1 /* 2 * Basic general purpose allocator for managing special purpose 3 * memory, for example, memory that is not managed by the regular 4 * kmalloc/kfree interface. Uses for this includes on-device special 5 * memory, uncached memory etc. 6 * 7 * It is safe to use the allocator in NMI handlers and other special 8 * unblockable contexts that could otherwise deadlock on locks. This 9 * is implemented by using atomic operations and retries on any 10 * conflicts. The disadvantage is that there may be livelocks in 11 * extreme cases. For better scalability, one allocator can be used 12 * for each CPU. 13 * 14 * The lockless operation only works if there is enough memory 15 * available. If new memory is added to the pool a lock has to be 16 * still taken. So any user relying on locklessness has to ensure 17 * that sufficient memory is preallocated. 18 * 19 * The basic atomic operation of this allocator is cmpxchg on long. 20 * On architectures that don't have NMI-safe cmpxchg implementation, 21 * the allocator can NOT be used in NMI handler. So code uses the 22 * allocator in NMI handler should depend on 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 24 * 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 26 * 27 * This source code is licensed under the GNU General Public License, 28 * Version 2. See the file COPYING for more details. 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/export.h> 33 #include <linux/bitmap.h> 34 #include <linux/rculist.h> 35 #include <linux/interrupt.h> 36 #include <linux/genalloc.h> 37 #include <linux/of_device.h> 38 #include <linux/vmalloc.h> 39 40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 41 { 42 return chunk->end_addr - chunk->start_addr + 1; 43 } 44 45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 46 { 47 unsigned long val, nval; 48 49 nval = *addr; 50 do { 51 val = nval; 52 if (val & mask_to_set) 53 return -EBUSY; 54 cpu_relax(); 55 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 56 57 return 0; 58 } 59 60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 61 { 62 unsigned long val, nval; 63 64 nval = *addr; 65 do { 66 val = nval; 67 if ((val & mask_to_clear) != mask_to_clear) 68 return -EBUSY; 69 cpu_relax(); 70 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 71 72 return 0; 73 } 74 75 /* 76 * bitmap_set_ll - set the specified number of bits at the specified position 77 * @map: pointer to a bitmap 78 * @start: a bit position in @map 79 * @nr: number of bits to set 80 * 81 * Set @nr bits start from @start in @map lock-lessly. Several users 82 * can set/clear the same bitmap simultaneously without lock. If two 83 * users set the same bit, one user will return remain bits, otherwise 84 * return 0. 85 */ 86 static int bitmap_set_ll(unsigned long *map, int start, int nr) 87 { 88 unsigned long *p = map + BIT_WORD(start); 89 const int size = start + nr; 90 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 91 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 92 93 while (nr - bits_to_set >= 0) { 94 if (set_bits_ll(p, mask_to_set)) 95 return nr; 96 nr -= bits_to_set; 97 bits_to_set = BITS_PER_LONG; 98 mask_to_set = ~0UL; 99 p++; 100 } 101 if (nr) { 102 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 103 if (set_bits_ll(p, mask_to_set)) 104 return nr; 105 } 106 107 return 0; 108 } 109 110 /* 111 * bitmap_clear_ll - clear the specified number of bits at the specified position 112 * @map: pointer to a bitmap 113 * @start: a bit position in @map 114 * @nr: number of bits to set 115 * 116 * Clear @nr bits start from @start in @map lock-lessly. Several users 117 * can set/clear the same bitmap simultaneously without lock. If two 118 * users clear the same bit, one user will return remain bits, 119 * otherwise return 0. 120 */ 121 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 122 { 123 unsigned long *p = map + BIT_WORD(start); 124 const int size = start + nr; 125 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 126 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 127 128 while (nr - bits_to_clear >= 0) { 129 if (clear_bits_ll(p, mask_to_clear)) 130 return nr; 131 nr -= bits_to_clear; 132 bits_to_clear = BITS_PER_LONG; 133 mask_to_clear = ~0UL; 134 p++; 135 } 136 if (nr) { 137 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 138 if (clear_bits_ll(p, mask_to_clear)) 139 return nr; 140 } 141 142 return 0; 143 } 144 145 /** 146 * gen_pool_create - create a new special memory pool 147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 148 * @nid: node id of the node the pool structure should be allocated on, or -1 149 * 150 * Create a new special memory pool that can be used to manage special purpose 151 * memory not managed by the regular kmalloc/kfree interface. 152 */ 153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 154 { 155 struct gen_pool *pool; 156 157 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 158 if (pool != NULL) { 159 spin_lock_init(&pool->lock); 160 INIT_LIST_HEAD(&pool->chunks); 161 pool->min_alloc_order = min_alloc_order; 162 pool->algo = gen_pool_first_fit; 163 pool->data = NULL; 164 pool->name = NULL; 165 } 166 return pool; 167 } 168 EXPORT_SYMBOL(gen_pool_create); 169 170 /** 171 * gen_pool_add_owner- add a new chunk of special memory to the pool 172 * @pool: pool to add new memory chunk to 173 * @virt: virtual starting address of memory chunk to add to pool 174 * @phys: physical starting address of memory chunk to add to pool 175 * @size: size in bytes of the memory chunk to add to pool 176 * @nid: node id of the node the chunk structure and bitmap should be 177 * allocated on, or -1 178 * @owner: private data the publisher would like to recall at alloc time 179 * 180 * Add a new chunk of special memory to the specified pool. 181 * 182 * Returns 0 on success or a -ve errno on failure. 183 */ 184 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 185 size_t size, int nid, void *owner) 186 { 187 struct gen_pool_chunk *chunk; 188 int nbits = size >> pool->min_alloc_order; 189 int nbytes = sizeof(struct gen_pool_chunk) + 190 BITS_TO_LONGS(nbits) * sizeof(long); 191 192 chunk = vzalloc_node(nbytes, nid); 193 if (unlikely(chunk == NULL)) 194 return -ENOMEM; 195 196 chunk->phys_addr = phys; 197 chunk->start_addr = virt; 198 chunk->end_addr = virt + size - 1; 199 chunk->owner = owner; 200 atomic_long_set(&chunk->avail, size); 201 202 spin_lock(&pool->lock); 203 list_add_rcu(&chunk->next_chunk, &pool->chunks); 204 spin_unlock(&pool->lock); 205 206 return 0; 207 } 208 EXPORT_SYMBOL(gen_pool_add_owner); 209 210 /** 211 * gen_pool_virt_to_phys - return the physical address of memory 212 * @pool: pool to allocate from 213 * @addr: starting address of memory 214 * 215 * Returns the physical address on success, or -1 on error. 216 */ 217 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 218 { 219 struct gen_pool_chunk *chunk; 220 phys_addr_t paddr = -1; 221 222 rcu_read_lock(); 223 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 224 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 225 paddr = chunk->phys_addr + (addr - chunk->start_addr); 226 break; 227 } 228 } 229 rcu_read_unlock(); 230 231 return paddr; 232 } 233 EXPORT_SYMBOL(gen_pool_virt_to_phys); 234 235 /** 236 * gen_pool_destroy - destroy a special memory pool 237 * @pool: pool to destroy 238 * 239 * Destroy the specified special memory pool. Verifies that there are no 240 * outstanding allocations. 241 */ 242 void gen_pool_destroy(struct gen_pool *pool) 243 { 244 struct list_head *_chunk, *_next_chunk; 245 struct gen_pool_chunk *chunk; 246 int order = pool->min_alloc_order; 247 int bit, end_bit; 248 249 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 250 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 251 list_del(&chunk->next_chunk); 252 253 end_bit = chunk_size(chunk) >> order; 254 bit = find_next_bit(chunk->bits, end_bit, 0); 255 BUG_ON(bit < end_bit); 256 257 vfree(chunk); 258 } 259 kfree_const(pool->name); 260 kfree(pool); 261 } 262 EXPORT_SYMBOL(gen_pool_destroy); 263 264 /** 265 * gen_pool_alloc_algo_owner - allocate special memory from the pool 266 * @pool: pool to allocate from 267 * @size: number of bytes to allocate from the pool 268 * @algo: algorithm passed from caller 269 * @data: data passed to algorithm 270 * @owner: optionally retrieve the chunk owner 271 * 272 * Allocate the requested number of bytes from the specified pool. 273 * Uses the pool allocation function (with first-fit algorithm by default). 274 * Can not be used in NMI handler on architectures without 275 * NMI-safe cmpxchg implementation. 276 */ 277 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size, 278 genpool_algo_t algo, void *data, void **owner) 279 { 280 struct gen_pool_chunk *chunk; 281 unsigned long addr = 0; 282 int order = pool->min_alloc_order; 283 int nbits, start_bit, end_bit, remain; 284 285 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 286 BUG_ON(in_nmi()); 287 #endif 288 289 if (owner) 290 *owner = NULL; 291 292 if (size == 0) 293 return 0; 294 295 nbits = (size + (1UL << order) - 1) >> order; 296 rcu_read_lock(); 297 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 298 if (size > atomic_long_read(&chunk->avail)) 299 continue; 300 301 start_bit = 0; 302 end_bit = chunk_size(chunk) >> order; 303 retry: 304 start_bit = algo(chunk->bits, end_bit, start_bit, 305 nbits, data, pool, chunk->start_addr); 306 if (start_bit >= end_bit) 307 continue; 308 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 309 if (remain) { 310 remain = bitmap_clear_ll(chunk->bits, start_bit, 311 nbits - remain); 312 BUG_ON(remain); 313 goto retry; 314 } 315 316 addr = chunk->start_addr + ((unsigned long)start_bit << order); 317 size = nbits << order; 318 atomic_long_sub(size, &chunk->avail); 319 if (owner) 320 *owner = chunk->owner; 321 break; 322 } 323 rcu_read_unlock(); 324 return addr; 325 } 326 EXPORT_SYMBOL(gen_pool_alloc_algo_owner); 327 328 /** 329 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 330 * @pool: pool to allocate from 331 * @size: number of bytes to allocate from the pool 332 * @dma: dma-view physical address return value. Use NULL if unneeded. 333 * 334 * Allocate the requested number of bytes from the specified pool. 335 * Uses the pool allocation function (with first-fit algorithm by default). 336 * Can not be used in NMI handler on architectures without 337 * NMI-safe cmpxchg implementation. 338 */ 339 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 340 { 341 unsigned long vaddr; 342 343 if (!pool) 344 return NULL; 345 346 vaddr = gen_pool_alloc(pool, size); 347 if (!vaddr) 348 return NULL; 349 350 if (dma) 351 *dma = gen_pool_virt_to_phys(pool, vaddr); 352 353 return (void *)vaddr; 354 } 355 EXPORT_SYMBOL(gen_pool_dma_alloc); 356 357 /** 358 * gen_pool_free - free allocated special memory back to the pool 359 * @pool: pool to free to 360 * @addr: starting address of memory to free back to pool 361 * @size: size in bytes of memory to free 362 * @owner: private data stashed at gen_pool_add() time 363 * 364 * Free previously allocated special memory back to the specified 365 * pool. Can not be used in NMI handler on architectures without 366 * NMI-safe cmpxchg implementation. 367 */ 368 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size, 369 void **owner) 370 { 371 struct gen_pool_chunk *chunk; 372 int order = pool->min_alloc_order; 373 int start_bit, nbits, remain; 374 375 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 376 BUG_ON(in_nmi()); 377 #endif 378 379 if (owner) 380 *owner = NULL; 381 382 nbits = (size + (1UL << order) - 1) >> order; 383 rcu_read_lock(); 384 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 385 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 386 BUG_ON(addr + size - 1 > chunk->end_addr); 387 start_bit = (addr - chunk->start_addr) >> order; 388 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 389 BUG_ON(remain); 390 size = nbits << order; 391 atomic_long_add(size, &chunk->avail); 392 if (owner) 393 *owner = chunk->owner; 394 rcu_read_unlock(); 395 return; 396 } 397 } 398 rcu_read_unlock(); 399 BUG(); 400 } 401 EXPORT_SYMBOL(gen_pool_free_owner); 402 403 /** 404 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 405 * @pool: the generic memory pool 406 * @func: func to call 407 * @data: additional data used by @func 408 * 409 * Call @func for every chunk of generic memory pool. The @func is 410 * called with rcu_read_lock held. 411 */ 412 void gen_pool_for_each_chunk(struct gen_pool *pool, 413 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 414 void *data) 415 { 416 struct gen_pool_chunk *chunk; 417 418 rcu_read_lock(); 419 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 420 func(pool, chunk, data); 421 rcu_read_unlock(); 422 } 423 EXPORT_SYMBOL(gen_pool_for_each_chunk); 424 425 /** 426 * addr_in_gen_pool - checks if an address falls within the range of a pool 427 * @pool: the generic memory pool 428 * @start: start address 429 * @size: size of the region 430 * 431 * Check if the range of addresses falls within the specified pool. Returns 432 * true if the entire range is contained in the pool and false otherwise. 433 */ 434 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start, 435 size_t size) 436 { 437 bool found = false; 438 unsigned long end = start + size - 1; 439 struct gen_pool_chunk *chunk; 440 441 rcu_read_lock(); 442 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 443 if (start >= chunk->start_addr && start <= chunk->end_addr) { 444 if (end <= chunk->end_addr) { 445 found = true; 446 break; 447 } 448 } 449 } 450 rcu_read_unlock(); 451 return found; 452 } 453 454 /** 455 * gen_pool_avail - get available free space of the pool 456 * @pool: pool to get available free space 457 * 458 * Return available free space of the specified pool. 459 */ 460 size_t gen_pool_avail(struct gen_pool *pool) 461 { 462 struct gen_pool_chunk *chunk; 463 size_t avail = 0; 464 465 rcu_read_lock(); 466 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 467 avail += atomic_long_read(&chunk->avail); 468 rcu_read_unlock(); 469 return avail; 470 } 471 EXPORT_SYMBOL_GPL(gen_pool_avail); 472 473 /** 474 * gen_pool_size - get size in bytes of memory managed by the pool 475 * @pool: pool to get size 476 * 477 * Return size in bytes of memory managed by the pool. 478 */ 479 size_t gen_pool_size(struct gen_pool *pool) 480 { 481 struct gen_pool_chunk *chunk; 482 size_t size = 0; 483 484 rcu_read_lock(); 485 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 486 size += chunk_size(chunk); 487 rcu_read_unlock(); 488 return size; 489 } 490 EXPORT_SYMBOL_GPL(gen_pool_size); 491 492 /** 493 * gen_pool_set_algo - set the allocation algorithm 494 * @pool: pool to change allocation algorithm 495 * @algo: custom algorithm function 496 * @data: additional data used by @algo 497 * 498 * Call @algo for each memory allocation in the pool. 499 * If @algo is NULL use gen_pool_first_fit as default 500 * memory allocation function. 501 */ 502 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 503 { 504 rcu_read_lock(); 505 506 pool->algo = algo; 507 if (!pool->algo) 508 pool->algo = gen_pool_first_fit; 509 510 pool->data = data; 511 512 rcu_read_unlock(); 513 } 514 EXPORT_SYMBOL(gen_pool_set_algo); 515 516 /** 517 * gen_pool_first_fit - find the first available region 518 * of memory matching the size requirement (no alignment constraint) 519 * @map: The address to base the search on 520 * @size: The bitmap size in bits 521 * @start: The bitnumber to start searching at 522 * @nr: The number of zeroed bits we're looking for 523 * @data: additional data - unused 524 * @pool: pool to find the fit region memory from 525 */ 526 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 527 unsigned long start, unsigned int nr, void *data, 528 struct gen_pool *pool, unsigned long start_addr) 529 { 530 return bitmap_find_next_zero_area(map, size, start, nr, 0); 531 } 532 EXPORT_SYMBOL(gen_pool_first_fit); 533 534 /** 535 * gen_pool_first_fit_align - find the first available region 536 * of memory matching the size requirement (alignment constraint) 537 * @map: The address to base the search on 538 * @size: The bitmap size in bits 539 * @start: The bitnumber to start searching at 540 * @nr: The number of zeroed bits we're looking for 541 * @data: data for alignment 542 * @pool: pool to get order from 543 */ 544 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size, 545 unsigned long start, unsigned int nr, void *data, 546 struct gen_pool *pool, unsigned long start_addr) 547 { 548 struct genpool_data_align *alignment; 549 unsigned long align_mask, align_off; 550 int order; 551 552 alignment = data; 553 order = pool->min_alloc_order; 554 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1; 555 align_off = (start_addr & (alignment->align - 1)) >> order; 556 557 return bitmap_find_next_zero_area_off(map, size, start, nr, 558 align_mask, align_off); 559 } 560 EXPORT_SYMBOL(gen_pool_first_fit_align); 561 562 /** 563 * gen_pool_fixed_alloc - reserve a specific region 564 * @map: The address to base the search on 565 * @size: The bitmap size in bits 566 * @start: The bitnumber to start searching at 567 * @nr: The number of zeroed bits we're looking for 568 * @data: data for alignment 569 * @pool: pool to get order from 570 */ 571 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size, 572 unsigned long start, unsigned int nr, void *data, 573 struct gen_pool *pool, unsigned long start_addr) 574 { 575 struct genpool_data_fixed *fixed_data; 576 int order; 577 unsigned long offset_bit; 578 unsigned long start_bit; 579 580 fixed_data = data; 581 order = pool->min_alloc_order; 582 offset_bit = fixed_data->offset >> order; 583 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1))) 584 return size; 585 586 start_bit = bitmap_find_next_zero_area(map, size, 587 start + offset_bit, nr, 0); 588 if (start_bit != offset_bit) 589 start_bit = size; 590 return start_bit; 591 } 592 EXPORT_SYMBOL(gen_pool_fixed_alloc); 593 594 /** 595 * gen_pool_first_fit_order_align - find the first available region 596 * of memory matching the size requirement. The region will be aligned 597 * to the order of the size specified. 598 * @map: The address to base the search on 599 * @size: The bitmap size in bits 600 * @start: The bitnumber to start searching at 601 * @nr: The number of zeroed bits we're looking for 602 * @data: additional data - unused 603 * @pool: pool to find the fit region memory from 604 */ 605 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 606 unsigned long size, unsigned long start, 607 unsigned int nr, void *data, struct gen_pool *pool, 608 unsigned long start_addr) 609 { 610 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 611 612 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 613 } 614 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 615 616 /** 617 * gen_pool_best_fit - find the best fitting region of memory 618 * macthing the size requirement (no alignment constraint) 619 * @map: The address to base the search on 620 * @size: The bitmap size in bits 621 * @start: The bitnumber to start searching at 622 * @nr: The number of zeroed bits we're looking for 623 * @data: additional data - unused 624 * @pool: pool to find the fit region memory from 625 * 626 * Iterate over the bitmap to find the smallest free region 627 * which we can allocate the memory. 628 */ 629 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 630 unsigned long start, unsigned int nr, void *data, 631 struct gen_pool *pool, unsigned long start_addr) 632 { 633 unsigned long start_bit = size; 634 unsigned long len = size + 1; 635 unsigned long index; 636 637 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 638 639 while (index < size) { 640 int next_bit = find_next_bit(map, size, index + nr); 641 if ((next_bit - index) < len) { 642 len = next_bit - index; 643 start_bit = index; 644 if (len == nr) 645 return start_bit; 646 } 647 index = bitmap_find_next_zero_area(map, size, 648 next_bit + 1, nr, 0); 649 } 650 651 return start_bit; 652 } 653 EXPORT_SYMBOL(gen_pool_best_fit); 654 655 static void devm_gen_pool_release(struct device *dev, void *res) 656 { 657 gen_pool_destroy(*(struct gen_pool **)res); 658 } 659 660 static int devm_gen_pool_match(struct device *dev, void *res, void *data) 661 { 662 struct gen_pool **p = res; 663 664 /* NULL data matches only a pool without an assigned name */ 665 if (!data && !(*p)->name) 666 return 1; 667 668 if (!data || !(*p)->name) 669 return 0; 670 671 return !strcmp((*p)->name, data); 672 } 673 674 /** 675 * gen_pool_get - Obtain the gen_pool (if any) for a device 676 * @dev: device to retrieve the gen_pool from 677 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 678 * 679 * Returns the gen_pool for the device if one is present, or NULL. 680 */ 681 struct gen_pool *gen_pool_get(struct device *dev, const char *name) 682 { 683 struct gen_pool **p; 684 685 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match, 686 (void *)name); 687 if (!p) 688 return NULL; 689 return *p; 690 } 691 EXPORT_SYMBOL_GPL(gen_pool_get); 692 693 /** 694 * devm_gen_pool_create - managed gen_pool_create 695 * @dev: device that provides the gen_pool 696 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 697 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes 698 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 699 * 700 * Create a new special memory pool that can be used to manage special purpose 701 * memory not managed by the regular kmalloc/kfree interface. The pool will be 702 * automatically destroyed by the device management code. 703 */ 704 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 705 int nid, const char *name) 706 { 707 struct gen_pool **ptr, *pool; 708 const char *pool_name = NULL; 709 710 /* Check that genpool to be created is uniquely addressed on device */ 711 if (gen_pool_get(dev, name)) 712 return ERR_PTR(-EINVAL); 713 714 if (name) { 715 pool_name = kstrdup_const(name, GFP_KERNEL); 716 if (!pool_name) 717 return ERR_PTR(-ENOMEM); 718 } 719 720 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 721 if (!ptr) 722 goto free_pool_name; 723 724 pool = gen_pool_create(min_alloc_order, nid); 725 if (!pool) 726 goto free_devres; 727 728 *ptr = pool; 729 pool->name = pool_name; 730 devres_add(dev, ptr); 731 732 return pool; 733 734 free_devres: 735 devres_free(ptr); 736 free_pool_name: 737 kfree_const(pool_name); 738 739 return ERR_PTR(-ENOMEM); 740 } 741 EXPORT_SYMBOL(devm_gen_pool_create); 742 743 #ifdef CONFIG_OF 744 /** 745 * of_gen_pool_get - find a pool by phandle property 746 * @np: device node 747 * @propname: property name containing phandle(s) 748 * @index: index into the phandle array 749 * 750 * Returns the pool that contains the chunk starting at the physical 751 * address of the device tree node pointed at by the phandle property, 752 * or NULL if not found. 753 */ 754 struct gen_pool *of_gen_pool_get(struct device_node *np, 755 const char *propname, int index) 756 { 757 struct platform_device *pdev; 758 struct device_node *np_pool, *parent; 759 const char *name = NULL; 760 struct gen_pool *pool = NULL; 761 762 np_pool = of_parse_phandle(np, propname, index); 763 if (!np_pool) 764 return NULL; 765 766 pdev = of_find_device_by_node(np_pool); 767 if (!pdev) { 768 /* Check if named gen_pool is created by parent node device */ 769 parent = of_get_parent(np_pool); 770 pdev = of_find_device_by_node(parent); 771 of_node_put(parent); 772 773 of_property_read_string(np_pool, "label", &name); 774 if (!name) 775 name = np_pool->name; 776 } 777 if (pdev) 778 pool = gen_pool_get(&pdev->dev, name); 779 of_node_put(np_pool); 780 781 return pool; 782 } 783 EXPORT_SYMBOL_GPL(of_gen_pool_get); 784 #endif /* CONFIG_OF */ 785