xref: /openbmc/linux/lib/decompress_bunzip2.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /* vi: set sw = 4 ts = 4: */
2 /*	Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3 
4 	Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 	which also acknowledges contributions by Mike Burrows, David Wheeler,
6 	Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 	Robert Sedgewick, and Jon L. Bentley.
8 
9 	This code is licensed under the LGPLv2:
10 		LGPL (http://www.gnu.org/copyleft/lgpl.html
11 */
12 
13 /*
14 	Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
15 
16 	More efficient reading of Huffman codes, a streamlined read_bunzip()
17 	function, and various other tweaks.  In (limited) tests, approximately
18 	20% faster than bzcat on x86 and about 10% faster on arm.
19 
20 	Note that about 2/3 of the time is spent in read_unzip() reversing
21 	the Burrows-Wheeler transformation.  Much of that time is delay
22 	resulting from cache misses.
23 
24 	I would ask that anyone benefiting from this work, especially those
25 	using it in commercial products, consider making a donation to my local
26 	non-profit hospice organization in the name of the woman I loved, who
27 	passed away Feb. 12, 2003.
28 
29 		In memory of Toni W. Hagan
30 
31 		Hospice of Acadiana, Inc.
32 		2600 Johnston St., Suite 200
33 		Lafayette, LA 70503-3240
34 
35 		Phone (337) 232-1234 or 1-800-738-2226
36 		Fax   (337) 232-1297
37 
38 		http://www.hospiceacadiana.com/
39 
40 	Manuel
41  */
42 
43 /*
44 	Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
45 */
46 
47 
48 #ifndef STATIC
49 #include <linux/decompress/bunzip2.h>
50 #endif /* !STATIC */
51 
52 #include <linux/decompress/mm.h>
53 
54 #ifndef INT_MAX
55 #define INT_MAX 0x7fffffff
56 #endif
57 
58 /* Constants for Huffman coding */
59 #define MAX_GROUPS		6
60 #define GROUP_SIZE   		50	/* 64 would have been more efficient */
61 #define MAX_HUFCODE_BITS 	20	/* Longest Huffman code allowed */
62 #define MAX_SYMBOLS 		258	/* 256 literals + RUNA + RUNB */
63 #define SYMBOL_RUNA		0
64 #define SYMBOL_RUNB		1
65 
66 /* Status return values */
67 #define RETVAL_OK			0
68 #define RETVAL_LAST_BLOCK		(-1)
69 #define RETVAL_NOT_BZIP_DATA		(-2)
70 #define RETVAL_UNEXPECTED_INPUT_EOF	(-3)
71 #define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4)
72 #define RETVAL_DATA_ERROR		(-5)
73 #define RETVAL_OUT_OF_MEMORY		(-6)
74 #define RETVAL_OBSOLETE_INPUT		(-7)
75 
76 /* Other housekeeping constants */
77 #define BZIP2_IOBUF_SIZE		4096
78 
79 /* This is what we know about each Huffman coding group */
80 struct group_data {
81 	/* We have an extra slot at the end of limit[] for a sentinal value. */
82 	int limit[MAX_HUFCODE_BITS+1];
83 	int base[MAX_HUFCODE_BITS];
84 	int permute[MAX_SYMBOLS];
85 	int minLen, maxLen;
86 };
87 
88 /* Structure holding all the housekeeping data, including IO buffers and
89    memory that persists between calls to bunzip */
90 struct bunzip_data {
91 	/* State for interrupting output loop */
92 	int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
93 	/* I/O tracking data (file handles, buffers, positions, etc.) */
94 	int (*fill)(void*, unsigned int);
95 	int inbufCount, inbufPos /*, outbufPos*/;
96 	unsigned char *inbuf /*,*outbuf*/;
97 	unsigned int inbufBitCount, inbufBits;
98 	/* The CRC values stored in the block header and calculated from the
99 	data */
100 	unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
101 	/* Intermediate buffer and its size (in bytes) */
102 	unsigned int *dbuf, dbufSize;
103 	/* These things are a bit too big to go on the stack */
104 	unsigned char selectors[32768];		/* nSelectors = 15 bits */
105 	struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */
106 	int io_error;			/* non-zero if we have IO error */
107 };
108 
109 
110 /* Return the next nnn bits of input.  All reads from the compressed input
111    are done through this function.  All reads are big endian */
112 static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
113 {
114 	unsigned int bits = 0;
115 
116 	/* If we need to get more data from the byte buffer, do so.
117 	   (Loop getting one byte at a time to enforce endianness and avoid
118 	   unaligned access.) */
119 	while (bd->inbufBitCount < bits_wanted) {
120 		/* If we need to read more data from file into byte buffer, do
121 		   so */
122 		if (bd->inbufPos == bd->inbufCount) {
123 			if (bd->io_error)
124 				return 0;
125 			bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
126 			if (bd->inbufCount <= 0) {
127 				bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
128 				return 0;
129 			}
130 			bd->inbufPos = 0;
131 		}
132 		/* Avoid 32-bit overflow (dump bit buffer to top of output) */
133 		if (bd->inbufBitCount >= 24) {
134 			bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
135 			bits_wanted -= bd->inbufBitCount;
136 			bits <<= bits_wanted;
137 			bd->inbufBitCount = 0;
138 		}
139 		/* Grab next 8 bits of input from buffer. */
140 		bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
141 		bd->inbufBitCount += 8;
142 	}
143 	/* Calculate result */
144 	bd->inbufBitCount -= bits_wanted;
145 	bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
146 
147 	return bits;
148 }
149 
150 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
151 
152 static int INIT get_next_block(struct bunzip_data *bd)
153 {
154 	struct group_data *hufGroup = NULL;
155 	int *base = NULL;
156 	int *limit = NULL;
157 	int dbufCount, nextSym, dbufSize, groupCount, selector,
158 		i, j, k, t, runPos, symCount, symTotal, nSelectors,
159 		byteCount[256];
160 	unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
161 	unsigned int *dbuf, origPtr;
162 
163 	dbuf = bd->dbuf;
164 	dbufSize = bd->dbufSize;
165 	selectors = bd->selectors;
166 
167 	/* Read in header signature and CRC, then validate signature.
168 	   (last block signature means CRC is for whole file, return now) */
169 	i = get_bits(bd, 24);
170 	j = get_bits(bd, 24);
171 	bd->headerCRC = get_bits(bd, 32);
172 	if ((i == 0x177245) && (j == 0x385090))
173 		return RETVAL_LAST_BLOCK;
174 	if ((i != 0x314159) || (j != 0x265359))
175 		return RETVAL_NOT_BZIP_DATA;
176 	/* We can add support for blockRandomised if anybody complains.
177 	   There was some code for this in busybox 1.0.0-pre3, but nobody ever
178 	   noticed that it didn't actually work. */
179 	if (get_bits(bd, 1))
180 		return RETVAL_OBSOLETE_INPUT;
181 	origPtr = get_bits(bd, 24);
182 	if (origPtr > dbufSize)
183 		return RETVAL_DATA_ERROR;
184 	/* mapping table: if some byte values are never used (encoding things
185 	   like ascii text), the compression code removes the gaps to have fewer
186 	   symbols to deal with, and writes a sparse bitfield indicating which
187 	   values were present.  We make a translation table to convert the
188 	   symbols back to the corresponding bytes. */
189 	t = get_bits(bd, 16);
190 	symTotal = 0;
191 	for (i = 0; i < 16; i++) {
192 		if (t&(1 << (15-i))) {
193 			k = get_bits(bd, 16);
194 			for (j = 0; j < 16; j++)
195 				if (k&(1 << (15-j)))
196 					symToByte[symTotal++] = (16*i)+j;
197 		}
198 	}
199 	/* How many different Huffman coding groups does this block use? */
200 	groupCount = get_bits(bd, 3);
201 	if (groupCount < 2 || groupCount > MAX_GROUPS)
202 		return RETVAL_DATA_ERROR;
203 	/* nSelectors: Every GROUP_SIZE many symbols we select a new
204 	   Huffman coding group.  Read in the group selector list,
205 	   which is stored as MTF encoded bit runs.  (MTF = Move To
206 	   Front, as each value is used it's moved to the start of the
207 	   list.) */
208 	nSelectors = get_bits(bd, 15);
209 	if (!nSelectors)
210 		return RETVAL_DATA_ERROR;
211 	for (i = 0; i < groupCount; i++)
212 		mtfSymbol[i] = i;
213 	for (i = 0; i < nSelectors; i++) {
214 		/* Get next value */
215 		for (j = 0; get_bits(bd, 1); j++)
216 			if (j >= groupCount)
217 				return RETVAL_DATA_ERROR;
218 		/* Decode MTF to get the next selector */
219 		uc = mtfSymbol[j];
220 		for (; j; j--)
221 			mtfSymbol[j] = mtfSymbol[j-1];
222 		mtfSymbol[0] = selectors[i] = uc;
223 	}
224 	/* Read the Huffman coding tables for each group, which code
225 	   for symTotal literal symbols, plus two run symbols (RUNA,
226 	   RUNB) */
227 	symCount = symTotal+2;
228 	for (j = 0; j < groupCount; j++) {
229 		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
230 		int	minLen,	maxLen, pp;
231 		/* Read Huffman code lengths for each symbol.  They're
232 		   stored in a way similar to mtf; record a starting
233 		   value for the first symbol, and an offset from the
234 		   previous value for everys symbol after that.
235 		   (Subtracting 1 before the loop and then adding it
236 		   back at the end is an optimization that makes the
237 		   test inside the loop simpler: symbol length 0
238 		   becomes negative, so an unsigned inequality catches
239 		   it.) */
240 		t = get_bits(bd, 5)-1;
241 		for (i = 0; i < symCount; i++) {
242 			for (;;) {
243 				if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
244 					return RETVAL_DATA_ERROR;
245 
246 				/* If first bit is 0, stop.  Else
247 				   second bit indicates whether to
248 				   increment or decrement the value.
249 				   Optimization: grab 2 bits and unget
250 				   the second if the first was 0. */
251 
252 				k = get_bits(bd, 2);
253 				if (k < 2) {
254 					bd->inbufBitCount++;
255 					break;
256 				}
257 				/* Add one if second bit 1, else
258 				 * subtract 1.  Avoids if/else */
259 				t += (((k+1)&2)-1);
260 			}
261 			/* Correct for the initial -1, to get the
262 			 * final symbol length */
263 			length[i] = t+1;
264 		}
265 		/* Find largest and smallest lengths in this group */
266 		minLen = maxLen = length[0];
267 
268 		for (i = 1; i < symCount; i++) {
269 			if (length[i] > maxLen)
270 				maxLen = length[i];
271 			else if (length[i] < minLen)
272 				minLen = length[i];
273 		}
274 
275 		/* Calculate permute[], base[], and limit[] tables from
276 		 * length[].
277 		 *
278 		 * permute[] is the lookup table for converting
279 		 * Huffman coded symbols into decoded symbols.  base[]
280 		 * is the amount to subtract from the value of a
281 		 * Huffman symbol of a given length when using
282 		 * permute[].
283 		 *
284 		 * limit[] indicates the largest numerical value a
285 		 * symbol with a given number of bits can have.  This
286 		 * is how the Huffman codes can vary in length: each
287 		 * code with a value > limit[length] needs another
288 		 * bit.
289 		 */
290 		hufGroup = bd->groups+j;
291 		hufGroup->minLen = minLen;
292 		hufGroup->maxLen = maxLen;
293 		/* Note that minLen can't be smaller than 1, so we
294 		   adjust the base and limit array pointers so we're
295 		   not always wasting the first entry.  We do this
296 		   again when using them (during symbol decoding).*/
297 		base = hufGroup->base-1;
298 		limit = hufGroup->limit-1;
299 		/* Calculate permute[].  Concurently, initialize
300 		 * temp[] and limit[]. */
301 		pp = 0;
302 		for (i = minLen; i <= maxLen; i++) {
303 			temp[i] = limit[i] = 0;
304 			for (t = 0; t < symCount; t++)
305 				if (length[t] == i)
306 					hufGroup->permute[pp++] = t;
307 		}
308 		/* Count symbols coded for at each bit length */
309 		for (i = 0; i < symCount; i++)
310 			temp[length[i]]++;
311 		/* Calculate limit[] (the largest symbol-coding value
312 		 *at each bit length, which is (previous limit <<
313 		 *1)+symbols at this level), and base[] (number of
314 		 *symbols to ignore at each bit length, which is limit
315 		 *minus the cumulative count of symbols coded for
316 		 *already). */
317 		pp = t = 0;
318 		for (i = minLen; i < maxLen; i++) {
319 			pp += temp[i];
320 			/* We read the largest possible symbol size
321 			   and then unget bits after determining how
322 			   many we need, and those extra bits could be
323 			   set to anything.  (They're noise from
324 			   future symbols.)  At each level we're
325 			   really only interested in the first few
326 			   bits, so here we set all the trailing
327 			   to-be-ignored bits to 1 so they don't
328 			   affect the value > limit[length]
329 			   comparison. */
330 			limit[i] = (pp << (maxLen - i)) - 1;
331 			pp <<= 1;
332 			base[i+1] = pp-(t += temp[i]);
333 		}
334 		limit[maxLen+1] = INT_MAX; /* Sentinal value for
335 					    * reading next sym. */
336 		limit[maxLen] = pp+temp[maxLen]-1;
337 		base[minLen] = 0;
338 	}
339 	/* We've finished reading and digesting the block header.  Now
340 	   read this block's Huffman coded symbols from the file and
341 	   undo the Huffman coding and run length encoding, saving the
342 	   result into dbuf[dbufCount++] = uc */
343 
344 	/* Initialize symbol occurrence counters and symbol Move To
345 	 * Front table */
346 	for (i = 0; i < 256; i++) {
347 		byteCount[i] = 0;
348 		mtfSymbol[i] = (unsigned char)i;
349 	}
350 	/* Loop through compressed symbols. */
351 	runPos = dbufCount = symCount = selector = 0;
352 	for (;;) {
353 		/* Determine which Huffman coding group to use. */
354 		if (!(symCount--)) {
355 			symCount = GROUP_SIZE-1;
356 			if (selector >= nSelectors)
357 				return RETVAL_DATA_ERROR;
358 			hufGroup = bd->groups+selectors[selector++];
359 			base = hufGroup->base-1;
360 			limit = hufGroup->limit-1;
361 		}
362 		/* Read next Huffman-coded symbol. */
363 		/* Note: It is far cheaper to read maxLen bits and
364 		   back up than it is to read minLen bits and then an
365 		   additional bit at a time, testing as we go.
366 		   Because there is a trailing last block (with file
367 		   CRC), there is no danger of the overread causing an
368 		   unexpected EOF for a valid compressed file.  As a
369 		   further optimization, we do the read inline
370 		   (falling back to a call to get_bits if the buffer
371 		   runs dry).  The following (up to got_huff_bits:) is
372 		   equivalent to j = get_bits(bd, hufGroup->maxLen);
373 		 */
374 		while (bd->inbufBitCount < hufGroup->maxLen) {
375 			if (bd->inbufPos == bd->inbufCount) {
376 				j = get_bits(bd, hufGroup->maxLen);
377 				goto got_huff_bits;
378 			}
379 			bd->inbufBits =
380 				(bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
381 			bd->inbufBitCount += 8;
382 		};
383 		bd->inbufBitCount -= hufGroup->maxLen;
384 		j = (bd->inbufBits >> bd->inbufBitCount)&
385 			((1 << hufGroup->maxLen)-1);
386 got_huff_bits:
387 		/* Figure how how many bits are in next symbol and
388 		 * unget extras */
389 		i = hufGroup->minLen;
390 		while (j > limit[i])
391 			++i;
392 		bd->inbufBitCount += (hufGroup->maxLen - i);
393 		/* Huffman decode value to get nextSym (with bounds checking) */
394 		if ((i > hufGroup->maxLen)
395 			|| (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
396 				>= MAX_SYMBOLS))
397 			return RETVAL_DATA_ERROR;
398 		nextSym = hufGroup->permute[j];
399 		/* We have now decoded the symbol, which indicates
400 		   either a new literal byte, or a repeated run of the
401 		   most recent literal byte.  First, check if nextSym
402 		   indicates a repeated run, and if so loop collecting
403 		   how many times to repeat the last literal. */
404 		if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
405 			/* If this is the start of a new run, zero out
406 			 * counter */
407 			if (!runPos) {
408 				runPos = 1;
409 				t = 0;
410 			}
411 			/* Neat trick that saves 1 symbol: instead of
412 			   or-ing 0 or 1 at each bit position, add 1
413 			   or 2 instead.  For example, 1011 is 1 << 0
414 			   + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1
415 			   + 1 << 2.  You can make any bit pattern
416 			   that way using 1 less symbol than the basic
417 			   or 0/1 method (except all bits 0, which
418 			   would use no symbols, but a run of length 0
419 			   doesn't mean anything in this context).
420 			   Thus space is saved. */
421 			t += (runPos << nextSym);
422 			/* +runPos if RUNA; +2*runPos if RUNB */
423 
424 			runPos <<= 1;
425 			continue;
426 		}
427 		/* When we hit the first non-run symbol after a run,
428 		   we now know how many times to repeat the last
429 		   literal, so append that many copies to our buffer
430 		   of decoded symbols (dbuf) now.  (The last literal
431 		   used is the one at the head of the mtfSymbol
432 		   array.) */
433 		if (runPos) {
434 			runPos = 0;
435 			if (dbufCount+t >= dbufSize)
436 				return RETVAL_DATA_ERROR;
437 
438 			uc = symToByte[mtfSymbol[0]];
439 			byteCount[uc] += t;
440 			while (t--)
441 				dbuf[dbufCount++] = uc;
442 		}
443 		/* Is this the terminating symbol? */
444 		if (nextSym > symTotal)
445 			break;
446 		/* At this point, nextSym indicates a new literal
447 		   character.  Subtract one to get the position in the
448 		   MTF array at which this literal is currently to be
449 		   found.  (Note that the result can't be -1 or 0,
450 		   because 0 and 1 are RUNA and RUNB.  But another
451 		   instance of the first symbol in the mtf array,
452 		   position 0, would have been handled as part of a
453 		   run above.  Therefore 1 unused mtf position minus 2
454 		   non-literal nextSym values equals -1.) */
455 		if (dbufCount >= dbufSize)
456 			return RETVAL_DATA_ERROR;
457 		i = nextSym - 1;
458 		uc = mtfSymbol[i];
459 		/* Adjust the MTF array.  Since we typically expect to
460 		 *move only a small number of symbols, and are bound
461 		 *by 256 in any case, using memmove here would
462 		 *typically be bigger and slower due to function call
463 		 *overhead and other assorted setup costs. */
464 		do {
465 			mtfSymbol[i] = mtfSymbol[i-1];
466 		} while (--i);
467 		mtfSymbol[0] = uc;
468 		uc = symToByte[uc];
469 		/* We have our literal byte.  Save it into dbuf. */
470 		byteCount[uc]++;
471 		dbuf[dbufCount++] = (unsigned int)uc;
472 	}
473 	/* At this point, we've read all the Huffman-coded symbols
474 	   (and repeated runs) for this block from the input stream,
475 	   and decoded them into the intermediate buffer.  There are
476 	   dbufCount many decoded bytes in dbuf[].  Now undo the
477 	   Burrows-Wheeler transform on dbuf.  See
478 	   http://dogma.net/markn/articles/bwt/bwt.htm
479 	 */
480 	/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
481 	j = 0;
482 	for (i = 0; i < 256; i++) {
483 		k = j+byteCount[i];
484 		byteCount[i] = j;
485 		j = k;
486 	}
487 	/* Figure out what order dbuf would be in if we sorted it. */
488 	for (i = 0; i < dbufCount; i++) {
489 		uc = (unsigned char)(dbuf[i] & 0xff);
490 		dbuf[byteCount[uc]] |= (i << 8);
491 		byteCount[uc]++;
492 	}
493 	/* Decode first byte by hand to initialize "previous" byte.
494 	   Note that it doesn't get output, and if the first three
495 	   characters are identical it doesn't qualify as a run (hence
496 	   writeRunCountdown = 5). */
497 	if (dbufCount) {
498 		if (origPtr >= dbufCount)
499 			return RETVAL_DATA_ERROR;
500 		bd->writePos = dbuf[origPtr];
501 		bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
502 		bd->writePos >>= 8;
503 		bd->writeRunCountdown = 5;
504 	}
505 	bd->writeCount = dbufCount;
506 
507 	return RETVAL_OK;
508 }
509 
510 /* Undo burrows-wheeler transform on intermediate buffer to produce output.
511    If start_bunzip was initialized with out_fd =-1, then up to len bytes of
512    data are written to outbuf.  Return value is number of bytes written or
513    error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
514    are ignored, data is written to out_fd and return is RETVAL_OK or error.
515 */
516 
517 static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
518 {
519 	const unsigned int *dbuf;
520 	int pos, xcurrent, previous, gotcount;
521 
522 	/* If last read was short due to end of file, return last block now */
523 	if (bd->writeCount < 0)
524 		return bd->writeCount;
525 
526 	gotcount = 0;
527 	dbuf = bd->dbuf;
528 	pos = bd->writePos;
529 	xcurrent = bd->writeCurrent;
530 
531 	/* We will always have pending decoded data to write into the output
532 	   buffer unless this is the very first call (in which case we haven't
533 	   Huffman-decoded a block into the intermediate buffer yet). */
534 
535 	if (bd->writeCopies) {
536 		/* Inside the loop, writeCopies means extra copies (beyond 1) */
537 		--bd->writeCopies;
538 		/* Loop outputting bytes */
539 		for (;;) {
540 			/* If the output buffer is full, snapshot
541 			 * state and return */
542 			if (gotcount >= len) {
543 				bd->writePos = pos;
544 				bd->writeCurrent = xcurrent;
545 				bd->writeCopies++;
546 				return len;
547 			}
548 			/* Write next byte into output buffer, updating CRC */
549 			outbuf[gotcount++] = xcurrent;
550 			bd->writeCRC = (((bd->writeCRC) << 8)
551 				^bd->crc32Table[((bd->writeCRC) >> 24)
552 				^xcurrent]);
553 			/* Loop now if we're outputting multiple
554 			 * copies of this byte */
555 			if (bd->writeCopies) {
556 				--bd->writeCopies;
557 				continue;
558 			}
559 decode_next_byte:
560 			if (!bd->writeCount--)
561 				break;
562 			/* Follow sequence vector to undo
563 			 * Burrows-Wheeler transform */
564 			previous = xcurrent;
565 			pos = dbuf[pos];
566 			xcurrent = pos&0xff;
567 			pos >>= 8;
568 			/* After 3 consecutive copies of the same
569 			   byte, the 4th is a repeat count.  We count
570 			   down from 4 instead *of counting up because
571 			   testing for non-zero is faster */
572 			if (--bd->writeRunCountdown) {
573 				if (xcurrent != previous)
574 					bd->writeRunCountdown = 4;
575 			} else {
576 				/* We have a repeated run, this byte
577 				 * indicates the count */
578 				bd->writeCopies = xcurrent;
579 				xcurrent = previous;
580 				bd->writeRunCountdown = 5;
581 				/* Sometimes there are just 3 bytes
582 				 * (run length 0) */
583 				if (!bd->writeCopies)
584 					goto decode_next_byte;
585 				/* Subtract the 1 copy we'd output
586 				 * anyway to get extras */
587 				--bd->writeCopies;
588 			}
589 		}
590 		/* Decompression of this block completed successfully */
591 		bd->writeCRC = ~bd->writeCRC;
592 		bd->totalCRC = ((bd->totalCRC << 1) |
593 				(bd->totalCRC >> 31)) ^ bd->writeCRC;
594 		/* If this block had a CRC error, force file level CRC error. */
595 		if (bd->writeCRC != bd->headerCRC) {
596 			bd->totalCRC = bd->headerCRC+1;
597 			return RETVAL_LAST_BLOCK;
598 		}
599 	}
600 
601 	/* Refill the intermediate buffer by Huffman-decoding next
602 	 * block of input */
603 	/* (previous is just a convenient unused temp variable here) */
604 	previous = get_next_block(bd);
605 	if (previous) {
606 		bd->writeCount = previous;
607 		return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
608 	}
609 	bd->writeCRC = 0xffffffffUL;
610 	pos = bd->writePos;
611 	xcurrent = bd->writeCurrent;
612 	goto decode_next_byte;
613 }
614 
615 static int INIT nofill(void *buf, unsigned int len)
616 {
617 	return -1;
618 }
619 
620 /* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain
621    a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
622    ignored, and data is read from file handle into temporary buffer. */
623 static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len,
624 			     int (*fill)(void*, unsigned int))
625 {
626 	struct bunzip_data *bd;
627 	unsigned int i, j, c;
628 	const unsigned int BZh0 =
629 		(((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
630 		+(((unsigned int)'h') << 8)+(unsigned int)'0';
631 
632 	/* Figure out how much data to allocate */
633 	i = sizeof(struct bunzip_data);
634 
635 	/* Allocate bunzip_data.  Most fields initialize to zero. */
636 	bd = *bdp = malloc(i);
637 	memset(bd, 0, sizeof(struct bunzip_data));
638 	/* Setup input buffer */
639 	bd->inbuf = inbuf;
640 	bd->inbufCount = len;
641 	if (fill != NULL)
642 		bd->fill = fill;
643 	else
644 		bd->fill = nofill;
645 
646 	/* Init the CRC32 table (big endian) */
647 	for (i = 0; i < 256; i++) {
648 		c = i << 24;
649 		for (j = 8; j; j--)
650 			c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1);
651 		bd->crc32Table[i] = c;
652 	}
653 
654 	/* Ensure that file starts with "BZh['1'-'9']." */
655 	i = get_bits(bd, 32);
656 	if (((unsigned int)(i-BZh0-1)) >= 9)
657 		return RETVAL_NOT_BZIP_DATA;
658 
659 	/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
660 	   uncompressed data.  Allocate intermediate buffer for block. */
661 	bd->dbufSize = 100000*(i-BZh0);
662 
663 	bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
664 	return RETVAL_OK;
665 }
666 
667 /* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data,
668    not end of file.) */
669 STATIC int INIT bunzip2(unsigned char *buf, int len,
670 			int(*fill)(void*, unsigned int),
671 			int(*flush)(void*, unsigned int),
672 			unsigned char *outbuf,
673 			int *pos,
674 			void(*error_fn)(char *x))
675 {
676 	struct bunzip_data *bd;
677 	int i = -1;
678 	unsigned char *inbuf;
679 
680 	set_error_fn(error_fn);
681 	if (flush)
682 		outbuf = malloc(BZIP2_IOBUF_SIZE);
683 	else
684 		len -= 4; /* Uncompressed size hack active in pre-boot
685 			     environment */
686 	if (!outbuf) {
687 		error("Could not allocate output bufer");
688 		return -1;
689 	}
690 	if (buf)
691 		inbuf = buf;
692 	else
693 		inbuf = malloc(BZIP2_IOBUF_SIZE);
694 	if (!inbuf) {
695 		error("Could not allocate input bufer");
696 		goto exit_0;
697 	}
698 	i = start_bunzip(&bd, inbuf, len, fill);
699 	if (!i) {
700 		for (;;) {
701 			i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
702 			if (i <= 0)
703 				break;
704 			if (!flush)
705 				outbuf += i;
706 			else
707 				if (i != flush(outbuf, i)) {
708 					i = RETVAL_UNEXPECTED_OUTPUT_EOF;
709 					break;
710 				}
711 		}
712 	}
713 	/* Check CRC and release memory */
714 	if (i == RETVAL_LAST_BLOCK) {
715 		if (bd->headerCRC != bd->totalCRC)
716 			error("Data integrity error when decompressing.");
717 		else
718 			i = RETVAL_OK;
719 	} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
720 		error("Compressed file ends unexpectedly");
721 	}
722 	if (bd->dbuf)
723 		large_free(bd->dbuf);
724 	if (pos)
725 		*pos = bd->inbufPos;
726 	free(bd);
727 	if (!buf)
728 		free(inbuf);
729 exit_0:
730 	if (flush)
731 		free(outbuf);
732 	return i;
733 }
734 
735 #define decompress bunzip2
736