1 /* 2 * Basic general purpose allocator for managing special purpose 3 * memory, for example, memory that is not managed by the regular 4 * kmalloc/kfree interface. Uses for this includes on-device special 5 * memory, uncached memory etc. 6 * 7 * It is safe to use the allocator in NMI handlers and other special 8 * unblockable contexts that could otherwise deadlock on locks. This 9 * is implemented by using atomic operations and retries on any 10 * conflicts. The disadvantage is that there may be livelocks in 11 * extreme cases. For better scalability, one allocator can be used 12 * for each CPU. 13 * 14 * The lockless operation only works if there is enough memory 15 * available. If new memory is added to the pool a lock has to be 16 * still taken. So any user relying on locklessness has to ensure 17 * that sufficient memory is preallocated. 18 * 19 * The basic atomic operation of this allocator is cmpxchg on long. 20 * On architectures that don't have NMI-safe cmpxchg implementation, 21 * the allocator can NOT be used in NMI handler. So code uses the 22 * allocator in NMI handler should depend on 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 24 * 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 26 * 27 * This source code is licensed under the GNU General Public License, 28 * Version 2. See the file COPYING for more details. 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/export.h> 33 #include <linux/bitmap.h> 34 #include <linux/rculist.h> 35 #include <linux/interrupt.h> 36 #include <linux/genalloc.h> 37 #include <linux/of_device.h> 38 39 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 40 { 41 return chunk->end_addr - chunk->start_addr + 1; 42 } 43 44 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 45 { 46 unsigned long val, nval; 47 48 nval = *addr; 49 do { 50 val = nval; 51 if (val & mask_to_set) 52 return -EBUSY; 53 cpu_relax(); 54 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 55 56 return 0; 57 } 58 59 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 60 { 61 unsigned long val, nval; 62 63 nval = *addr; 64 do { 65 val = nval; 66 if ((val & mask_to_clear) != mask_to_clear) 67 return -EBUSY; 68 cpu_relax(); 69 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 70 71 return 0; 72 } 73 74 /* 75 * bitmap_set_ll - set the specified number of bits at the specified position 76 * @map: pointer to a bitmap 77 * @start: a bit position in @map 78 * @nr: number of bits to set 79 * 80 * Set @nr bits start from @start in @map lock-lessly. Several users 81 * can set/clear the same bitmap simultaneously without lock. If two 82 * users set the same bit, one user will return remain bits, otherwise 83 * return 0. 84 */ 85 static int bitmap_set_ll(unsigned long *map, int start, int nr) 86 { 87 unsigned long *p = map + BIT_WORD(start); 88 const int size = start + nr; 89 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 90 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 91 92 while (nr - bits_to_set >= 0) { 93 if (set_bits_ll(p, mask_to_set)) 94 return nr; 95 nr -= bits_to_set; 96 bits_to_set = BITS_PER_LONG; 97 mask_to_set = ~0UL; 98 p++; 99 } 100 if (nr) { 101 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 102 if (set_bits_ll(p, mask_to_set)) 103 return nr; 104 } 105 106 return 0; 107 } 108 109 /* 110 * bitmap_clear_ll - clear the specified number of bits at the specified position 111 * @map: pointer to a bitmap 112 * @start: a bit position in @map 113 * @nr: number of bits to set 114 * 115 * Clear @nr bits start from @start in @map lock-lessly. Several users 116 * can set/clear the same bitmap simultaneously without lock. If two 117 * users clear the same bit, one user will return remain bits, 118 * otherwise return 0. 119 */ 120 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 121 { 122 unsigned long *p = map + BIT_WORD(start); 123 const int size = start + nr; 124 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 125 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 126 127 while (nr - bits_to_clear >= 0) { 128 if (clear_bits_ll(p, mask_to_clear)) 129 return nr; 130 nr -= bits_to_clear; 131 bits_to_clear = BITS_PER_LONG; 132 mask_to_clear = ~0UL; 133 p++; 134 } 135 if (nr) { 136 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 137 if (clear_bits_ll(p, mask_to_clear)) 138 return nr; 139 } 140 141 return 0; 142 } 143 144 /** 145 * gen_pool_create - create a new special memory pool 146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 147 * @nid: node id of the node the pool structure should be allocated on, or -1 148 * 149 * Create a new special memory pool that can be used to manage special purpose 150 * memory not managed by the regular kmalloc/kfree interface. 151 */ 152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 153 { 154 struct gen_pool *pool; 155 156 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 157 if (pool != NULL) { 158 spin_lock_init(&pool->lock); 159 INIT_LIST_HEAD(&pool->chunks); 160 pool->min_alloc_order = min_alloc_order; 161 pool->algo = gen_pool_first_fit; 162 pool->data = NULL; 163 pool->name = NULL; 164 } 165 return pool; 166 } 167 EXPORT_SYMBOL(gen_pool_create); 168 169 /** 170 * gen_pool_add_virt - add a new chunk of special memory to the pool 171 * @pool: pool to add new memory chunk to 172 * @virt: virtual starting address of memory chunk to add to pool 173 * @phys: physical starting address of memory chunk to add to pool 174 * @size: size in bytes of the memory chunk to add to pool 175 * @nid: node id of the node the chunk structure and bitmap should be 176 * allocated on, or -1 177 * 178 * Add a new chunk of special memory to the specified pool. 179 * 180 * Returns 0 on success or a -ve errno on failure. 181 */ 182 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 183 size_t size, int nid) 184 { 185 struct gen_pool_chunk *chunk; 186 int nbits = size >> pool->min_alloc_order; 187 int nbytes = sizeof(struct gen_pool_chunk) + 188 BITS_TO_LONGS(nbits) * sizeof(long); 189 190 chunk = kzalloc_node(nbytes, GFP_KERNEL, nid); 191 if (unlikely(chunk == NULL)) 192 return -ENOMEM; 193 194 chunk->phys_addr = phys; 195 chunk->start_addr = virt; 196 chunk->end_addr = virt + size - 1; 197 atomic_set(&chunk->avail, size); 198 199 spin_lock(&pool->lock); 200 list_add_rcu(&chunk->next_chunk, &pool->chunks); 201 spin_unlock(&pool->lock); 202 203 return 0; 204 } 205 EXPORT_SYMBOL(gen_pool_add_virt); 206 207 /** 208 * gen_pool_virt_to_phys - return the physical address of memory 209 * @pool: pool to allocate from 210 * @addr: starting address of memory 211 * 212 * Returns the physical address on success, or -1 on error. 213 */ 214 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 215 { 216 struct gen_pool_chunk *chunk; 217 phys_addr_t paddr = -1; 218 219 rcu_read_lock(); 220 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 221 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 222 paddr = chunk->phys_addr + (addr - chunk->start_addr); 223 break; 224 } 225 } 226 rcu_read_unlock(); 227 228 return paddr; 229 } 230 EXPORT_SYMBOL(gen_pool_virt_to_phys); 231 232 /** 233 * gen_pool_destroy - destroy a special memory pool 234 * @pool: pool to destroy 235 * 236 * Destroy the specified special memory pool. Verifies that there are no 237 * outstanding allocations. 238 */ 239 void gen_pool_destroy(struct gen_pool *pool) 240 { 241 struct list_head *_chunk, *_next_chunk; 242 struct gen_pool_chunk *chunk; 243 int order = pool->min_alloc_order; 244 int bit, end_bit; 245 246 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 247 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 248 list_del(&chunk->next_chunk); 249 250 end_bit = chunk_size(chunk) >> order; 251 bit = find_next_bit(chunk->bits, end_bit, 0); 252 BUG_ON(bit < end_bit); 253 254 kfree(chunk); 255 } 256 kfree_const(pool->name); 257 kfree(pool); 258 } 259 EXPORT_SYMBOL(gen_pool_destroy); 260 261 /** 262 * gen_pool_alloc - allocate special memory from the pool 263 * @pool: pool to allocate from 264 * @size: number of bytes to allocate from the pool 265 * 266 * Allocate the requested number of bytes from the specified pool. 267 * Uses the pool allocation function (with first-fit algorithm by default). 268 * Can not be used in NMI handler on architectures without 269 * NMI-safe cmpxchg implementation. 270 */ 271 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) 272 { 273 return gen_pool_alloc_algo(pool, size, pool->algo, pool->data); 274 } 275 EXPORT_SYMBOL(gen_pool_alloc); 276 277 /** 278 * gen_pool_alloc_algo - allocate special memory from the pool 279 * @pool: pool to allocate from 280 * @size: number of bytes to allocate from the pool 281 * @algo: algorithm passed from caller 282 * @data: data passed to algorithm 283 * 284 * Allocate the requested number of bytes from the specified pool. 285 * Uses the pool allocation function (with first-fit algorithm by default). 286 * Can not be used in NMI handler on architectures without 287 * NMI-safe cmpxchg implementation. 288 */ 289 unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size, 290 genpool_algo_t algo, void *data) 291 { 292 struct gen_pool_chunk *chunk; 293 unsigned long addr = 0; 294 int order = pool->min_alloc_order; 295 int nbits, start_bit, end_bit, remain; 296 297 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 298 BUG_ON(in_nmi()); 299 #endif 300 301 if (size == 0) 302 return 0; 303 304 nbits = (size + (1UL << order) - 1) >> order; 305 rcu_read_lock(); 306 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 307 if (size > atomic_read(&chunk->avail)) 308 continue; 309 310 start_bit = 0; 311 end_bit = chunk_size(chunk) >> order; 312 retry: 313 start_bit = algo(chunk->bits, end_bit, start_bit, 314 nbits, data, pool); 315 if (start_bit >= end_bit) 316 continue; 317 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 318 if (remain) { 319 remain = bitmap_clear_ll(chunk->bits, start_bit, 320 nbits - remain); 321 BUG_ON(remain); 322 goto retry; 323 } 324 325 addr = chunk->start_addr + ((unsigned long)start_bit << order); 326 size = nbits << order; 327 atomic_sub(size, &chunk->avail); 328 break; 329 } 330 rcu_read_unlock(); 331 return addr; 332 } 333 EXPORT_SYMBOL(gen_pool_alloc_algo); 334 335 /** 336 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 337 * @pool: pool to allocate from 338 * @size: number of bytes to allocate from the pool 339 * @dma: dma-view physical address return value. Use NULL if unneeded. 340 * 341 * Allocate the requested number of bytes from the specified pool. 342 * Uses the pool allocation function (with first-fit algorithm by default). 343 * Can not be used in NMI handler on architectures without 344 * NMI-safe cmpxchg implementation. 345 */ 346 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 347 { 348 unsigned long vaddr; 349 350 if (!pool) 351 return NULL; 352 353 vaddr = gen_pool_alloc(pool, size); 354 if (!vaddr) 355 return NULL; 356 357 if (dma) 358 *dma = gen_pool_virt_to_phys(pool, vaddr); 359 360 return (void *)vaddr; 361 } 362 EXPORT_SYMBOL(gen_pool_dma_alloc); 363 364 /** 365 * gen_pool_free - free allocated special memory back to the pool 366 * @pool: pool to free to 367 * @addr: starting address of memory to free back to pool 368 * @size: size in bytes of memory to free 369 * 370 * Free previously allocated special memory back to the specified 371 * pool. Can not be used in NMI handler on architectures without 372 * NMI-safe cmpxchg implementation. 373 */ 374 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) 375 { 376 struct gen_pool_chunk *chunk; 377 int order = pool->min_alloc_order; 378 int start_bit, nbits, remain; 379 380 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 381 BUG_ON(in_nmi()); 382 #endif 383 384 nbits = (size + (1UL << order) - 1) >> order; 385 rcu_read_lock(); 386 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 387 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 388 BUG_ON(addr + size - 1 > chunk->end_addr); 389 start_bit = (addr - chunk->start_addr) >> order; 390 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 391 BUG_ON(remain); 392 size = nbits << order; 393 atomic_add(size, &chunk->avail); 394 rcu_read_unlock(); 395 return; 396 } 397 } 398 rcu_read_unlock(); 399 BUG(); 400 } 401 EXPORT_SYMBOL(gen_pool_free); 402 403 /** 404 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 405 * @pool: the generic memory pool 406 * @func: func to call 407 * @data: additional data used by @func 408 * 409 * Call @func for every chunk of generic memory pool. The @func is 410 * called with rcu_read_lock held. 411 */ 412 void gen_pool_for_each_chunk(struct gen_pool *pool, 413 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 414 void *data) 415 { 416 struct gen_pool_chunk *chunk; 417 418 rcu_read_lock(); 419 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 420 func(pool, chunk, data); 421 rcu_read_unlock(); 422 } 423 EXPORT_SYMBOL(gen_pool_for_each_chunk); 424 425 /** 426 * addr_in_gen_pool - checks if an address falls within the range of a pool 427 * @pool: the generic memory pool 428 * @start: start address 429 * @size: size of the region 430 * 431 * Check if the range of addresses falls within the specified pool. Returns 432 * true if the entire range is contained in the pool and false otherwise. 433 */ 434 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start, 435 size_t size) 436 { 437 bool found = false; 438 unsigned long end = start + size - 1; 439 struct gen_pool_chunk *chunk; 440 441 rcu_read_lock(); 442 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 443 if (start >= chunk->start_addr && start <= chunk->end_addr) { 444 if (end <= chunk->end_addr) { 445 found = true; 446 break; 447 } 448 } 449 } 450 rcu_read_unlock(); 451 return found; 452 } 453 454 /** 455 * gen_pool_avail - get available free space of the pool 456 * @pool: pool to get available free space 457 * 458 * Return available free space of the specified pool. 459 */ 460 size_t gen_pool_avail(struct gen_pool *pool) 461 { 462 struct gen_pool_chunk *chunk; 463 size_t avail = 0; 464 465 rcu_read_lock(); 466 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 467 avail += atomic_read(&chunk->avail); 468 rcu_read_unlock(); 469 return avail; 470 } 471 EXPORT_SYMBOL_GPL(gen_pool_avail); 472 473 /** 474 * gen_pool_size - get size in bytes of memory managed by the pool 475 * @pool: pool to get size 476 * 477 * Return size in bytes of memory managed by the pool. 478 */ 479 size_t gen_pool_size(struct gen_pool *pool) 480 { 481 struct gen_pool_chunk *chunk; 482 size_t size = 0; 483 484 rcu_read_lock(); 485 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 486 size += chunk_size(chunk); 487 rcu_read_unlock(); 488 return size; 489 } 490 EXPORT_SYMBOL_GPL(gen_pool_size); 491 492 /** 493 * gen_pool_set_algo - set the allocation algorithm 494 * @pool: pool to change allocation algorithm 495 * @algo: custom algorithm function 496 * @data: additional data used by @algo 497 * 498 * Call @algo for each memory allocation in the pool. 499 * If @algo is NULL use gen_pool_first_fit as default 500 * memory allocation function. 501 */ 502 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 503 { 504 rcu_read_lock(); 505 506 pool->algo = algo; 507 if (!pool->algo) 508 pool->algo = gen_pool_first_fit; 509 510 pool->data = data; 511 512 rcu_read_unlock(); 513 } 514 EXPORT_SYMBOL(gen_pool_set_algo); 515 516 /** 517 * gen_pool_first_fit - find the first available region 518 * of memory matching the size requirement (no alignment constraint) 519 * @map: The address to base the search on 520 * @size: The bitmap size in bits 521 * @start: The bitnumber to start searching at 522 * @nr: The number of zeroed bits we're looking for 523 * @data: additional data - unused 524 * @pool: pool to find the fit region memory from 525 */ 526 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 527 unsigned long start, unsigned int nr, void *data, 528 struct gen_pool *pool) 529 { 530 return bitmap_find_next_zero_area(map, size, start, nr, 0); 531 } 532 EXPORT_SYMBOL(gen_pool_first_fit); 533 534 /** 535 * gen_pool_first_fit_align - find the first available region 536 * of memory matching the size requirement (alignment constraint) 537 * @map: The address to base the search on 538 * @size: The bitmap size in bits 539 * @start: The bitnumber to start searching at 540 * @nr: The number of zeroed bits we're looking for 541 * @data: data for alignment 542 * @pool: pool to get order from 543 */ 544 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size, 545 unsigned long start, unsigned int nr, void *data, 546 struct gen_pool *pool) 547 { 548 struct genpool_data_align *alignment; 549 unsigned long align_mask; 550 int order; 551 552 alignment = data; 553 order = pool->min_alloc_order; 554 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1; 555 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 556 } 557 EXPORT_SYMBOL(gen_pool_first_fit_align); 558 559 /** 560 * gen_pool_fixed_alloc - reserve a specific region 561 * @map: The address to base the search on 562 * @size: The bitmap size in bits 563 * @start: The bitnumber to start searching at 564 * @nr: The number of zeroed bits we're looking for 565 * @data: data for alignment 566 * @pool: pool to get order from 567 */ 568 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size, 569 unsigned long start, unsigned int nr, void *data, 570 struct gen_pool *pool) 571 { 572 struct genpool_data_fixed *fixed_data; 573 int order; 574 unsigned long offset_bit; 575 unsigned long start_bit; 576 577 fixed_data = data; 578 order = pool->min_alloc_order; 579 offset_bit = fixed_data->offset >> order; 580 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1))) 581 return size; 582 583 start_bit = bitmap_find_next_zero_area(map, size, 584 start + offset_bit, nr, 0); 585 if (start_bit != offset_bit) 586 start_bit = size; 587 return start_bit; 588 } 589 EXPORT_SYMBOL(gen_pool_fixed_alloc); 590 591 /** 592 * gen_pool_first_fit_order_align - find the first available region 593 * of memory matching the size requirement. The region will be aligned 594 * to the order of the size specified. 595 * @map: The address to base the search on 596 * @size: The bitmap size in bits 597 * @start: The bitnumber to start searching at 598 * @nr: The number of zeroed bits we're looking for 599 * @data: additional data - unused 600 * @pool: pool to find the fit region memory from 601 */ 602 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 603 unsigned long size, unsigned long start, 604 unsigned int nr, void *data, struct gen_pool *pool) 605 { 606 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 607 608 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 609 } 610 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 611 612 /** 613 * gen_pool_best_fit - find the best fitting region of memory 614 * macthing the size requirement (no alignment constraint) 615 * @map: The address to base the search on 616 * @size: The bitmap size in bits 617 * @start: The bitnumber to start searching at 618 * @nr: The number of zeroed bits we're looking for 619 * @data: additional data - unused 620 * @pool: pool to find the fit region memory from 621 * 622 * Iterate over the bitmap to find the smallest free region 623 * which we can allocate the memory. 624 */ 625 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 626 unsigned long start, unsigned int nr, void *data, 627 struct gen_pool *pool) 628 { 629 unsigned long start_bit = size; 630 unsigned long len = size + 1; 631 unsigned long index; 632 633 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 634 635 while (index < size) { 636 int next_bit = find_next_bit(map, size, index + nr); 637 if ((next_bit - index) < len) { 638 len = next_bit - index; 639 start_bit = index; 640 if (len == nr) 641 return start_bit; 642 } 643 index = bitmap_find_next_zero_area(map, size, 644 next_bit + 1, nr, 0); 645 } 646 647 return start_bit; 648 } 649 EXPORT_SYMBOL(gen_pool_best_fit); 650 651 static void devm_gen_pool_release(struct device *dev, void *res) 652 { 653 gen_pool_destroy(*(struct gen_pool **)res); 654 } 655 656 static int devm_gen_pool_match(struct device *dev, void *res, void *data) 657 { 658 struct gen_pool **p = res; 659 660 /* NULL data matches only a pool without an assigned name */ 661 if (!data && !(*p)->name) 662 return 1; 663 664 if (!data || !(*p)->name) 665 return 0; 666 667 return !strcmp((*p)->name, data); 668 } 669 670 /** 671 * gen_pool_get - Obtain the gen_pool (if any) for a device 672 * @dev: device to retrieve the gen_pool from 673 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 674 * 675 * Returns the gen_pool for the device if one is present, or NULL. 676 */ 677 struct gen_pool *gen_pool_get(struct device *dev, const char *name) 678 { 679 struct gen_pool **p; 680 681 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match, 682 (void *)name); 683 if (!p) 684 return NULL; 685 return *p; 686 } 687 EXPORT_SYMBOL_GPL(gen_pool_get); 688 689 /** 690 * devm_gen_pool_create - managed gen_pool_create 691 * @dev: device that provides the gen_pool 692 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 693 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes 694 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 695 * 696 * Create a new special memory pool that can be used to manage special purpose 697 * memory not managed by the regular kmalloc/kfree interface. The pool will be 698 * automatically destroyed by the device management code. 699 */ 700 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 701 int nid, const char *name) 702 { 703 struct gen_pool **ptr, *pool; 704 const char *pool_name = NULL; 705 706 /* Check that genpool to be created is uniquely addressed on device */ 707 if (gen_pool_get(dev, name)) 708 return ERR_PTR(-EINVAL); 709 710 if (name) { 711 pool_name = kstrdup_const(name, GFP_KERNEL); 712 if (!pool_name) 713 return ERR_PTR(-ENOMEM); 714 } 715 716 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 717 if (!ptr) 718 goto free_pool_name; 719 720 pool = gen_pool_create(min_alloc_order, nid); 721 if (!pool) 722 goto free_devres; 723 724 *ptr = pool; 725 pool->name = pool_name; 726 devres_add(dev, ptr); 727 728 return pool; 729 730 free_devres: 731 devres_free(ptr); 732 free_pool_name: 733 kfree_const(pool_name); 734 735 return ERR_PTR(-ENOMEM); 736 } 737 EXPORT_SYMBOL(devm_gen_pool_create); 738 739 #ifdef CONFIG_OF 740 /** 741 * of_gen_pool_get - find a pool by phandle property 742 * @np: device node 743 * @propname: property name containing phandle(s) 744 * @index: index into the phandle array 745 * 746 * Returns the pool that contains the chunk starting at the physical 747 * address of the device tree node pointed at by the phandle property, 748 * or NULL if not found. 749 */ 750 struct gen_pool *of_gen_pool_get(struct device_node *np, 751 const char *propname, int index) 752 { 753 struct platform_device *pdev; 754 struct device_node *np_pool, *parent; 755 const char *name = NULL; 756 struct gen_pool *pool = NULL; 757 758 np_pool = of_parse_phandle(np, propname, index); 759 if (!np_pool) 760 return NULL; 761 762 pdev = of_find_device_by_node(np_pool); 763 if (!pdev) { 764 /* Check if named gen_pool is created by parent node device */ 765 parent = of_get_parent(np_pool); 766 pdev = of_find_device_by_node(parent); 767 of_node_put(parent); 768 769 of_property_read_string(np_pool, "label", &name); 770 if (!name) 771 name = np_pool->name; 772 } 773 if (pdev) 774 pool = gen_pool_get(&pdev->dev, name); 775 of_node_put(np_pool); 776 777 return pool; 778 } 779 EXPORT_SYMBOL_GPL(of_gen_pool_get); 780 #endif /* CONFIG_OF */ 781