xref: /openbmc/linux/lib/decompress_unlzma.c (revision b04b4f78)
1 /* Lzma decompressor for Linux kernel. Shamelessly snarfed
2  *from busybox 1.1.1
3  *
4  *Linux kernel adaptation
5  *Copyright (C) 2006  Alain < alain@knaff.lu >
6  *
7  *Based on small lzma deflate implementation/Small range coder
8  *implementation for lzma.
9  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
10  *
11  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
12  *Copyright (C) 1999-2005  Igor Pavlov
13  *
14  *Copyrights of the parts, see headers below.
15  *
16  *
17  *This program is free software; you can redistribute it and/or
18  *modify it under the terms of the GNU Lesser General Public
19  *License as published by the Free Software Foundation; either
20  *version 2.1 of the License, or (at your option) any later version.
21  *
22  *This program is distributed in the hope that it will be useful,
23  *but WITHOUT ANY WARRANTY; without even the implied warranty of
24  *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25  *Lesser General Public License for more details.
26  *
27  *You should have received a copy of the GNU Lesser General Public
28  *License along with this library; if not, write to the Free Software
29  *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
30  */
31 
32 #ifndef STATIC
33 #include <linux/decompress/unlzma.h>
34 #endif /* STATIC */
35 
36 #include <linux/decompress/mm.h>
37 #include <linux/slab.h>
38 
39 #define	MIN(a, b) (((a) < (b)) ? (a) : (b))
40 
41 static long long INIT read_int(unsigned char *ptr, int size)
42 {
43 	int i;
44 	long long ret = 0;
45 
46 	for (i = 0; i < size; i++)
47 		ret = (ret << 8) | ptr[size-i-1];
48 	return ret;
49 }
50 
51 #define ENDIAN_CONVERT(x) \
52   x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
53 
54 
55 /* Small range coder implementation for lzma.
56  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
57  *
58  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
59  *Copyright (c) 1999-2005  Igor Pavlov
60  */
61 
62 #include <linux/compiler.h>
63 
64 #define LZMA_IOBUF_SIZE	0x10000
65 
66 struct rc {
67 	int (*fill)(void*, unsigned int);
68 	uint8_t *ptr;
69 	uint8_t *buffer;
70 	uint8_t *buffer_end;
71 	int buffer_size;
72 	uint32_t code;
73 	uint32_t range;
74 	uint32_t bound;
75 };
76 
77 
78 #define RC_TOP_BITS 24
79 #define RC_MOVE_BITS 5
80 #define RC_MODEL_TOTAL_BITS 11
81 
82 
83 /* Called twice: once at startup and once in rc_normalize() */
84 static void INIT rc_read(struct rc *rc)
85 {
86 	rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
87 	if (rc->buffer_size <= 0)
88 		error("unexpected EOF");
89 	rc->ptr = rc->buffer;
90 	rc->buffer_end = rc->buffer + rc->buffer_size;
91 }
92 
93 /* Called once */
94 static inline void INIT rc_init(struct rc *rc,
95 				       int (*fill)(void*, unsigned int),
96 				       char *buffer, int buffer_size)
97 {
98 	rc->fill = fill;
99 	rc->buffer = (uint8_t *)buffer;
100 	rc->buffer_size = buffer_size;
101 	rc->buffer_end = rc->buffer + rc->buffer_size;
102 	rc->ptr = rc->buffer;
103 
104 	rc->code = 0;
105 	rc->range = 0xFFFFFFFF;
106 }
107 
108 static inline void INIT rc_init_code(struct rc *rc)
109 {
110 	int i;
111 
112 	for (i = 0; i < 5; i++) {
113 		if (rc->ptr >= rc->buffer_end)
114 			rc_read(rc);
115 		rc->code = (rc->code << 8) | *rc->ptr++;
116 	}
117 }
118 
119 
120 /* Called once. TODO: bb_maybe_free() */
121 static inline void INIT rc_free(struct rc *rc)
122 {
123 	free(rc->buffer);
124 }
125 
126 /* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
127 static void INIT rc_do_normalize(struct rc *rc)
128 {
129 	if (rc->ptr >= rc->buffer_end)
130 		rc_read(rc);
131 	rc->range <<= 8;
132 	rc->code = (rc->code << 8) | *rc->ptr++;
133 }
134 static inline void INIT rc_normalize(struct rc *rc)
135 {
136 	if (rc->range < (1 << RC_TOP_BITS))
137 		rc_do_normalize(rc);
138 }
139 
140 /* Called 9 times */
141 /* Why rc_is_bit_0_helper exists?
142  *Because we want to always expose (rc->code < rc->bound) to optimizer
143  */
144 static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
145 {
146 	rc_normalize(rc);
147 	rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
148 	return rc->bound;
149 }
150 static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
151 {
152 	uint32_t t = rc_is_bit_0_helper(rc, p);
153 	return rc->code < t;
154 }
155 
156 /* Called ~10 times, but very small, thus inlined */
157 static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
158 {
159 	rc->range = rc->bound;
160 	*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
161 }
162 static inline void rc_update_bit_1(struct rc *rc, uint16_t *p)
163 {
164 	rc->range -= rc->bound;
165 	rc->code -= rc->bound;
166 	*p -= *p >> RC_MOVE_BITS;
167 }
168 
169 /* Called 4 times in unlzma loop */
170 static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
171 {
172 	if (rc_is_bit_0(rc, p)) {
173 		rc_update_bit_0(rc, p);
174 		*symbol *= 2;
175 		return 0;
176 	} else {
177 		rc_update_bit_1(rc, p);
178 		*symbol = *symbol * 2 + 1;
179 		return 1;
180 	}
181 }
182 
183 /* Called once */
184 static inline int INIT rc_direct_bit(struct rc *rc)
185 {
186 	rc_normalize(rc);
187 	rc->range >>= 1;
188 	if (rc->code >= rc->range) {
189 		rc->code -= rc->range;
190 		return 1;
191 	}
192 	return 0;
193 }
194 
195 /* Called twice */
196 static inline void INIT
197 rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
198 {
199 	int i = num_levels;
200 
201 	*symbol = 1;
202 	while (i--)
203 		rc_get_bit(rc, p + *symbol, symbol);
204 	*symbol -= 1 << num_levels;
205 }
206 
207 
208 /*
209  * Small lzma deflate implementation.
210  * Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
211  *
212  * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
213  * Copyright (C) 1999-2005  Igor Pavlov
214  */
215 
216 
217 struct lzma_header {
218 	uint8_t pos;
219 	uint32_t dict_size;
220 	uint64_t dst_size;
221 } __attribute__ ((packed)) ;
222 
223 
224 #define LZMA_BASE_SIZE 1846
225 #define LZMA_LIT_SIZE 768
226 
227 #define LZMA_NUM_POS_BITS_MAX 4
228 
229 #define LZMA_LEN_NUM_LOW_BITS 3
230 #define LZMA_LEN_NUM_MID_BITS 3
231 #define LZMA_LEN_NUM_HIGH_BITS 8
232 
233 #define LZMA_LEN_CHOICE 0
234 #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
235 #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
236 #define LZMA_LEN_MID (LZMA_LEN_LOW \
237 		      + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
238 #define LZMA_LEN_HIGH (LZMA_LEN_MID \
239 		       +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
240 #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
241 
242 #define LZMA_NUM_STATES 12
243 #define LZMA_NUM_LIT_STATES 7
244 
245 #define LZMA_START_POS_MODEL_INDEX 4
246 #define LZMA_END_POS_MODEL_INDEX 14
247 #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
248 
249 #define LZMA_NUM_POS_SLOT_BITS 6
250 #define LZMA_NUM_LEN_TO_POS_STATES 4
251 
252 #define LZMA_NUM_ALIGN_BITS 4
253 
254 #define LZMA_MATCH_MIN_LEN 2
255 
256 #define LZMA_IS_MATCH 0
257 #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
258 #define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
259 #define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
260 #define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
261 #define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
262 #define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
263 		       + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
264 #define LZMA_SPEC_POS (LZMA_POS_SLOT \
265 		       +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
266 #define LZMA_ALIGN (LZMA_SPEC_POS \
267 		    + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
268 #define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
269 #define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
270 #define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
271 
272 
273 struct writer {
274 	uint8_t *buffer;
275 	uint8_t previous_byte;
276 	size_t buffer_pos;
277 	int bufsize;
278 	size_t global_pos;
279 	int(*flush)(void*, unsigned int);
280 	struct lzma_header *header;
281 };
282 
283 struct cstate {
284 	int state;
285 	uint32_t rep0, rep1, rep2, rep3;
286 };
287 
288 static inline size_t INIT get_pos(struct writer *wr)
289 {
290 	return
291 		wr->global_pos + wr->buffer_pos;
292 }
293 
294 static inline uint8_t INIT peek_old_byte(struct writer *wr,
295 						uint32_t offs)
296 {
297 	if (!wr->flush) {
298 		int32_t pos;
299 		while (offs > wr->header->dict_size)
300 			offs -= wr->header->dict_size;
301 		pos = wr->buffer_pos - offs;
302 		return wr->buffer[pos];
303 	} else {
304 		uint32_t pos = wr->buffer_pos - offs;
305 		while (pos >= wr->header->dict_size)
306 			pos += wr->header->dict_size;
307 		return wr->buffer[pos];
308 	}
309 
310 }
311 
312 static inline void INIT write_byte(struct writer *wr, uint8_t byte)
313 {
314 	wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
315 	if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
316 		wr->buffer_pos = 0;
317 		wr->global_pos += wr->header->dict_size;
318 		wr->flush((char *)wr->buffer, wr->header->dict_size);
319 	}
320 }
321 
322 
323 static inline void INIT copy_byte(struct writer *wr, uint32_t offs)
324 {
325 	write_byte(wr, peek_old_byte(wr, offs));
326 }
327 
328 static inline void INIT copy_bytes(struct writer *wr,
329 					 uint32_t rep0, int len)
330 {
331 	do {
332 		copy_byte(wr, rep0);
333 		len--;
334 	} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
335 }
336 
337 static inline void INIT process_bit0(struct writer *wr, struct rc *rc,
338 				     struct cstate *cst, uint16_t *p,
339 				     int pos_state, uint16_t *prob,
340 				     int lc, uint32_t literal_pos_mask) {
341 	int mi = 1;
342 	rc_update_bit_0(rc, prob);
343 	prob = (p + LZMA_LITERAL +
344 		(LZMA_LIT_SIZE
345 		 * (((get_pos(wr) & literal_pos_mask) << lc)
346 		    + (wr->previous_byte >> (8 - lc))))
347 		);
348 
349 	if (cst->state >= LZMA_NUM_LIT_STATES) {
350 		int match_byte = peek_old_byte(wr, cst->rep0);
351 		do {
352 			int bit;
353 			uint16_t *prob_lit;
354 
355 			match_byte <<= 1;
356 			bit = match_byte & 0x100;
357 			prob_lit = prob + 0x100 + bit + mi;
358 			if (rc_get_bit(rc, prob_lit, &mi)) {
359 				if (!bit)
360 					break;
361 			} else {
362 				if (bit)
363 					break;
364 			}
365 		} while (mi < 0x100);
366 	}
367 	while (mi < 0x100) {
368 		uint16_t *prob_lit = prob + mi;
369 		rc_get_bit(rc, prob_lit, &mi);
370 	}
371 	write_byte(wr, mi);
372 	if (cst->state < 4)
373 		cst->state = 0;
374 	else if (cst->state < 10)
375 		cst->state -= 3;
376 	else
377 		cst->state -= 6;
378 }
379 
380 static inline void INIT process_bit1(struct writer *wr, struct rc *rc,
381 					    struct cstate *cst, uint16_t *p,
382 					    int pos_state, uint16_t *prob) {
383   int offset;
384 	uint16_t *prob_len;
385 	int num_bits;
386 	int len;
387 
388 	rc_update_bit_1(rc, prob);
389 	prob = p + LZMA_IS_REP + cst->state;
390 	if (rc_is_bit_0(rc, prob)) {
391 		rc_update_bit_0(rc, prob);
392 		cst->rep3 = cst->rep2;
393 		cst->rep2 = cst->rep1;
394 		cst->rep1 = cst->rep0;
395 		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
396 		prob = p + LZMA_LEN_CODER;
397 	} else {
398 		rc_update_bit_1(rc, prob);
399 		prob = p + LZMA_IS_REP_G0 + cst->state;
400 		if (rc_is_bit_0(rc, prob)) {
401 			rc_update_bit_0(rc, prob);
402 			prob = (p + LZMA_IS_REP_0_LONG
403 				+ (cst->state <<
404 				   LZMA_NUM_POS_BITS_MAX) +
405 				pos_state);
406 			if (rc_is_bit_0(rc, prob)) {
407 				rc_update_bit_0(rc, prob);
408 
409 				cst->state = cst->state < LZMA_NUM_LIT_STATES ?
410 					9 : 11;
411 				copy_byte(wr, cst->rep0);
412 				return;
413 			} else {
414 				rc_update_bit_1(rc, prob);
415 			}
416 		} else {
417 			uint32_t distance;
418 
419 			rc_update_bit_1(rc, prob);
420 			prob = p + LZMA_IS_REP_G1 + cst->state;
421 			if (rc_is_bit_0(rc, prob)) {
422 				rc_update_bit_0(rc, prob);
423 				distance = cst->rep1;
424 			} else {
425 				rc_update_bit_1(rc, prob);
426 				prob = p + LZMA_IS_REP_G2 + cst->state;
427 				if (rc_is_bit_0(rc, prob)) {
428 					rc_update_bit_0(rc, prob);
429 					distance = cst->rep2;
430 				} else {
431 					rc_update_bit_1(rc, prob);
432 					distance = cst->rep3;
433 					cst->rep3 = cst->rep2;
434 				}
435 				cst->rep2 = cst->rep1;
436 			}
437 			cst->rep1 = cst->rep0;
438 			cst->rep0 = distance;
439 		}
440 		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
441 		prob = p + LZMA_REP_LEN_CODER;
442 	}
443 
444 	prob_len = prob + LZMA_LEN_CHOICE;
445 	if (rc_is_bit_0(rc, prob_len)) {
446 		rc_update_bit_0(rc, prob_len);
447 		prob_len = (prob + LZMA_LEN_LOW
448 			    + (pos_state <<
449 			       LZMA_LEN_NUM_LOW_BITS));
450 		offset = 0;
451 		num_bits = LZMA_LEN_NUM_LOW_BITS;
452 	} else {
453 		rc_update_bit_1(rc, prob_len);
454 		prob_len = prob + LZMA_LEN_CHOICE_2;
455 		if (rc_is_bit_0(rc, prob_len)) {
456 			rc_update_bit_0(rc, prob_len);
457 			prob_len = (prob + LZMA_LEN_MID
458 				    + (pos_state <<
459 				       LZMA_LEN_NUM_MID_BITS));
460 			offset = 1 << LZMA_LEN_NUM_LOW_BITS;
461 			num_bits = LZMA_LEN_NUM_MID_BITS;
462 		} else {
463 			rc_update_bit_1(rc, prob_len);
464 			prob_len = prob + LZMA_LEN_HIGH;
465 			offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
466 				  + (1 << LZMA_LEN_NUM_MID_BITS));
467 			num_bits = LZMA_LEN_NUM_HIGH_BITS;
468 		}
469 	}
470 
471 	rc_bit_tree_decode(rc, prob_len, num_bits, &len);
472 	len += offset;
473 
474 	if (cst->state < 4) {
475 		int pos_slot;
476 
477 		cst->state += LZMA_NUM_LIT_STATES;
478 		prob =
479 			p + LZMA_POS_SLOT +
480 			((len <
481 			  LZMA_NUM_LEN_TO_POS_STATES ? len :
482 			  LZMA_NUM_LEN_TO_POS_STATES - 1)
483 			 << LZMA_NUM_POS_SLOT_BITS);
484 		rc_bit_tree_decode(rc, prob,
485 				   LZMA_NUM_POS_SLOT_BITS,
486 				   &pos_slot);
487 		if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
488 			int i, mi;
489 			num_bits = (pos_slot >> 1) - 1;
490 			cst->rep0 = 2 | (pos_slot & 1);
491 			if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
492 				cst->rep0 <<= num_bits;
493 				prob = p + LZMA_SPEC_POS +
494 					cst->rep0 - pos_slot - 1;
495 			} else {
496 				num_bits -= LZMA_NUM_ALIGN_BITS;
497 				while (num_bits--)
498 					cst->rep0 = (cst->rep0 << 1) |
499 						rc_direct_bit(rc);
500 				prob = p + LZMA_ALIGN;
501 				cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
502 				num_bits = LZMA_NUM_ALIGN_BITS;
503 			}
504 			i = 1;
505 			mi = 1;
506 			while (num_bits--) {
507 				if (rc_get_bit(rc, prob + mi, &mi))
508 					cst->rep0 |= i;
509 				i <<= 1;
510 			}
511 		} else
512 			cst->rep0 = pos_slot;
513 		if (++(cst->rep0) == 0)
514 			return;
515 	}
516 
517 	len += LZMA_MATCH_MIN_LEN;
518 
519 	copy_bytes(wr, cst->rep0, len);
520 }
521 
522 
523 
524 STATIC inline int INIT unlzma(unsigned char *buf, int in_len,
525 			      int(*fill)(void*, unsigned int),
526 			      int(*flush)(void*, unsigned int),
527 			      unsigned char *output,
528 			      int *posp,
529 			      void(*error_fn)(char *x)
530 	)
531 {
532 	struct lzma_header header;
533 	int lc, pb, lp;
534 	uint32_t pos_state_mask;
535 	uint32_t literal_pos_mask;
536 	uint16_t *p;
537 	int num_probs;
538 	struct rc rc;
539 	int i, mi;
540 	struct writer wr;
541 	struct cstate cst;
542 	unsigned char *inbuf;
543 	int ret = -1;
544 
545 	set_error_fn(error_fn);
546 	if (!flush)
547 		in_len -= 4; /* Uncompressed size hack active in pre-boot
548 				environment */
549 	if (buf)
550 		inbuf = buf;
551 	else
552 		inbuf = malloc(LZMA_IOBUF_SIZE);
553 	if (!inbuf) {
554 		error("Could not allocate input bufer");
555 		goto exit_0;
556 	}
557 
558 	cst.state = 0;
559 	cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
560 
561 	wr.header = &header;
562 	wr.flush = flush;
563 	wr.global_pos = 0;
564 	wr.previous_byte = 0;
565 	wr.buffer_pos = 0;
566 
567 	rc_init(&rc, fill, inbuf, in_len);
568 
569 	for (i = 0; i < sizeof(header); i++) {
570 		if (rc.ptr >= rc.buffer_end)
571 			rc_read(&rc);
572 		((unsigned char *)&header)[i] = *rc.ptr++;
573 	}
574 
575 	if (header.pos >= (9 * 5 * 5))
576 		error("bad header");
577 
578 	mi = 0;
579 	lc = header.pos;
580 	while (lc >= 9) {
581 		mi++;
582 		lc -= 9;
583 	}
584 	pb = 0;
585 	lp = mi;
586 	while (lp >= 5) {
587 		pb++;
588 		lp -= 5;
589 	}
590 	pos_state_mask = (1 << pb) - 1;
591 	literal_pos_mask = (1 << lp) - 1;
592 
593 	ENDIAN_CONVERT(header.dict_size);
594 	ENDIAN_CONVERT(header.dst_size);
595 
596 	if (header.dict_size == 0)
597 		header.dict_size = 1;
598 
599 	if (output)
600 		wr.buffer = output;
601 	else {
602 		wr.bufsize = MIN(header.dst_size, header.dict_size);
603 		wr.buffer = large_malloc(wr.bufsize);
604 	}
605 	if (wr.buffer == NULL)
606 		goto exit_1;
607 
608 	num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
609 	p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
610 	if (p == 0)
611 		goto exit_2;
612 	num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
613 	for (i = 0; i < num_probs; i++)
614 		p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
615 
616 	rc_init_code(&rc);
617 
618 	while (get_pos(&wr) < header.dst_size) {
619 		int pos_state =	get_pos(&wr) & pos_state_mask;
620 		uint16_t *prob = p + LZMA_IS_MATCH +
621 			(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
622 		if (rc_is_bit_0(&rc, prob))
623 			process_bit0(&wr, &rc, &cst, p, pos_state, prob,
624 				     lc, literal_pos_mask);
625 		else {
626 			process_bit1(&wr, &rc, &cst, p, pos_state, prob);
627 			if (cst.rep0 == 0)
628 				break;
629 		}
630 	}
631 
632 	if (posp)
633 		*posp = rc.ptr-rc.buffer;
634 	if (wr.flush)
635 		wr.flush(wr.buffer, wr.buffer_pos);
636 	ret = 0;
637 	large_free(p);
638 exit_2:
639 	if (!output)
640 		large_free(wr.buffer);
641 exit_1:
642 	if (!buf)
643 		free(inbuf);
644 exit_0:
645 	return ret;
646 }
647 
648 #define decompress unlzma
649