1 /* vi: set sw = 4 ts = 4: */ 2 /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). 3 4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), 5 which also acknowledges contributions by Mike Burrows, David Wheeler, 6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, 7 Robert Sedgewick, and Jon L. Bentley. 8 9 This code is licensed under the LGPLv2: 10 LGPL (http://www.gnu.org/copyleft/lgpl.html 11 */ 12 13 /* 14 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). 15 16 More efficient reading of Huffman codes, a streamlined read_bunzip() 17 function, and various other tweaks. In (limited) tests, approximately 18 20% faster than bzcat on x86 and about 10% faster on arm. 19 20 Note that about 2/3 of the time is spent in read_unzip() reversing 21 the Burrows-Wheeler transformation. Much of that time is delay 22 resulting from cache misses. 23 24 I would ask that anyone benefiting from this work, especially those 25 using it in commercial products, consider making a donation to my local 26 non-profit hospice organization in the name of the woman I loved, who 27 passed away Feb. 12, 2003. 28 29 In memory of Toni W. Hagan 30 31 Hospice of Acadiana, Inc. 32 2600 Johnston St., Suite 200 33 Lafayette, LA 70503-3240 34 35 Phone (337) 232-1234 or 1-800-738-2226 36 Fax (337) 232-1297 37 38 http://www.hospiceacadiana.com/ 39 40 Manuel 41 */ 42 43 /* 44 Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) 45 */ 46 47 48 #ifndef STATIC 49 #include <linux/decompress/bunzip2.h> 50 #endif /* !STATIC */ 51 52 #include <linux/decompress/mm.h> 53 54 #ifndef INT_MAX 55 #define INT_MAX 0x7fffffff 56 #endif 57 58 /* Constants for Huffman coding */ 59 #define MAX_GROUPS 6 60 #define GROUP_SIZE 50 /* 64 would have been more efficient */ 61 #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ 62 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ 63 #define SYMBOL_RUNA 0 64 #define SYMBOL_RUNB 1 65 66 /* Status return values */ 67 #define RETVAL_OK 0 68 #define RETVAL_LAST_BLOCK (-1) 69 #define RETVAL_NOT_BZIP_DATA (-2) 70 #define RETVAL_UNEXPECTED_INPUT_EOF (-3) 71 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) 72 #define RETVAL_DATA_ERROR (-5) 73 #define RETVAL_OUT_OF_MEMORY (-6) 74 #define RETVAL_OBSOLETE_INPUT (-7) 75 76 /* Other housekeeping constants */ 77 #define BZIP2_IOBUF_SIZE 4096 78 79 /* This is what we know about each Huffman coding group */ 80 struct group_data { 81 /* We have an extra slot at the end of limit[] for a sentinal value. */ 82 int limit[MAX_HUFCODE_BITS+1]; 83 int base[MAX_HUFCODE_BITS]; 84 int permute[MAX_SYMBOLS]; 85 int minLen, maxLen; 86 }; 87 88 /* Structure holding all the housekeeping data, including IO buffers and 89 memory that persists between calls to bunzip */ 90 struct bunzip_data { 91 /* State for interrupting output loop */ 92 int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; 93 /* I/O tracking data (file handles, buffers, positions, etc.) */ 94 int (*fill)(void*, unsigned int); 95 int inbufCount, inbufPos /*, outbufPos*/; 96 unsigned char *inbuf /*,*outbuf*/; 97 unsigned int inbufBitCount, inbufBits; 98 /* The CRC values stored in the block header and calculated from the 99 data */ 100 unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; 101 /* Intermediate buffer and its size (in bytes) */ 102 unsigned int *dbuf, dbufSize; 103 /* These things are a bit too big to go on the stack */ 104 unsigned char selectors[32768]; /* nSelectors = 15 bits */ 105 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ 106 int io_error; /* non-zero if we have IO error */ 107 }; 108 109 110 /* Return the next nnn bits of input. All reads from the compressed input 111 are done through this function. All reads are big endian */ 112 static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) 113 { 114 unsigned int bits = 0; 115 116 /* If we need to get more data from the byte buffer, do so. 117 (Loop getting one byte at a time to enforce endianness and avoid 118 unaligned access.) */ 119 while (bd->inbufBitCount < bits_wanted) { 120 /* If we need to read more data from file into byte buffer, do 121 so */ 122 if (bd->inbufPos == bd->inbufCount) { 123 if (bd->io_error) 124 return 0; 125 bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); 126 if (bd->inbufCount <= 0) { 127 bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; 128 return 0; 129 } 130 bd->inbufPos = 0; 131 } 132 /* Avoid 32-bit overflow (dump bit buffer to top of output) */ 133 if (bd->inbufBitCount >= 24) { 134 bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); 135 bits_wanted -= bd->inbufBitCount; 136 bits <<= bits_wanted; 137 bd->inbufBitCount = 0; 138 } 139 /* Grab next 8 bits of input from buffer. */ 140 bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; 141 bd->inbufBitCount += 8; 142 } 143 /* Calculate result */ 144 bd->inbufBitCount -= bits_wanted; 145 bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); 146 147 return bits; 148 } 149 150 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ 151 152 static int INIT get_next_block(struct bunzip_data *bd) 153 { 154 struct group_data *hufGroup = NULL; 155 int *base = NULL; 156 int *limit = NULL; 157 int dbufCount, nextSym, dbufSize, groupCount, selector, 158 i, j, k, t, runPos, symCount, symTotal, nSelectors, 159 byteCount[256]; 160 unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; 161 unsigned int *dbuf, origPtr; 162 163 dbuf = bd->dbuf; 164 dbufSize = bd->dbufSize; 165 selectors = bd->selectors; 166 167 /* Read in header signature and CRC, then validate signature. 168 (last block signature means CRC is for whole file, return now) */ 169 i = get_bits(bd, 24); 170 j = get_bits(bd, 24); 171 bd->headerCRC = get_bits(bd, 32); 172 if ((i == 0x177245) && (j == 0x385090)) 173 return RETVAL_LAST_BLOCK; 174 if ((i != 0x314159) || (j != 0x265359)) 175 return RETVAL_NOT_BZIP_DATA; 176 /* We can add support for blockRandomised if anybody complains. 177 There was some code for this in busybox 1.0.0-pre3, but nobody ever 178 noticed that it didn't actually work. */ 179 if (get_bits(bd, 1)) 180 return RETVAL_OBSOLETE_INPUT; 181 origPtr = get_bits(bd, 24); 182 if (origPtr > dbufSize) 183 return RETVAL_DATA_ERROR; 184 /* mapping table: if some byte values are never used (encoding things 185 like ascii text), the compression code removes the gaps to have fewer 186 symbols to deal with, and writes a sparse bitfield indicating which 187 values were present. We make a translation table to convert the 188 symbols back to the corresponding bytes. */ 189 t = get_bits(bd, 16); 190 symTotal = 0; 191 for (i = 0; i < 16; i++) { 192 if (t&(1 << (15-i))) { 193 k = get_bits(bd, 16); 194 for (j = 0; j < 16; j++) 195 if (k&(1 << (15-j))) 196 symToByte[symTotal++] = (16*i)+j; 197 } 198 } 199 /* How many different Huffman coding groups does this block use? */ 200 groupCount = get_bits(bd, 3); 201 if (groupCount < 2 || groupCount > MAX_GROUPS) 202 return RETVAL_DATA_ERROR; 203 /* nSelectors: Every GROUP_SIZE many symbols we select a new 204 Huffman coding group. Read in the group selector list, 205 which is stored as MTF encoded bit runs. (MTF = Move To 206 Front, as each value is used it's moved to the start of the 207 list.) */ 208 nSelectors = get_bits(bd, 15); 209 if (!nSelectors) 210 return RETVAL_DATA_ERROR; 211 for (i = 0; i < groupCount; i++) 212 mtfSymbol[i] = i; 213 for (i = 0; i < nSelectors; i++) { 214 /* Get next value */ 215 for (j = 0; get_bits(bd, 1); j++) 216 if (j >= groupCount) 217 return RETVAL_DATA_ERROR; 218 /* Decode MTF to get the next selector */ 219 uc = mtfSymbol[j]; 220 for (; j; j--) 221 mtfSymbol[j] = mtfSymbol[j-1]; 222 mtfSymbol[0] = selectors[i] = uc; 223 } 224 /* Read the Huffman coding tables for each group, which code 225 for symTotal literal symbols, plus two run symbols (RUNA, 226 RUNB) */ 227 symCount = symTotal+2; 228 for (j = 0; j < groupCount; j++) { 229 unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; 230 int minLen, maxLen, pp; 231 /* Read Huffman code lengths for each symbol. They're 232 stored in a way similar to mtf; record a starting 233 value for the first symbol, and an offset from the 234 previous value for everys symbol after that. 235 (Subtracting 1 before the loop and then adding it 236 back at the end is an optimization that makes the 237 test inside the loop simpler: symbol length 0 238 becomes negative, so an unsigned inequality catches 239 it.) */ 240 t = get_bits(bd, 5)-1; 241 for (i = 0; i < symCount; i++) { 242 for (;;) { 243 if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) 244 return RETVAL_DATA_ERROR; 245 246 /* If first bit is 0, stop. Else 247 second bit indicates whether to 248 increment or decrement the value. 249 Optimization: grab 2 bits and unget 250 the second if the first was 0. */ 251 252 k = get_bits(bd, 2); 253 if (k < 2) { 254 bd->inbufBitCount++; 255 break; 256 } 257 /* Add one if second bit 1, else 258 * subtract 1. Avoids if/else */ 259 t += (((k+1)&2)-1); 260 } 261 /* Correct for the initial -1, to get the 262 * final symbol length */ 263 length[i] = t+1; 264 } 265 /* Find largest and smallest lengths in this group */ 266 minLen = maxLen = length[0]; 267 268 for (i = 1; i < symCount; i++) { 269 if (length[i] > maxLen) 270 maxLen = length[i]; 271 else if (length[i] < minLen) 272 minLen = length[i]; 273 } 274 275 /* Calculate permute[], base[], and limit[] tables from 276 * length[]. 277 * 278 * permute[] is the lookup table for converting 279 * Huffman coded symbols into decoded symbols. base[] 280 * is the amount to subtract from the value of a 281 * Huffman symbol of a given length when using 282 * permute[]. 283 * 284 * limit[] indicates the largest numerical value a 285 * symbol with a given number of bits can have. This 286 * is how the Huffman codes can vary in length: each 287 * code with a value > limit[length] needs another 288 * bit. 289 */ 290 hufGroup = bd->groups+j; 291 hufGroup->minLen = minLen; 292 hufGroup->maxLen = maxLen; 293 /* Note that minLen can't be smaller than 1, so we 294 adjust the base and limit array pointers so we're 295 not always wasting the first entry. We do this 296 again when using them (during symbol decoding).*/ 297 base = hufGroup->base-1; 298 limit = hufGroup->limit-1; 299 /* Calculate permute[]. Concurently, initialize 300 * temp[] and limit[]. */ 301 pp = 0; 302 for (i = minLen; i <= maxLen; i++) { 303 temp[i] = limit[i] = 0; 304 for (t = 0; t < symCount; t++) 305 if (length[t] == i) 306 hufGroup->permute[pp++] = t; 307 } 308 /* Count symbols coded for at each bit length */ 309 for (i = 0; i < symCount; i++) 310 temp[length[i]]++; 311 /* Calculate limit[] (the largest symbol-coding value 312 *at each bit length, which is (previous limit << 313 *1)+symbols at this level), and base[] (number of 314 *symbols to ignore at each bit length, which is limit 315 *minus the cumulative count of symbols coded for 316 *already). */ 317 pp = t = 0; 318 for (i = minLen; i < maxLen; i++) { 319 pp += temp[i]; 320 /* We read the largest possible symbol size 321 and then unget bits after determining how 322 many we need, and those extra bits could be 323 set to anything. (They're noise from 324 future symbols.) At each level we're 325 really only interested in the first few 326 bits, so here we set all the trailing 327 to-be-ignored bits to 1 so they don't 328 affect the value > limit[length] 329 comparison. */ 330 limit[i] = (pp << (maxLen - i)) - 1; 331 pp <<= 1; 332 base[i+1] = pp-(t += temp[i]); 333 } 334 limit[maxLen+1] = INT_MAX; /* Sentinal value for 335 * reading next sym. */ 336 limit[maxLen] = pp+temp[maxLen]-1; 337 base[minLen] = 0; 338 } 339 /* We've finished reading and digesting the block header. Now 340 read this block's Huffman coded symbols from the file and 341 undo the Huffman coding and run length encoding, saving the 342 result into dbuf[dbufCount++] = uc */ 343 344 /* Initialize symbol occurrence counters and symbol Move To 345 * Front table */ 346 for (i = 0; i < 256; i++) { 347 byteCount[i] = 0; 348 mtfSymbol[i] = (unsigned char)i; 349 } 350 /* Loop through compressed symbols. */ 351 runPos = dbufCount = symCount = selector = 0; 352 for (;;) { 353 /* Determine which Huffman coding group to use. */ 354 if (!(symCount--)) { 355 symCount = GROUP_SIZE-1; 356 if (selector >= nSelectors) 357 return RETVAL_DATA_ERROR; 358 hufGroup = bd->groups+selectors[selector++]; 359 base = hufGroup->base-1; 360 limit = hufGroup->limit-1; 361 } 362 /* Read next Huffman-coded symbol. */ 363 /* Note: It is far cheaper to read maxLen bits and 364 back up than it is to read minLen bits and then an 365 additional bit at a time, testing as we go. 366 Because there is a trailing last block (with file 367 CRC), there is no danger of the overread causing an 368 unexpected EOF for a valid compressed file. As a 369 further optimization, we do the read inline 370 (falling back to a call to get_bits if the buffer 371 runs dry). The following (up to got_huff_bits:) is 372 equivalent to j = get_bits(bd, hufGroup->maxLen); 373 */ 374 while (bd->inbufBitCount < hufGroup->maxLen) { 375 if (bd->inbufPos == bd->inbufCount) { 376 j = get_bits(bd, hufGroup->maxLen); 377 goto got_huff_bits; 378 } 379 bd->inbufBits = 380 (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; 381 bd->inbufBitCount += 8; 382 }; 383 bd->inbufBitCount -= hufGroup->maxLen; 384 j = (bd->inbufBits >> bd->inbufBitCount)& 385 ((1 << hufGroup->maxLen)-1); 386 got_huff_bits: 387 /* Figure how how many bits are in next symbol and 388 * unget extras */ 389 i = hufGroup->minLen; 390 while (j > limit[i]) 391 ++i; 392 bd->inbufBitCount += (hufGroup->maxLen - i); 393 /* Huffman decode value to get nextSym (with bounds checking) */ 394 if ((i > hufGroup->maxLen) 395 || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) 396 >= MAX_SYMBOLS)) 397 return RETVAL_DATA_ERROR; 398 nextSym = hufGroup->permute[j]; 399 /* We have now decoded the symbol, which indicates 400 either a new literal byte, or a repeated run of the 401 most recent literal byte. First, check if nextSym 402 indicates a repeated run, and if so loop collecting 403 how many times to repeat the last literal. */ 404 if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ 405 /* If this is the start of a new run, zero out 406 * counter */ 407 if (!runPos) { 408 runPos = 1; 409 t = 0; 410 } 411 /* Neat trick that saves 1 symbol: instead of 412 or-ing 0 or 1 at each bit position, add 1 413 or 2 instead. For example, 1011 is 1 << 0 414 + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 415 + 1 << 2. You can make any bit pattern 416 that way using 1 less symbol than the basic 417 or 0/1 method (except all bits 0, which 418 would use no symbols, but a run of length 0 419 doesn't mean anything in this context). 420 Thus space is saved. */ 421 t += (runPos << nextSym); 422 /* +runPos if RUNA; +2*runPos if RUNB */ 423 424 runPos <<= 1; 425 continue; 426 } 427 /* When we hit the first non-run symbol after a run, 428 we now know how many times to repeat the last 429 literal, so append that many copies to our buffer 430 of decoded symbols (dbuf) now. (The last literal 431 used is the one at the head of the mtfSymbol 432 array.) */ 433 if (runPos) { 434 runPos = 0; 435 if (dbufCount+t >= dbufSize) 436 return RETVAL_DATA_ERROR; 437 438 uc = symToByte[mtfSymbol[0]]; 439 byteCount[uc] += t; 440 while (t--) 441 dbuf[dbufCount++] = uc; 442 } 443 /* Is this the terminating symbol? */ 444 if (nextSym > symTotal) 445 break; 446 /* At this point, nextSym indicates a new literal 447 character. Subtract one to get the position in the 448 MTF array at which this literal is currently to be 449 found. (Note that the result can't be -1 or 0, 450 because 0 and 1 are RUNA and RUNB. But another 451 instance of the first symbol in the mtf array, 452 position 0, would have been handled as part of a 453 run above. Therefore 1 unused mtf position minus 2 454 non-literal nextSym values equals -1.) */ 455 if (dbufCount >= dbufSize) 456 return RETVAL_DATA_ERROR; 457 i = nextSym - 1; 458 uc = mtfSymbol[i]; 459 /* Adjust the MTF array. Since we typically expect to 460 *move only a small number of symbols, and are bound 461 *by 256 in any case, using memmove here would 462 *typically be bigger and slower due to function call 463 *overhead and other assorted setup costs. */ 464 do { 465 mtfSymbol[i] = mtfSymbol[i-1]; 466 } while (--i); 467 mtfSymbol[0] = uc; 468 uc = symToByte[uc]; 469 /* We have our literal byte. Save it into dbuf. */ 470 byteCount[uc]++; 471 dbuf[dbufCount++] = (unsigned int)uc; 472 } 473 /* At this point, we've read all the Huffman-coded symbols 474 (and repeated runs) for this block from the input stream, 475 and decoded them into the intermediate buffer. There are 476 dbufCount many decoded bytes in dbuf[]. Now undo the 477 Burrows-Wheeler transform on dbuf. See 478 http://dogma.net/markn/articles/bwt/bwt.htm 479 */ 480 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ 481 j = 0; 482 for (i = 0; i < 256; i++) { 483 k = j+byteCount[i]; 484 byteCount[i] = j; 485 j = k; 486 } 487 /* Figure out what order dbuf would be in if we sorted it. */ 488 for (i = 0; i < dbufCount; i++) { 489 uc = (unsigned char)(dbuf[i] & 0xff); 490 dbuf[byteCount[uc]] |= (i << 8); 491 byteCount[uc]++; 492 } 493 /* Decode first byte by hand to initialize "previous" byte. 494 Note that it doesn't get output, and if the first three 495 characters are identical it doesn't qualify as a run (hence 496 writeRunCountdown = 5). */ 497 if (dbufCount) { 498 if (origPtr >= dbufCount) 499 return RETVAL_DATA_ERROR; 500 bd->writePos = dbuf[origPtr]; 501 bd->writeCurrent = (unsigned char)(bd->writePos&0xff); 502 bd->writePos >>= 8; 503 bd->writeRunCountdown = 5; 504 } 505 bd->writeCount = dbufCount; 506 507 return RETVAL_OK; 508 } 509 510 /* Undo burrows-wheeler transform on intermediate buffer to produce output. 511 If start_bunzip was initialized with out_fd =-1, then up to len bytes of 512 data are written to outbuf. Return value is number of bytes written or 513 error (all errors are negative numbers). If out_fd!=-1, outbuf and len 514 are ignored, data is written to out_fd and return is RETVAL_OK or error. 515 */ 516 517 static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) 518 { 519 const unsigned int *dbuf; 520 int pos, xcurrent, previous, gotcount; 521 522 /* If last read was short due to end of file, return last block now */ 523 if (bd->writeCount < 0) 524 return bd->writeCount; 525 526 gotcount = 0; 527 dbuf = bd->dbuf; 528 pos = bd->writePos; 529 xcurrent = bd->writeCurrent; 530 531 /* We will always have pending decoded data to write into the output 532 buffer unless this is the very first call (in which case we haven't 533 Huffman-decoded a block into the intermediate buffer yet). */ 534 535 if (bd->writeCopies) { 536 /* Inside the loop, writeCopies means extra copies (beyond 1) */ 537 --bd->writeCopies; 538 /* Loop outputting bytes */ 539 for (;;) { 540 /* If the output buffer is full, snapshot 541 * state and return */ 542 if (gotcount >= len) { 543 bd->writePos = pos; 544 bd->writeCurrent = xcurrent; 545 bd->writeCopies++; 546 return len; 547 } 548 /* Write next byte into output buffer, updating CRC */ 549 outbuf[gotcount++] = xcurrent; 550 bd->writeCRC = (((bd->writeCRC) << 8) 551 ^bd->crc32Table[((bd->writeCRC) >> 24) 552 ^xcurrent]); 553 /* Loop now if we're outputting multiple 554 * copies of this byte */ 555 if (bd->writeCopies) { 556 --bd->writeCopies; 557 continue; 558 } 559 decode_next_byte: 560 if (!bd->writeCount--) 561 break; 562 /* Follow sequence vector to undo 563 * Burrows-Wheeler transform */ 564 previous = xcurrent; 565 pos = dbuf[pos]; 566 xcurrent = pos&0xff; 567 pos >>= 8; 568 /* After 3 consecutive copies of the same 569 byte, the 4th is a repeat count. We count 570 down from 4 instead *of counting up because 571 testing for non-zero is faster */ 572 if (--bd->writeRunCountdown) { 573 if (xcurrent != previous) 574 bd->writeRunCountdown = 4; 575 } else { 576 /* We have a repeated run, this byte 577 * indicates the count */ 578 bd->writeCopies = xcurrent; 579 xcurrent = previous; 580 bd->writeRunCountdown = 5; 581 /* Sometimes there are just 3 bytes 582 * (run length 0) */ 583 if (!bd->writeCopies) 584 goto decode_next_byte; 585 /* Subtract the 1 copy we'd output 586 * anyway to get extras */ 587 --bd->writeCopies; 588 } 589 } 590 /* Decompression of this block completed successfully */ 591 bd->writeCRC = ~bd->writeCRC; 592 bd->totalCRC = ((bd->totalCRC << 1) | 593 (bd->totalCRC >> 31)) ^ bd->writeCRC; 594 /* If this block had a CRC error, force file level CRC error. */ 595 if (bd->writeCRC != bd->headerCRC) { 596 bd->totalCRC = bd->headerCRC+1; 597 return RETVAL_LAST_BLOCK; 598 } 599 } 600 601 /* Refill the intermediate buffer by Huffman-decoding next 602 * block of input */ 603 /* (previous is just a convenient unused temp variable here) */ 604 previous = get_next_block(bd); 605 if (previous) { 606 bd->writeCount = previous; 607 return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; 608 } 609 bd->writeCRC = 0xffffffffUL; 610 pos = bd->writePos; 611 xcurrent = bd->writeCurrent; 612 goto decode_next_byte; 613 } 614 615 static int INIT nofill(void *buf, unsigned int len) 616 { 617 return -1; 618 } 619 620 /* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain 621 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are 622 ignored, and data is read from file handle into temporary buffer. */ 623 static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len, 624 int (*fill)(void*, unsigned int)) 625 { 626 struct bunzip_data *bd; 627 unsigned int i, j, c; 628 const unsigned int BZh0 = 629 (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) 630 +(((unsigned int)'h') << 8)+(unsigned int)'0'; 631 632 /* Figure out how much data to allocate */ 633 i = sizeof(struct bunzip_data); 634 635 /* Allocate bunzip_data. Most fields initialize to zero. */ 636 bd = *bdp = malloc(i); 637 memset(bd, 0, sizeof(struct bunzip_data)); 638 /* Setup input buffer */ 639 bd->inbuf = inbuf; 640 bd->inbufCount = len; 641 if (fill != NULL) 642 bd->fill = fill; 643 else 644 bd->fill = nofill; 645 646 /* Init the CRC32 table (big endian) */ 647 for (i = 0; i < 256; i++) { 648 c = i << 24; 649 for (j = 8; j; j--) 650 c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); 651 bd->crc32Table[i] = c; 652 } 653 654 /* Ensure that file starts with "BZh['1'-'9']." */ 655 i = get_bits(bd, 32); 656 if (((unsigned int)(i-BZh0-1)) >= 9) 657 return RETVAL_NOT_BZIP_DATA; 658 659 /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of 660 uncompressed data. Allocate intermediate buffer for block. */ 661 bd->dbufSize = 100000*(i-BZh0); 662 663 bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); 664 return RETVAL_OK; 665 } 666 667 /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, 668 not end of file.) */ 669 STATIC int INIT bunzip2(unsigned char *buf, int len, 670 int(*fill)(void*, unsigned int), 671 int(*flush)(void*, unsigned int), 672 unsigned char *outbuf, 673 int *pos, 674 void(*error_fn)(char *x)) 675 { 676 struct bunzip_data *bd; 677 int i = -1; 678 unsigned char *inbuf; 679 680 set_error_fn(error_fn); 681 if (flush) 682 outbuf = malloc(BZIP2_IOBUF_SIZE); 683 else 684 len -= 4; /* Uncompressed size hack active in pre-boot 685 environment */ 686 if (!outbuf) { 687 error("Could not allocate output bufer"); 688 return -1; 689 } 690 if (buf) 691 inbuf = buf; 692 else 693 inbuf = malloc(BZIP2_IOBUF_SIZE); 694 if (!inbuf) { 695 error("Could not allocate input bufer"); 696 goto exit_0; 697 } 698 i = start_bunzip(&bd, inbuf, len, fill); 699 if (!i) { 700 for (;;) { 701 i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); 702 if (i <= 0) 703 break; 704 if (!flush) 705 outbuf += i; 706 else 707 if (i != flush(outbuf, i)) { 708 i = RETVAL_UNEXPECTED_OUTPUT_EOF; 709 break; 710 } 711 } 712 } 713 /* Check CRC and release memory */ 714 if (i == RETVAL_LAST_BLOCK) { 715 if (bd->headerCRC != bd->totalCRC) 716 error("Data integrity error when decompressing."); 717 else 718 i = RETVAL_OK; 719 } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { 720 error("Compressed file ends unexpectedly"); 721 } 722 if (bd->dbuf) 723 large_free(bd->dbuf); 724 if (pos) 725 *pos = bd->inbufPos; 726 free(bd); 727 if (!buf) 728 free(inbuf); 729 exit_0: 730 if (flush) 731 free(outbuf); 732 return i; 733 } 734 735 #define decompress bunzip2 736