1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Basic general purpose allocator for managing special purpose 4 * memory, for example, memory that is not managed by the regular 5 * kmalloc/kfree interface. Uses for this includes on-device special 6 * memory, uncached memory etc. 7 * 8 * It is safe to use the allocator in NMI handlers and other special 9 * unblockable contexts that could otherwise deadlock on locks. This 10 * is implemented by using atomic operations and retries on any 11 * conflicts. The disadvantage is that there may be livelocks in 12 * extreme cases. For better scalability, one allocator can be used 13 * for each CPU. 14 * 15 * The lockless operation only works if there is enough memory 16 * available. If new memory is added to the pool a lock has to be 17 * still taken. So any user relying on locklessness has to ensure 18 * that sufficient memory is preallocated. 19 * 20 * The basic atomic operation of this allocator is cmpxchg on long. 21 * On architectures that don't have NMI-safe cmpxchg implementation, 22 * the allocator can NOT be used in NMI handler. So code uses the 23 * allocator in NMI handler should depend on 24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 25 * 26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 27 */ 28 29 #include <linux/slab.h> 30 #include <linux/export.h> 31 #include <linux/bitmap.h> 32 #include <linux/rculist.h> 33 #include <linux/interrupt.h> 34 #include <linux/genalloc.h> 35 #include <linux/of_device.h> 36 #include <linux/vmalloc.h> 37 38 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 39 { 40 return chunk->end_addr - chunk->start_addr + 1; 41 } 42 43 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 44 { 45 unsigned long val, nval; 46 47 nval = *addr; 48 do { 49 val = nval; 50 if (val & mask_to_set) 51 return -EBUSY; 52 cpu_relax(); 53 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 54 55 return 0; 56 } 57 58 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 59 { 60 unsigned long val, nval; 61 62 nval = *addr; 63 do { 64 val = nval; 65 if ((val & mask_to_clear) != mask_to_clear) 66 return -EBUSY; 67 cpu_relax(); 68 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 69 70 return 0; 71 } 72 73 /* 74 * bitmap_set_ll - set the specified number of bits at the specified position 75 * @map: pointer to a bitmap 76 * @start: a bit position in @map 77 * @nr: number of bits to set 78 * 79 * Set @nr bits start from @start in @map lock-lessly. Several users 80 * can set/clear the same bitmap simultaneously without lock. If two 81 * users set the same bit, one user will return remain bits, otherwise 82 * return 0. 83 */ 84 static int bitmap_set_ll(unsigned long *map, int start, int nr) 85 { 86 unsigned long *p = map + BIT_WORD(start); 87 const int size = start + nr; 88 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 89 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 90 91 while (nr - bits_to_set >= 0) { 92 if (set_bits_ll(p, mask_to_set)) 93 return nr; 94 nr -= bits_to_set; 95 bits_to_set = BITS_PER_LONG; 96 mask_to_set = ~0UL; 97 p++; 98 } 99 if (nr) { 100 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 101 if (set_bits_ll(p, mask_to_set)) 102 return nr; 103 } 104 105 return 0; 106 } 107 108 /* 109 * bitmap_clear_ll - clear the specified number of bits at the specified position 110 * @map: pointer to a bitmap 111 * @start: a bit position in @map 112 * @nr: number of bits to set 113 * 114 * Clear @nr bits start from @start in @map lock-lessly. Several users 115 * can set/clear the same bitmap simultaneously without lock. If two 116 * users clear the same bit, one user will return remain bits, 117 * otherwise return 0. 118 */ 119 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 120 { 121 unsigned long *p = map + BIT_WORD(start); 122 const int size = start + nr; 123 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 124 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 125 126 while (nr - bits_to_clear >= 0) { 127 if (clear_bits_ll(p, mask_to_clear)) 128 return nr; 129 nr -= bits_to_clear; 130 bits_to_clear = BITS_PER_LONG; 131 mask_to_clear = ~0UL; 132 p++; 133 } 134 if (nr) { 135 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 136 if (clear_bits_ll(p, mask_to_clear)) 137 return nr; 138 } 139 140 return 0; 141 } 142 143 /** 144 * gen_pool_create - create a new special memory pool 145 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 146 * @nid: node id of the node the pool structure should be allocated on, or -1 147 * 148 * Create a new special memory pool that can be used to manage special purpose 149 * memory not managed by the regular kmalloc/kfree interface. 150 */ 151 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 152 { 153 struct gen_pool *pool; 154 155 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 156 if (pool != NULL) { 157 spin_lock_init(&pool->lock); 158 INIT_LIST_HEAD(&pool->chunks); 159 pool->min_alloc_order = min_alloc_order; 160 pool->algo = gen_pool_first_fit; 161 pool->data = NULL; 162 pool->name = NULL; 163 } 164 return pool; 165 } 166 EXPORT_SYMBOL(gen_pool_create); 167 168 /** 169 * gen_pool_add_owner- add a new chunk of special memory to the pool 170 * @pool: pool to add new memory chunk to 171 * @virt: virtual starting address of memory chunk to add to pool 172 * @phys: physical starting address of memory chunk to add to pool 173 * @size: size in bytes of the memory chunk to add to pool 174 * @nid: node id of the node the chunk structure and bitmap should be 175 * allocated on, or -1 176 * @owner: private data the publisher would like to recall at alloc time 177 * 178 * Add a new chunk of special memory to the specified pool. 179 * 180 * Returns 0 on success or a -ve errno on failure. 181 */ 182 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 183 size_t size, int nid, void *owner) 184 { 185 struct gen_pool_chunk *chunk; 186 int nbits = size >> pool->min_alloc_order; 187 int nbytes = sizeof(struct gen_pool_chunk) + 188 BITS_TO_LONGS(nbits) * sizeof(long); 189 190 chunk = vzalloc_node(nbytes, nid); 191 if (unlikely(chunk == NULL)) 192 return -ENOMEM; 193 194 chunk->phys_addr = phys; 195 chunk->start_addr = virt; 196 chunk->end_addr = virt + size - 1; 197 chunk->owner = owner; 198 atomic_long_set(&chunk->avail, size); 199 200 spin_lock(&pool->lock); 201 list_add_rcu(&chunk->next_chunk, &pool->chunks); 202 spin_unlock(&pool->lock); 203 204 return 0; 205 } 206 EXPORT_SYMBOL(gen_pool_add_owner); 207 208 /** 209 * gen_pool_virt_to_phys - return the physical address of memory 210 * @pool: pool to allocate from 211 * @addr: starting address of memory 212 * 213 * Returns the physical address on success, or -1 on error. 214 */ 215 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 216 { 217 struct gen_pool_chunk *chunk; 218 phys_addr_t paddr = -1; 219 220 rcu_read_lock(); 221 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 222 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 223 paddr = chunk->phys_addr + (addr - chunk->start_addr); 224 break; 225 } 226 } 227 rcu_read_unlock(); 228 229 return paddr; 230 } 231 EXPORT_SYMBOL(gen_pool_virt_to_phys); 232 233 /** 234 * gen_pool_destroy - destroy a special memory pool 235 * @pool: pool to destroy 236 * 237 * Destroy the specified special memory pool. Verifies that there are no 238 * outstanding allocations. 239 */ 240 void gen_pool_destroy(struct gen_pool *pool) 241 { 242 struct list_head *_chunk, *_next_chunk; 243 struct gen_pool_chunk *chunk; 244 int order = pool->min_alloc_order; 245 int bit, end_bit; 246 247 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 248 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 249 list_del(&chunk->next_chunk); 250 251 end_bit = chunk_size(chunk) >> order; 252 bit = find_next_bit(chunk->bits, end_bit, 0); 253 BUG_ON(bit < end_bit); 254 255 vfree(chunk); 256 } 257 kfree_const(pool->name); 258 kfree(pool); 259 } 260 EXPORT_SYMBOL(gen_pool_destroy); 261 262 /** 263 * gen_pool_alloc_algo_owner - allocate special memory from the pool 264 * @pool: pool to allocate from 265 * @size: number of bytes to allocate from the pool 266 * @algo: algorithm passed from caller 267 * @data: data passed to algorithm 268 * @owner: optionally retrieve the chunk owner 269 * 270 * Allocate the requested number of bytes from the specified pool. 271 * Uses the pool allocation function (with first-fit algorithm by default). 272 * Can not be used in NMI handler on architectures without 273 * NMI-safe cmpxchg implementation. 274 */ 275 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size, 276 genpool_algo_t algo, void *data, void **owner) 277 { 278 struct gen_pool_chunk *chunk; 279 unsigned long addr = 0; 280 int order = pool->min_alloc_order; 281 int nbits, start_bit, end_bit, remain; 282 283 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 284 BUG_ON(in_nmi()); 285 #endif 286 287 if (owner) 288 *owner = NULL; 289 290 if (size == 0) 291 return 0; 292 293 nbits = (size + (1UL << order) - 1) >> order; 294 rcu_read_lock(); 295 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 296 if (size > atomic_long_read(&chunk->avail)) 297 continue; 298 299 start_bit = 0; 300 end_bit = chunk_size(chunk) >> order; 301 retry: 302 start_bit = algo(chunk->bits, end_bit, start_bit, 303 nbits, data, pool, chunk->start_addr); 304 if (start_bit >= end_bit) 305 continue; 306 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 307 if (remain) { 308 remain = bitmap_clear_ll(chunk->bits, start_bit, 309 nbits - remain); 310 BUG_ON(remain); 311 goto retry; 312 } 313 314 addr = chunk->start_addr + ((unsigned long)start_bit << order); 315 size = nbits << order; 316 atomic_long_sub(size, &chunk->avail); 317 if (owner) 318 *owner = chunk->owner; 319 break; 320 } 321 rcu_read_unlock(); 322 return addr; 323 } 324 EXPORT_SYMBOL(gen_pool_alloc_algo_owner); 325 326 /** 327 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 328 * @pool: pool to allocate from 329 * @size: number of bytes to allocate from the pool 330 * @dma: dma-view physical address return value. Use NULL if unneeded. 331 * 332 * Allocate the requested number of bytes from the specified pool. 333 * Uses the pool allocation function (with first-fit algorithm by default). 334 * Can not be used in NMI handler on architectures without 335 * NMI-safe cmpxchg implementation. 336 */ 337 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 338 { 339 unsigned long vaddr; 340 341 if (!pool) 342 return NULL; 343 344 vaddr = gen_pool_alloc(pool, size); 345 if (!vaddr) 346 return NULL; 347 348 if (dma) 349 *dma = gen_pool_virt_to_phys(pool, vaddr); 350 351 return (void *)vaddr; 352 } 353 EXPORT_SYMBOL(gen_pool_dma_alloc); 354 355 /** 356 * gen_pool_free - free allocated special memory back to the pool 357 * @pool: pool to free to 358 * @addr: starting address of memory to free back to pool 359 * @size: size in bytes of memory to free 360 * @owner: private data stashed at gen_pool_add() time 361 * 362 * Free previously allocated special memory back to the specified 363 * pool. Can not be used in NMI handler on architectures without 364 * NMI-safe cmpxchg implementation. 365 */ 366 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size, 367 void **owner) 368 { 369 struct gen_pool_chunk *chunk; 370 int order = pool->min_alloc_order; 371 int start_bit, nbits, remain; 372 373 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 374 BUG_ON(in_nmi()); 375 #endif 376 377 if (owner) 378 *owner = NULL; 379 380 nbits = (size + (1UL << order) - 1) >> order; 381 rcu_read_lock(); 382 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 383 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 384 BUG_ON(addr + size - 1 > chunk->end_addr); 385 start_bit = (addr - chunk->start_addr) >> order; 386 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 387 BUG_ON(remain); 388 size = nbits << order; 389 atomic_long_add(size, &chunk->avail); 390 if (owner) 391 *owner = chunk->owner; 392 rcu_read_unlock(); 393 return; 394 } 395 } 396 rcu_read_unlock(); 397 BUG(); 398 } 399 EXPORT_SYMBOL(gen_pool_free_owner); 400 401 /** 402 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 403 * @pool: the generic memory pool 404 * @func: func to call 405 * @data: additional data used by @func 406 * 407 * Call @func for every chunk of generic memory pool. The @func is 408 * called with rcu_read_lock held. 409 */ 410 void gen_pool_for_each_chunk(struct gen_pool *pool, 411 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 412 void *data) 413 { 414 struct gen_pool_chunk *chunk; 415 416 rcu_read_lock(); 417 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 418 func(pool, chunk, data); 419 rcu_read_unlock(); 420 } 421 EXPORT_SYMBOL(gen_pool_for_each_chunk); 422 423 /** 424 * addr_in_gen_pool - checks if an address falls within the range of a pool 425 * @pool: the generic memory pool 426 * @start: start address 427 * @size: size of the region 428 * 429 * Check if the range of addresses falls within the specified pool. Returns 430 * true if the entire range is contained in the pool and false otherwise. 431 */ 432 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start, 433 size_t size) 434 { 435 bool found = false; 436 unsigned long end = start + size - 1; 437 struct gen_pool_chunk *chunk; 438 439 rcu_read_lock(); 440 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 441 if (start >= chunk->start_addr && start <= chunk->end_addr) { 442 if (end <= chunk->end_addr) { 443 found = true; 444 break; 445 } 446 } 447 } 448 rcu_read_unlock(); 449 return found; 450 } 451 452 /** 453 * gen_pool_avail - get available free space of the pool 454 * @pool: pool to get available free space 455 * 456 * Return available free space of the specified pool. 457 */ 458 size_t gen_pool_avail(struct gen_pool *pool) 459 { 460 struct gen_pool_chunk *chunk; 461 size_t avail = 0; 462 463 rcu_read_lock(); 464 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 465 avail += atomic_long_read(&chunk->avail); 466 rcu_read_unlock(); 467 return avail; 468 } 469 EXPORT_SYMBOL_GPL(gen_pool_avail); 470 471 /** 472 * gen_pool_size - get size in bytes of memory managed by the pool 473 * @pool: pool to get size 474 * 475 * Return size in bytes of memory managed by the pool. 476 */ 477 size_t gen_pool_size(struct gen_pool *pool) 478 { 479 struct gen_pool_chunk *chunk; 480 size_t size = 0; 481 482 rcu_read_lock(); 483 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 484 size += chunk_size(chunk); 485 rcu_read_unlock(); 486 return size; 487 } 488 EXPORT_SYMBOL_GPL(gen_pool_size); 489 490 /** 491 * gen_pool_set_algo - set the allocation algorithm 492 * @pool: pool to change allocation algorithm 493 * @algo: custom algorithm function 494 * @data: additional data used by @algo 495 * 496 * Call @algo for each memory allocation in the pool. 497 * If @algo is NULL use gen_pool_first_fit as default 498 * memory allocation function. 499 */ 500 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 501 { 502 rcu_read_lock(); 503 504 pool->algo = algo; 505 if (!pool->algo) 506 pool->algo = gen_pool_first_fit; 507 508 pool->data = data; 509 510 rcu_read_unlock(); 511 } 512 EXPORT_SYMBOL(gen_pool_set_algo); 513 514 /** 515 * gen_pool_first_fit - find the first available region 516 * of memory matching the size requirement (no alignment constraint) 517 * @map: The address to base the search on 518 * @size: The bitmap size in bits 519 * @start: The bitnumber to start searching at 520 * @nr: The number of zeroed bits we're looking for 521 * @data: additional data - unused 522 * @pool: pool to find the fit region memory from 523 */ 524 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 525 unsigned long start, unsigned int nr, void *data, 526 struct gen_pool *pool, unsigned long start_addr) 527 { 528 return bitmap_find_next_zero_area(map, size, start, nr, 0); 529 } 530 EXPORT_SYMBOL(gen_pool_first_fit); 531 532 /** 533 * gen_pool_first_fit_align - find the first available region 534 * of memory matching the size requirement (alignment constraint) 535 * @map: The address to base the search on 536 * @size: The bitmap size in bits 537 * @start: The bitnumber to start searching at 538 * @nr: The number of zeroed bits we're looking for 539 * @data: data for alignment 540 * @pool: pool to get order from 541 */ 542 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size, 543 unsigned long start, unsigned int nr, void *data, 544 struct gen_pool *pool, unsigned long start_addr) 545 { 546 struct genpool_data_align *alignment; 547 unsigned long align_mask, align_off; 548 int order; 549 550 alignment = data; 551 order = pool->min_alloc_order; 552 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1; 553 align_off = (start_addr & (alignment->align - 1)) >> order; 554 555 return bitmap_find_next_zero_area_off(map, size, start, nr, 556 align_mask, align_off); 557 } 558 EXPORT_SYMBOL(gen_pool_first_fit_align); 559 560 /** 561 * gen_pool_fixed_alloc - reserve a specific region 562 * @map: The address to base the search on 563 * @size: The bitmap size in bits 564 * @start: The bitnumber to start searching at 565 * @nr: The number of zeroed bits we're looking for 566 * @data: data for alignment 567 * @pool: pool to get order from 568 */ 569 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size, 570 unsigned long start, unsigned int nr, void *data, 571 struct gen_pool *pool, unsigned long start_addr) 572 { 573 struct genpool_data_fixed *fixed_data; 574 int order; 575 unsigned long offset_bit; 576 unsigned long start_bit; 577 578 fixed_data = data; 579 order = pool->min_alloc_order; 580 offset_bit = fixed_data->offset >> order; 581 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1))) 582 return size; 583 584 start_bit = bitmap_find_next_zero_area(map, size, 585 start + offset_bit, nr, 0); 586 if (start_bit != offset_bit) 587 start_bit = size; 588 return start_bit; 589 } 590 EXPORT_SYMBOL(gen_pool_fixed_alloc); 591 592 /** 593 * gen_pool_first_fit_order_align - find the first available region 594 * of memory matching the size requirement. The region will be aligned 595 * to the order of the size specified. 596 * @map: The address to base the search on 597 * @size: The bitmap size in bits 598 * @start: The bitnumber to start searching at 599 * @nr: The number of zeroed bits we're looking for 600 * @data: additional data - unused 601 * @pool: pool to find the fit region memory from 602 */ 603 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 604 unsigned long size, unsigned long start, 605 unsigned int nr, void *data, struct gen_pool *pool, 606 unsigned long start_addr) 607 { 608 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 609 610 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 611 } 612 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 613 614 /** 615 * gen_pool_best_fit - find the best fitting region of memory 616 * macthing the size requirement (no alignment constraint) 617 * @map: The address to base the search on 618 * @size: The bitmap size in bits 619 * @start: The bitnumber to start searching at 620 * @nr: The number of zeroed bits we're looking for 621 * @data: additional data - unused 622 * @pool: pool to find the fit region memory from 623 * 624 * Iterate over the bitmap to find the smallest free region 625 * which we can allocate the memory. 626 */ 627 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 628 unsigned long start, unsigned int nr, void *data, 629 struct gen_pool *pool, unsigned long start_addr) 630 { 631 unsigned long start_bit = size; 632 unsigned long len = size + 1; 633 unsigned long index; 634 635 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 636 637 while (index < size) { 638 int next_bit = find_next_bit(map, size, index + nr); 639 if ((next_bit - index) < len) { 640 len = next_bit - index; 641 start_bit = index; 642 if (len == nr) 643 return start_bit; 644 } 645 index = bitmap_find_next_zero_area(map, size, 646 next_bit + 1, nr, 0); 647 } 648 649 return start_bit; 650 } 651 EXPORT_SYMBOL(gen_pool_best_fit); 652 653 static void devm_gen_pool_release(struct device *dev, void *res) 654 { 655 gen_pool_destroy(*(struct gen_pool **)res); 656 } 657 658 static int devm_gen_pool_match(struct device *dev, void *res, void *data) 659 { 660 struct gen_pool **p = res; 661 662 /* NULL data matches only a pool without an assigned name */ 663 if (!data && !(*p)->name) 664 return 1; 665 666 if (!data || !(*p)->name) 667 return 0; 668 669 return !strcmp((*p)->name, data); 670 } 671 672 /** 673 * gen_pool_get - Obtain the gen_pool (if any) for a device 674 * @dev: device to retrieve the gen_pool from 675 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 676 * 677 * Returns the gen_pool for the device if one is present, or NULL. 678 */ 679 struct gen_pool *gen_pool_get(struct device *dev, const char *name) 680 { 681 struct gen_pool **p; 682 683 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match, 684 (void *)name); 685 if (!p) 686 return NULL; 687 return *p; 688 } 689 EXPORT_SYMBOL_GPL(gen_pool_get); 690 691 /** 692 * devm_gen_pool_create - managed gen_pool_create 693 * @dev: device that provides the gen_pool 694 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 695 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes 696 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 697 * 698 * Create a new special memory pool that can be used to manage special purpose 699 * memory not managed by the regular kmalloc/kfree interface. The pool will be 700 * automatically destroyed by the device management code. 701 */ 702 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 703 int nid, const char *name) 704 { 705 struct gen_pool **ptr, *pool; 706 const char *pool_name = NULL; 707 708 /* Check that genpool to be created is uniquely addressed on device */ 709 if (gen_pool_get(dev, name)) 710 return ERR_PTR(-EINVAL); 711 712 if (name) { 713 pool_name = kstrdup_const(name, GFP_KERNEL); 714 if (!pool_name) 715 return ERR_PTR(-ENOMEM); 716 } 717 718 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 719 if (!ptr) 720 goto free_pool_name; 721 722 pool = gen_pool_create(min_alloc_order, nid); 723 if (!pool) 724 goto free_devres; 725 726 *ptr = pool; 727 pool->name = pool_name; 728 devres_add(dev, ptr); 729 730 return pool; 731 732 free_devres: 733 devres_free(ptr); 734 free_pool_name: 735 kfree_const(pool_name); 736 737 return ERR_PTR(-ENOMEM); 738 } 739 EXPORT_SYMBOL(devm_gen_pool_create); 740 741 #ifdef CONFIG_OF 742 /** 743 * of_gen_pool_get - find a pool by phandle property 744 * @np: device node 745 * @propname: property name containing phandle(s) 746 * @index: index into the phandle array 747 * 748 * Returns the pool that contains the chunk starting at the physical 749 * address of the device tree node pointed at by the phandle property, 750 * or NULL if not found. 751 */ 752 struct gen_pool *of_gen_pool_get(struct device_node *np, 753 const char *propname, int index) 754 { 755 struct platform_device *pdev; 756 struct device_node *np_pool, *parent; 757 const char *name = NULL; 758 struct gen_pool *pool = NULL; 759 760 np_pool = of_parse_phandle(np, propname, index); 761 if (!np_pool) 762 return NULL; 763 764 pdev = of_find_device_by_node(np_pool); 765 if (!pdev) { 766 /* Check if named gen_pool is created by parent node device */ 767 parent = of_get_parent(np_pool); 768 pdev = of_find_device_by_node(parent); 769 of_node_put(parent); 770 771 of_property_read_string(np_pool, "label", &name); 772 if (!name) 773 name = np_pool->name; 774 } 775 if (pdev) 776 pool = gen_pool_get(&pdev->dev, name); 777 of_node_put(np_pool); 778 779 return pool; 780 } 781 EXPORT_SYMBOL_GPL(of_gen_pool_get); 782 #endif /* CONFIG_OF */ 783