gen_pool_alloc - allocate special memory from the pool 254 * @pool: pool to allocate from 255 * @size: number of bytes to allocate from the pool 256 * 257 * Allocate the requested number of bytes from the specified pool. 258 * Uses a first-fit algorithm. Can not be used in NMI handler on 259 * architectures without NMI-safe cmpxchg implementation. 260 */ 261 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) 262 { 263 struct gen_pool_chunk *chunk; 264 unsigned long addr = 0; 265 int order = pool->min_alloc_order; 266 int nbits, start_bit = 0, end_bit, remain; 267 268 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 269 BUG_ON(in_nmi()); 270 #endif 271 272 if (size == 0) 273 return 0; 274 275 nbits = (size + (1UL << order) - 1) >> order; 276 rcu_read_lock(); 277 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 278 if (size > atomic_read(&chunk->avail)) 279 continue; 280 281 end_bit = (chunk->end_addr - chunk->start_addr) >> order; 282 retry: 283 start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit, 284 start_bit, nbits, 0); 285 if (start_bit >= end_bit) 286 continue; 287 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 288 if (remain) { 289 remain = bitmap_clear_ll(chunk->bits, start_bit, 290 nbits - remain); 291 BUG_ON(remain); 292 goto retry; 293 } 294 295 addr = chunk->start_addr + ((unsigned long)start_bit << order); 296 size = nbits << order; 297 atomic_sub(size, &chunk->avail); 298 break; 299 } 300 rcu_read_unlock(); 301 return addr; 302 } 303 EXPORT_SYMBOL(gen_pool_alloc); 304 305 /** 306 * gen_pool_free - free allocated special memory back to the pool 307 * @pool: pool to free to 308 * @addr: starting address of memory to free back to pool 309 * @size: size in bytes of memory to free 310 * 311 * Free previously allocated special memory back to the specified 312 * pool. Can not be used in NMI handler on architectures without 313 * NMI-safe cmpxchg implementation. 314 */ 315 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) 316 { 317 struct gen_pool_chunk *chunk; 318 int order = pool->min_alloc_order; 319 int start_bit, nbits, remain; 320 321 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 322 BUG_ON(in_nmi()); 323 #endif 324 325 nbits = (size + (1UL << order) - 1) >> order; 326 rcu_read_lock(); 327 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 328 if (addr >= chunk->start_addr && addr < chunk->end_addr) { 329 BUG_ON(addr + size > chunk->end_addr); 330 start_bit = (addr - chunk->start_addr) >> order; 331 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 332 BUG_ON(remain); 333 size = nbits << order; 334 atomic_add(size, &chunk->avail); 335 rcu_read_unlock(); 336 return; 337 } 338 } 339 rcu_read_unlock(); 340 BUG(); 341 } 342 EXPORT_SYMBOL(gen_pool_free); 343 344 /** 345 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 346 * @pool: the generic memory pool 347 * @func: func to call 348 * @data: additional data used by @func 349 * 350 * Call @func for every chunk of generic memory pool. The @func is 351 * called with rcu_read_lock held. 352 */ 353 void gen_pool_for_each_chunk(struct gen_pool *pool, 354 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 355 void *data) 356 { 357 struct gen_pool_chunk *chunk; 358 359 rcu_read_lock(); 360 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 361 func(pool, chunk, data); 362 rcu_read_unlock(); 363 } 364 EXPORT_SYMBOL(gen_pool_for_each_chunk); 365 366 /** 367 * gen_pool_avail - get available free space of the pool 368 * @pool: pool to get available free space 369 * 370 * Return available free space of the specified pool. 371 */ 372 size_t gen_pool_avail(struct gen_pool *pool) 373 { 374 struct gen_pool_chunk *chunk; 375 size_t avail = 0; 376 377 rcu_read_lock(); 378 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 379 avail += atomic_read(&chunk->avail); 380 rcu_read_unlock(); 381 return avail; 382 } 383 EXPORT_SYMBOL_GPL(gen_pool_avail); 384 385 /** 386 * gen_pool_size - get size in bytes of memory managed by the pool 387 * @pool: pool to get size 388 * 389 * Return size in bytes of memory managed by the pool. 390 */ 391 size_t gen_pool_size(struct gen_pool *pool) 392 { 393 struct gen_pool_chunk *chunk; 394 size_t size = 0; 395 396 rcu_read_lock(); 397 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 398 size += chunk->end_addr - chunk->start_addr; 399 rcu_read_unlock(); 400 return size; 401 } 402 EXPORT_SYMBOL_GPL(gen_pool_size); 403