xref: /openbmc/linux/lib/crypto/gf128mul.c (revision 61c581a4)
1*61c581a4SArd Biesheuvel /* gf128mul.c - GF(2^128) multiplication functions
2*61c581a4SArd Biesheuvel  *
3*61c581a4SArd Biesheuvel  * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4*61c581a4SArd Biesheuvel  * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5*61c581a4SArd Biesheuvel  *
6*61c581a4SArd Biesheuvel  * Based on Dr Brian Gladman's (GPL'd) work published at
7*61c581a4SArd Biesheuvel  * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8*61c581a4SArd Biesheuvel  * See the original copyright notice below.
9*61c581a4SArd Biesheuvel  *
10*61c581a4SArd Biesheuvel  * This program is free software; you can redistribute it and/or modify it
11*61c581a4SArd Biesheuvel  * under the terms of the GNU General Public License as published by the Free
12*61c581a4SArd Biesheuvel  * Software Foundation; either version 2 of the License, or (at your option)
13*61c581a4SArd Biesheuvel  * any later version.
14*61c581a4SArd Biesheuvel  */
15*61c581a4SArd Biesheuvel 
16*61c581a4SArd Biesheuvel /*
17*61c581a4SArd Biesheuvel  ---------------------------------------------------------------------------
18*61c581a4SArd Biesheuvel  Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
19*61c581a4SArd Biesheuvel 
20*61c581a4SArd Biesheuvel  LICENSE TERMS
21*61c581a4SArd Biesheuvel 
22*61c581a4SArd Biesheuvel  The free distribution and use of this software in both source and binary
23*61c581a4SArd Biesheuvel  form is allowed (with or without changes) provided that:
24*61c581a4SArd Biesheuvel 
25*61c581a4SArd Biesheuvel    1. distributions of this source code include the above copyright
26*61c581a4SArd Biesheuvel       notice, this list of conditions and the following disclaimer;
27*61c581a4SArd Biesheuvel 
28*61c581a4SArd Biesheuvel    2. distributions in binary form include the above copyright
29*61c581a4SArd Biesheuvel       notice, this list of conditions and the following disclaimer
30*61c581a4SArd Biesheuvel       in the documentation and/or other associated materials;
31*61c581a4SArd Biesheuvel 
32*61c581a4SArd Biesheuvel    3. the copyright holder's name is not used to endorse products
33*61c581a4SArd Biesheuvel       built using this software without specific written permission.
34*61c581a4SArd Biesheuvel 
35*61c581a4SArd Biesheuvel  ALTERNATIVELY, provided that this notice is retained in full, this product
36*61c581a4SArd Biesheuvel  may be distributed under the terms of the GNU General Public License (GPL),
37*61c581a4SArd Biesheuvel  in which case the provisions of the GPL apply INSTEAD OF those given above.
38*61c581a4SArd Biesheuvel 
39*61c581a4SArd Biesheuvel  DISCLAIMER
40*61c581a4SArd Biesheuvel 
41*61c581a4SArd Biesheuvel  This software is provided 'as is' with no explicit or implied warranties
42*61c581a4SArd Biesheuvel  in respect of its properties, including, but not limited to, correctness
43*61c581a4SArd Biesheuvel  and/or fitness for purpose.
44*61c581a4SArd Biesheuvel  ---------------------------------------------------------------------------
45*61c581a4SArd Biesheuvel  Issue 31/01/2006
46*61c581a4SArd Biesheuvel 
47*61c581a4SArd Biesheuvel  This file provides fast multiplication in GF(2^128) as required by several
48*61c581a4SArd Biesheuvel  cryptographic authentication modes
49*61c581a4SArd Biesheuvel */
50*61c581a4SArd Biesheuvel 
51*61c581a4SArd Biesheuvel #include <crypto/gf128mul.h>
52*61c581a4SArd Biesheuvel #include <linux/kernel.h>
53*61c581a4SArd Biesheuvel #include <linux/module.h>
54*61c581a4SArd Biesheuvel #include <linux/slab.h>
55*61c581a4SArd Biesheuvel 
56*61c581a4SArd Biesheuvel #define gf128mul_dat(q) { \
57*61c581a4SArd Biesheuvel 	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58*61c581a4SArd Biesheuvel 	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59*61c581a4SArd Biesheuvel 	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60*61c581a4SArd Biesheuvel 	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61*61c581a4SArd Biesheuvel 	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62*61c581a4SArd Biesheuvel 	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63*61c581a4SArd Biesheuvel 	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64*61c581a4SArd Biesheuvel 	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65*61c581a4SArd Biesheuvel 	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66*61c581a4SArd Biesheuvel 	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67*61c581a4SArd Biesheuvel 	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68*61c581a4SArd Biesheuvel 	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69*61c581a4SArd Biesheuvel 	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70*61c581a4SArd Biesheuvel 	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71*61c581a4SArd Biesheuvel 	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72*61c581a4SArd Biesheuvel 	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73*61c581a4SArd Biesheuvel 	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74*61c581a4SArd Biesheuvel 	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75*61c581a4SArd Biesheuvel 	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76*61c581a4SArd Biesheuvel 	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77*61c581a4SArd Biesheuvel 	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78*61c581a4SArd Biesheuvel 	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79*61c581a4SArd Biesheuvel 	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80*61c581a4SArd Biesheuvel 	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81*61c581a4SArd Biesheuvel 	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82*61c581a4SArd Biesheuvel 	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83*61c581a4SArd Biesheuvel 	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84*61c581a4SArd Biesheuvel 	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85*61c581a4SArd Biesheuvel 	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86*61c581a4SArd Biesheuvel 	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87*61c581a4SArd Biesheuvel 	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88*61c581a4SArd Biesheuvel 	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
89*61c581a4SArd Biesheuvel }
90*61c581a4SArd Biesheuvel 
91*61c581a4SArd Biesheuvel /*
92*61c581a4SArd Biesheuvel  * Given a value i in 0..255 as the byte overflow when a field element
93*61c581a4SArd Biesheuvel  * in GF(2^128) is multiplied by x^8, the following macro returns the
94*61c581a4SArd Biesheuvel  * 16-bit value that must be XOR-ed into the low-degree end of the
95*61c581a4SArd Biesheuvel  * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
96*61c581a4SArd Biesheuvel  *
97*61c581a4SArd Biesheuvel  * There are two versions of the macro, and hence two tables: one for
98*61c581a4SArd Biesheuvel  * the "be" convention where the highest-order bit is the coefficient of
99*61c581a4SArd Biesheuvel  * the highest-degree polynomial term, and one for the "le" convention
100*61c581a4SArd Biesheuvel  * where the highest-order bit is the coefficient of the lowest-degree
101*61c581a4SArd Biesheuvel  * polynomial term.  In both cases the values are stored in CPU byte
102*61c581a4SArd Biesheuvel  * endianness such that the coefficients are ordered consistently across
103*61c581a4SArd Biesheuvel  * bytes, i.e. in the "be" table bits 15..0 of the stored value
104*61c581a4SArd Biesheuvel  * correspond to the coefficients of x^15..x^0, and in the "le" table
105*61c581a4SArd Biesheuvel  * bits 15..0 correspond to the coefficients of x^0..x^15.
106*61c581a4SArd Biesheuvel  *
107*61c581a4SArd Biesheuvel  * Therefore, provided that the appropriate byte endianness conversions
108*61c581a4SArd Biesheuvel  * are done by the multiplication functions (and these must be in place
109*61c581a4SArd Biesheuvel  * anyway to support both little endian and big endian CPUs), the "be"
110*61c581a4SArd Biesheuvel  * table can be used for multiplications of both "bbe" and "ble"
111*61c581a4SArd Biesheuvel  * elements, and the "le" table can be used for multiplications of both
112*61c581a4SArd Biesheuvel  * "lle" and "lbe" elements.
113*61c581a4SArd Biesheuvel  */
114*61c581a4SArd Biesheuvel 
115*61c581a4SArd Biesheuvel #define xda_be(i) ( \
116*61c581a4SArd Biesheuvel 	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117*61c581a4SArd Biesheuvel 	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118*61c581a4SArd Biesheuvel 	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119*61c581a4SArd Biesheuvel 	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
120*61c581a4SArd Biesheuvel )
121*61c581a4SArd Biesheuvel 
122*61c581a4SArd Biesheuvel #define xda_le(i) ( \
123*61c581a4SArd Biesheuvel 	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124*61c581a4SArd Biesheuvel 	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125*61c581a4SArd Biesheuvel 	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126*61c581a4SArd Biesheuvel 	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
127*61c581a4SArd Biesheuvel )
128*61c581a4SArd Biesheuvel 
129*61c581a4SArd Biesheuvel static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130*61c581a4SArd Biesheuvel static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
131*61c581a4SArd Biesheuvel 
132*61c581a4SArd Biesheuvel /*
133*61c581a4SArd Biesheuvel  * The following functions multiply a field element by x^8 in
134*61c581a4SArd Biesheuvel  * the polynomial field representation.  They use 64-bit word operations
135*61c581a4SArd Biesheuvel  * to gain speed but compensate for machine endianness and hence work
136*61c581a4SArd Biesheuvel  * correctly on both styles of machine.
137*61c581a4SArd Biesheuvel  */
138*61c581a4SArd Biesheuvel 
139*61c581a4SArd Biesheuvel static void gf128mul_x8_lle(be128 *x)
140*61c581a4SArd Biesheuvel {
141*61c581a4SArd Biesheuvel 	u64 a = be64_to_cpu(x->a);
142*61c581a4SArd Biesheuvel 	u64 b = be64_to_cpu(x->b);
143*61c581a4SArd Biesheuvel 	u64 _tt = gf128mul_table_le[b & 0xff];
144*61c581a4SArd Biesheuvel 
145*61c581a4SArd Biesheuvel 	x->b = cpu_to_be64((b >> 8) | (a << 56));
146*61c581a4SArd Biesheuvel 	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
147*61c581a4SArd Biesheuvel }
148*61c581a4SArd Biesheuvel 
149*61c581a4SArd Biesheuvel static void gf128mul_x8_bbe(be128 *x)
150*61c581a4SArd Biesheuvel {
151*61c581a4SArd Biesheuvel 	u64 a = be64_to_cpu(x->a);
152*61c581a4SArd Biesheuvel 	u64 b = be64_to_cpu(x->b);
153*61c581a4SArd Biesheuvel 	u64 _tt = gf128mul_table_be[a >> 56];
154*61c581a4SArd Biesheuvel 
155*61c581a4SArd Biesheuvel 	x->a = cpu_to_be64((a << 8) | (b >> 56));
156*61c581a4SArd Biesheuvel 	x->b = cpu_to_be64((b << 8) ^ _tt);
157*61c581a4SArd Biesheuvel }
158*61c581a4SArd Biesheuvel 
159*61c581a4SArd Biesheuvel void gf128mul_x8_ble(le128 *r, const le128 *x)
160*61c581a4SArd Biesheuvel {
161*61c581a4SArd Biesheuvel 	u64 a = le64_to_cpu(x->a);
162*61c581a4SArd Biesheuvel 	u64 b = le64_to_cpu(x->b);
163*61c581a4SArd Biesheuvel 	u64 _tt = gf128mul_table_be[a >> 56];
164*61c581a4SArd Biesheuvel 
165*61c581a4SArd Biesheuvel 	r->a = cpu_to_le64((a << 8) | (b >> 56));
166*61c581a4SArd Biesheuvel 	r->b = cpu_to_le64((b << 8) ^ _tt);
167*61c581a4SArd Biesheuvel }
168*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_x8_ble);
169*61c581a4SArd Biesheuvel 
170*61c581a4SArd Biesheuvel void gf128mul_lle(be128 *r, const be128 *b)
171*61c581a4SArd Biesheuvel {
172*61c581a4SArd Biesheuvel 	be128 p[8];
173*61c581a4SArd Biesheuvel 	int i;
174*61c581a4SArd Biesheuvel 
175*61c581a4SArd Biesheuvel 	p[0] = *r;
176*61c581a4SArd Biesheuvel 	for (i = 0; i < 7; ++i)
177*61c581a4SArd Biesheuvel 		gf128mul_x_lle(&p[i + 1], &p[i]);
178*61c581a4SArd Biesheuvel 
179*61c581a4SArd Biesheuvel 	memset(r, 0, sizeof(*r));
180*61c581a4SArd Biesheuvel 	for (i = 0;;) {
181*61c581a4SArd Biesheuvel 		u8 ch = ((u8 *)b)[15 - i];
182*61c581a4SArd Biesheuvel 
183*61c581a4SArd Biesheuvel 		if (ch & 0x80)
184*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[0]);
185*61c581a4SArd Biesheuvel 		if (ch & 0x40)
186*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[1]);
187*61c581a4SArd Biesheuvel 		if (ch & 0x20)
188*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[2]);
189*61c581a4SArd Biesheuvel 		if (ch & 0x10)
190*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[3]);
191*61c581a4SArd Biesheuvel 		if (ch & 0x08)
192*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[4]);
193*61c581a4SArd Biesheuvel 		if (ch & 0x04)
194*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[5]);
195*61c581a4SArd Biesheuvel 		if (ch & 0x02)
196*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[6]);
197*61c581a4SArd Biesheuvel 		if (ch & 0x01)
198*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[7]);
199*61c581a4SArd Biesheuvel 
200*61c581a4SArd Biesheuvel 		if (++i >= 16)
201*61c581a4SArd Biesheuvel 			break;
202*61c581a4SArd Biesheuvel 
203*61c581a4SArd Biesheuvel 		gf128mul_x8_lle(r);
204*61c581a4SArd Biesheuvel 	}
205*61c581a4SArd Biesheuvel }
206*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_lle);
207*61c581a4SArd Biesheuvel 
208*61c581a4SArd Biesheuvel void gf128mul_bbe(be128 *r, const be128 *b)
209*61c581a4SArd Biesheuvel {
210*61c581a4SArd Biesheuvel 	be128 p[8];
211*61c581a4SArd Biesheuvel 	int i;
212*61c581a4SArd Biesheuvel 
213*61c581a4SArd Biesheuvel 	p[0] = *r;
214*61c581a4SArd Biesheuvel 	for (i = 0; i < 7; ++i)
215*61c581a4SArd Biesheuvel 		gf128mul_x_bbe(&p[i + 1], &p[i]);
216*61c581a4SArd Biesheuvel 
217*61c581a4SArd Biesheuvel 	memset(r, 0, sizeof(*r));
218*61c581a4SArd Biesheuvel 	for (i = 0;;) {
219*61c581a4SArd Biesheuvel 		u8 ch = ((u8 *)b)[i];
220*61c581a4SArd Biesheuvel 
221*61c581a4SArd Biesheuvel 		if (ch & 0x80)
222*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[7]);
223*61c581a4SArd Biesheuvel 		if (ch & 0x40)
224*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[6]);
225*61c581a4SArd Biesheuvel 		if (ch & 0x20)
226*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[5]);
227*61c581a4SArd Biesheuvel 		if (ch & 0x10)
228*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[4]);
229*61c581a4SArd Biesheuvel 		if (ch & 0x08)
230*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[3]);
231*61c581a4SArd Biesheuvel 		if (ch & 0x04)
232*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[2]);
233*61c581a4SArd Biesheuvel 		if (ch & 0x02)
234*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[1]);
235*61c581a4SArd Biesheuvel 		if (ch & 0x01)
236*61c581a4SArd Biesheuvel 			be128_xor(r, r, &p[0]);
237*61c581a4SArd Biesheuvel 
238*61c581a4SArd Biesheuvel 		if (++i >= 16)
239*61c581a4SArd Biesheuvel 			break;
240*61c581a4SArd Biesheuvel 
241*61c581a4SArd Biesheuvel 		gf128mul_x8_bbe(r);
242*61c581a4SArd Biesheuvel 	}
243*61c581a4SArd Biesheuvel }
244*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_bbe);
245*61c581a4SArd Biesheuvel 
246*61c581a4SArd Biesheuvel /*      This version uses 64k bytes of table space.
247*61c581a4SArd Biesheuvel     A 16 byte buffer has to be multiplied by a 16 byte key
248*61c581a4SArd Biesheuvel     value in GF(2^128).  If we consider a GF(2^128) value in
249*61c581a4SArd Biesheuvel     the buffer's lowest byte, we can construct a table of
250*61c581a4SArd Biesheuvel     the 256 16 byte values that result from the 256 values
251*61c581a4SArd Biesheuvel     of this byte.  This requires 4096 bytes. But we also
252*61c581a4SArd Biesheuvel     need tables for each of the 16 higher bytes in the
253*61c581a4SArd Biesheuvel     buffer as well, which makes 64 kbytes in total.
254*61c581a4SArd Biesheuvel */
255*61c581a4SArd Biesheuvel /* additional explanation
256*61c581a4SArd Biesheuvel  * t[0][BYTE] contains g*BYTE
257*61c581a4SArd Biesheuvel  * t[1][BYTE] contains g*x^8*BYTE
258*61c581a4SArd Biesheuvel  *  ..
259*61c581a4SArd Biesheuvel  * t[15][BYTE] contains g*x^120*BYTE */
260*61c581a4SArd Biesheuvel struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
261*61c581a4SArd Biesheuvel {
262*61c581a4SArd Biesheuvel 	struct gf128mul_64k *t;
263*61c581a4SArd Biesheuvel 	int i, j, k;
264*61c581a4SArd Biesheuvel 
265*61c581a4SArd Biesheuvel 	t = kzalloc(sizeof(*t), GFP_KERNEL);
266*61c581a4SArd Biesheuvel 	if (!t)
267*61c581a4SArd Biesheuvel 		goto out;
268*61c581a4SArd Biesheuvel 
269*61c581a4SArd Biesheuvel 	for (i = 0; i < 16; i++) {
270*61c581a4SArd Biesheuvel 		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
271*61c581a4SArd Biesheuvel 		if (!t->t[i]) {
272*61c581a4SArd Biesheuvel 			gf128mul_free_64k(t);
273*61c581a4SArd Biesheuvel 			t = NULL;
274*61c581a4SArd Biesheuvel 			goto out;
275*61c581a4SArd Biesheuvel 		}
276*61c581a4SArd Biesheuvel 	}
277*61c581a4SArd Biesheuvel 
278*61c581a4SArd Biesheuvel 	t->t[0]->t[1] = *g;
279*61c581a4SArd Biesheuvel 	for (j = 1; j <= 64; j <<= 1)
280*61c581a4SArd Biesheuvel 		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
281*61c581a4SArd Biesheuvel 
282*61c581a4SArd Biesheuvel 	for (i = 0;;) {
283*61c581a4SArd Biesheuvel 		for (j = 2; j < 256; j += j)
284*61c581a4SArd Biesheuvel 			for (k = 1; k < j; ++k)
285*61c581a4SArd Biesheuvel 				be128_xor(&t->t[i]->t[j + k],
286*61c581a4SArd Biesheuvel 					  &t->t[i]->t[j], &t->t[i]->t[k]);
287*61c581a4SArd Biesheuvel 
288*61c581a4SArd Biesheuvel 		if (++i >= 16)
289*61c581a4SArd Biesheuvel 			break;
290*61c581a4SArd Biesheuvel 
291*61c581a4SArd Biesheuvel 		for (j = 128; j > 0; j >>= 1) {
292*61c581a4SArd Biesheuvel 			t->t[i]->t[j] = t->t[i - 1]->t[j];
293*61c581a4SArd Biesheuvel 			gf128mul_x8_bbe(&t->t[i]->t[j]);
294*61c581a4SArd Biesheuvel 		}
295*61c581a4SArd Biesheuvel 	}
296*61c581a4SArd Biesheuvel 
297*61c581a4SArd Biesheuvel out:
298*61c581a4SArd Biesheuvel 	return t;
299*61c581a4SArd Biesheuvel }
300*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_init_64k_bbe);
301*61c581a4SArd Biesheuvel 
302*61c581a4SArd Biesheuvel void gf128mul_free_64k(struct gf128mul_64k *t)
303*61c581a4SArd Biesheuvel {
304*61c581a4SArd Biesheuvel 	int i;
305*61c581a4SArd Biesheuvel 
306*61c581a4SArd Biesheuvel 	for (i = 0; i < 16; i++)
307*61c581a4SArd Biesheuvel 		kfree_sensitive(t->t[i]);
308*61c581a4SArd Biesheuvel 	kfree_sensitive(t);
309*61c581a4SArd Biesheuvel }
310*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_free_64k);
311*61c581a4SArd Biesheuvel 
312*61c581a4SArd Biesheuvel void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
313*61c581a4SArd Biesheuvel {
314*61c581a4SArd Biesheuvel 	u8 *ap = (u8 *)a;
315*61c581a4SArd Biesheuvel 	be128 r[1];
316*61c581a4SArd Biesheuvel 	int i;
317*61c581a4SArd Biesheuvel 
318*61c581a4SArd Biesheuvel 	*r = t->t[0]->t[ap[15]];
319*61c581a4SArd Biesheuvel 	for (i = 1; i < 16; ++i)
320*61c581a4SArd Biesheuvel 		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
321*61c581a4SArd Biesheuvel 	*a = *r;
322*61c581a4SArd Biesheuvel }
323*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_64k_bbe);
324*61c581a4SArd Biesheuvel 
325*61c581a4SArd Biesheuvel /*      This version uses 4k bytes of table space.
326*61c581a4SArd Biesheuvel     A 16 byte buffer has to be multiplied by a 16 byte key
327*61c581a4SArd Biesheuvel     value in GF(2^128).  If we consider a GF(2^128) value in a
328*61c581a4SArd Biesheuvel     single byte, we can construct a table of the 256 16 byte
329*61c581a4SArd Biesheuvel     values that result from the 256 values of this byte.
330*61c581a4SArd Biesheuvel     This requires 4096 bytes. If we take the highest byte in
331*61c581a4SArd Biesheuvel     the buffer and use this table to get the result, we then
332*61c581a4SArd Biesheuvel     have to multiply by x^120 to get the final value. For the
333*61c581a4SArd Biesheuvel     next highest byte the result has to be multiplied by x^112
334*61c581a4SArd Biesheuvel     and so on. But we can do this by accumulating the result
335*61c581a4SArd Biesheuvel     in an accumulator starting with the result for the top
336*61c581a4SArd Biesheuvel     byte.  We repeatedly multiply the accumulator value by
337*61c581a4SArd Biesheuvel     x^8 and then add in (i.e. xor) the 16 bytes of the next
338*61c581a4SArd Biesheuvel     lower byte in the buffer, stopping when we reach the
339*61c581a4SArd Biesheuvel     lowest byte. This requires a 4096 byte table.
340*61c581a4SArd Biesheuvel */
341*61c581a4SArd Biesheuvel struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
342*61c581a4SArd Biesheuvel {
343*61c581a4SArd Biesheuvel 	struct gf128mul_4k *t;
344*61c581a4SArd Biesheuvel 	int j, k;
345*61c581a4SArd Biesheuvel 
346*61c581a4SArd Biesheuvel 	t = kzalloc(sizeof(*t), GFP_KERNEL);
347*61c581a4SArd Biesheuvel 	if (!t)
348*61c581a4SArd Biesheuvel 		goto out;
349*61c581a4SArd Biesheuvel 
350*61c581a4SArd Biesheuvel 	t->t[128] = *g;
351*61c581a4SArd Biesheuvel 	for (j = 64; j > 0; j >>= 1)
352*61c581a4SArd Biesheuvel 		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
353*61c581a4SArd Biesheuvel 
354*61c581a4SArd Biesheuvel 	for (j = 2; j < 256; j += j)
355*61c581a4SArd Biesheuvel 		for (k = 1; k < j; ++k)
356*61c581a4SArd Biesheuvel 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
357*61c581a4SArd Biesheuvel 
358*61c581a4SArd Biesheuvel out:
359*61c581a4SArd Biesheuvel 	return t;
360*61c581a4SArd Biesheuvel }
361*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_init_4k_lle);
362*61c581a4SArd Biesheuvel 
363*61c581a4SArd Biesheuvel struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
364*61c581a4SArd Biesheuvel {
365*61c581a4SArd Biesheuvel 	struct gf128mul_4k *t;
366*61c581a4SArd Biesheuvel 	int j, k;
367*61c581a4SArd Biesheuvel 
368*61c581a4SArd Biesheuvel 	t = kzalloc(sizeof(*t), GFP_KERNEL);
369*61c581a4SArd Biesheuvel 	if (!t)
370*61c581a4SArd Biesheuvel 		goto out;
371*61c581a4SArd Biesheuvel 
372*61c581a4SArd Biesheuvel 	t->t[1] = *g;
373*61c581a4SArd Biesheuvel 	for (j = 1; j <= 64; j <<= 1)
374*61c581a4SArd Biesheuvel 		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
375*61c581a4SArd Biesheuvel 
376*61c581a4SArd Biesheuvel 	for (j = 2; j < 256; j += j)
377*61c581a4SArd Biesheuvel 		for (k = 1; k < j; ++k)
378*61c581a4SArd Biesheuvel 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
379*61c581a4SArd Biesheuvel 
380*61c581a4SArd Biesheuvel out:
381*61c581a4SArd Biesheuvel 	return t;
382*61c581a4SArd Biesheuvel }
383*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_init_4k_bbe);
384*61c581a4SArd Biesheuvel 
385*61c581a4SArd Biesheuvel void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
386*61c581a4SArd Biesheuvel {
387*61c581a4SArd Biesheuvel 	u8 *ap = (u8 *)a;
388*61c581a4SArd Biesheuvel 	be128 r[1];
389*61c581a4SArd Biesheuvel 	int i = 15;
390*61c581a4SArd Biesheuvel 
391*61c581a4SArd Biesheuvel 	*r = t->t[ap[15]];
392*61c581a4SArd Biesheuvel 	while (i--) {
393*61c581a4SArd Biesheuvel 		gf128mul_x8_lle(r);
394*61c581a4SArd Biesheuvel 		be128_xor(r, r, &t->t[ap[i]]);
395*61c581a4SArd Biesheuvel 	}
396*61c581a4SArd Biesheuvel 	*a = *r;
397*61c581a4SArd Biesheuvel }
398*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_4k_lle);
399*61c581a4SArd Biesheuvel 
400*61c581a4SArd Biesheuvel void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
401*61c581a4SArd Biesheuvel {
402*61c581a4SArd Biesheuvel 	u8 *ap = (u8 *)a;
403*61c581a4SArd Biesheuvel 	be128 r[1];
404*61c581a4SArd Biesheuvel 	int i = 0;
405*61c581a4SArd Biesheuvel 
406*61c581a4SArd Biesheuvel 	*r = t->t[ap[0]];
407*61c581a4SArd Biesheuvel 	while (++i < 16) {
408*61c581a4SArd Biesheuvel 		gf128mul_x8_bbe(r);
409*61c581a4SArd Biesheuvel 		be128_xor(r, r, &t->t[ap[i]]);
410*61c581a4SArd Biesheuvel 	}
411*61c581a4SArd Biesheuvel 	*a = *r;
412*61c581a4SArd Biesheuvel }
413*61c581a4SArd Biesheuvel EXPORT_SYMBOL(gf128mul_4k_bbe);
414*61c581a4SArd Biesheuvel 
415*61c581a4SArd Biesheuvel MODULE_LICENSE("GPL");
416*61c581a4SArd Biesheuvel MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
417