1 /* 2 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> 3 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks! 4 * Code was from the public domain, copyright abandoned. Code was 5 * subsequently included in the kernel, thus was re-licensed under the 6 * GNU GPL v2. 7 * 8 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> 9 * Same crc32 function was used in 5 other places in the kernel. 10 * I made one version, and deleted the others. 11 * There are various incantations of crc32(). Some use a seed of 0 or ~0. 12 * Some xor at the end with ~0. The generic crc32() function takes 13 * seed as an argument, and doesn't xor at the end. Then individual 14 * users can do whatever they need. 15 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. 16 * fs/jffs2 uses seed 0, doesn't xor with ~0. 17 * fs/partitions/efi.c uses seed ~0, xor's with ~0. 18 * 19 * This source code is licensed under the GNU General Public License, 20 * Version 2. See the file COPYING for more details. 21 */ 22 23 #include <linux/crc32.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/compiler.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/init.h> 30 #include <asm/atomic.h> 31 #include "crc32defs.h" 32 #if CRC_LE_BITS == 8 33 #define tole(x) __constant_cpu_to_le32(x) 34 #define tobe(x) __constant_cpu_to_be32(x) 35 #else 36 #define tole(x) (x) 37 #define tobe(x) (x) 38 #endif 39 #include "crc32table.h" 40 41 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); 42 MODULE_DESCRIPTION("Ethernet CRC32 calculations"); 43 MODULE_LICENSE("GPL"); 44 45 #if CRC_LE_BITS == 8 || CRC_BE_BITS == 8 46 47 static inline u32 48 crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 *tab) 49 { 50 # ifdef __LITTLE_ENDIAN 51 # define DO_CRC(x) crc = tab[(crc ^ (x)) & 255 ] ^ (crc >> 8) 52 # else 53 # define DO_CRC(x) crc = tab[((crc >> 24) ^ (x)) & 255] ^ (crc << 8) 54 # endif 55 const u32 *b = (const u32 *)buf; 56 size_t rem_len; 57 58 /* Align it */ 59 if (unlikely((long)b & 3 && len)) { 60 u8 *p = (u8 *)b; 61 do { 62 DO_CRC(*p++); 63 } while ((--len) && ((long)p)&3); 64 b = (u32 *)p; 65 } 66 rem_len = len & 3; 67 /* load data 32 bits wide, xor data 32 bits wide. */ 68 len = len >> 2; 69 for (--b; len; --len) { 70 crc ^= *++b; /* use pre increment for speed */ 71 DO_CRC(0); 72 DO_CRC(0); 73 DO_CRC(0); 74 DO_CRC(0); 75 } 76 len = rem_len; 77 /* And the last few bytes */ 78 if (len) { 79 u8 *p = (u8 *)(b + 1) - 1; 80 do { 81 DO_CRC(*++p); /* use pre increment for speed */ 82 } while (--len); 83 } 84 return crc; 85 } 86 #endif 87 /** 88 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 89 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for 90 * other uses, or the previous crc32 value if computing incrementally. 91 * @p: pointer to buffer over which CRC is run 92 * @len: length of buffer @p 93 */ 94 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len); 95 96 #if CRC_LE_BITS == 1 97 /* 98 * In fact, the table-based code will work in this case, but it can be 99 * simplified by inlining the table in ?: form. 100 */ 101 102 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) 103 { 104 int i; 105 while (len--) { 106 crc ^= *p++; 107 for (i = 0; i < 8; i++) 108 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 109 } 110 return crc; 111 } 112 #else /* Table-based approach */ 113 114 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) 115 { 116 # if CRC_LE_BITS == 8 117 const u32 *tab = crc32table_le; 118 119 crc = __cpu_to_le32(crc); 120 crc = crc32_body(crc, p, len, tab); 121 return __le32_to_cpu(crc); 122 #undef ENDIAN_SHIFT 123 #undef DO_CRC 124 125 # elif CRC_LE_BITS == 4 126 while (len--) { 127 crc ^= *p++; 128 crc = (crc >> 4) ^ crc32table_le[crc & 15]; 129 crc = (crc >> 4) ^ crc32table_le[crc & 15]; 130 } 131 return crc; 132 # elif CRC_LE_BITS == 2 133 while (len--) { 134 crc ^= *p++; 135 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 136 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 137 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 138 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 139 } 140 return crc; 141 # endif 142 } 143 #endif 144 145 /** 146 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 147 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for 148 * other uses, or the previous crc32 value if computing incrementally. 149 * @p: pointer to buffer over which CRC is run 150 * @len: length of buffer @p 151 */ 152 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len); 153 154 #if CRC_BE_BITS == 1 155 /* 156 * In fact, the table-based code will work in this case, but it can be 157 * simplified by inlining the table in ?: form. 158 */ 159 160 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) 161 { 162 int i; 163 while (len--) { 164 crc ^= *p++ << 24; 165 for (i = 0; i < 8; i++) 166 crc = 167 (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : 168 0); 169 } 170 return crc; 171 } 172 173 #else /* Table-based approach */ 174 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) 175 { 176 # if CRC_BE_BITS == 8 177 const u32 *tab = crc32table_be; 178 179 crc = __cpu_to_be32(crc); 180 crc = crc32_body(crc, p, len, tab); 181 return __be32_to_cpu(crc); 182 #undef ENDIAN_SHIFT 183 #undef DO_CRC 184 185 # elif CRC_BE_BITS == 4 186 while (len--) { 187 crc ^= *p++ << 24; 188 crc = (crc << 4) ^ crc32table_be[crc >> 28]; 189 crc = (crc << 4) ^ crc32table_be[crc >> 28]; 190 } 191 return crc; 192 # elif CRC_BE_BITS == 2 193 while (len--) { 194 crc ^= *p++ << 24; 195 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 196 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 197 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 198 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 199 } 200 return crc; 201 # endif 202 } 203 #endif 204 205 EXPORT_SYMBOL(crc32_le); 206 EXPORT_SYMBOL(crc32_be); 207 208 /* 209 * A brief CRC tutorial. 210 * 211 * A CRC is a long-division remainder. You add the CRC to the message, 212 * and the whole thing (message+CRC) is a multiple of the given 213 * CRC polynomial. To check the CRC, you can either check that the 214 * CRC matches the recomputed value, *or* you can check that the 215 * remainder computed on the message+CRC is 0. This latter approach 216 * is used by a lot of hardware implementations, and is why so many 217 * protocols put the end-of-frame flag after the CRC. 218 * 219 * It's actually the same long division you learned in school, except that 220 * - We're working in binary, so the digits are only 0 and 1, and 221 * - When dividing polynomials, there are no carries. Rather than add and 222 * subtract, we just xor. Thus, we tend to get a bit sloppy about 223 * the difference between adding and subtracting. 224 * 225 * A 32-bit CRC polynomial is actually 33 bits long. But since it's 226 * 33 bits long, bit 32 is always going to be set, so usually the CRC 227 * is written in hex with the most significant bit omitted. (If you're 228 * familiar with the IEEE 754 floating-point format, it's the same idea.) 229 * 230 * Note that a CRC is computed over a string of *bits*, so you have 231 * to decide on the endianness of the bits within each byte. To get 232 * the best error-detecting properties, this should correspond to the 233 * order they're actually sent. For example, standard RS-232 serial is 234 * little-endian; the most significant bit (sometimes used for parity) 235 * is sent last. And when appending a CRC word to a message, you should 236 * do it in the right order, matching the endianness. 237 * 238 * Just like with ordinary division, the remainder is always smaller than 239 * the divisor (the CRC polynomial) you're dividing by. Each step of the 240 * division, you take one more digit (bit) of the dividend and append it 241 * to the current remainder. Then you figure out the appropriate multiple 242 * of the divisor to subtract to being the remainder back into range. 243 * In binary, it's easy - it has to be either 0 or 1, and to make the 244 * XOR cancel, it's just a copy of bit 32 of the remainder. 245 * 246 * When computing a CRC, we don't care about the quotient, so we can 247 * throw the quotient bit away, but subtract the appropriate multiple of 248 * the polynomial from the remainder and we're back to where we started, 249 * ready to process the next bit. 250 * 251 * A big-endian CRC written this way would be coded like: 252 * for (i = 0; i < input_bits; i++) { 253 * multiple = remainder & 0x80000000 ? CRCPOLY : 0; 254 * remainder = (remainder << 1 | next_input_bit()) ^ multiple; 255 * } 256 * Notice how, to get at bit 32 of the shifted remainder, we look 257 * at bit 31 of the remainder *before* shifting it. 258 * 259 * But also notice how the next_input_bit() bits we're shifting into 260 * the remainder don't actually affect any decision-making until 261 * 32 bits later. Thus, the first 32 cycles of this are pretty boring. 262 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at 263 * the end, so we have to add 32 extra cycles shifting in zeros at the 264 * end of every message, 265 * 266 * So the standard trick is to rearrage merging in the next_input_bit() 267 * until the moment it's needed. Then the first 32 cycles can be precomputed, 268 * and merging in the final 32 zero bits to make room for the CRC can be 269 * skipped entirely. 270 * This changes the code to: 271 * for (i = 0; i < input_bits; i++) { 272 * remainder ^= next_input_bit() << 31; 273 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; 274 * remainder = (remainder << 1) ^ multiple; 275 * } 276 * With this optimization, the little-endian code is simpler: 277 * for (i = 0; i < input_bits; i++) { 278 * remainder ^= next_input_bit(); 279 * multiple = (remainder & 1) ? CRCPOLY : 0; 280 * remainder = (remainder >> 1) ^ multiple; 281 * } 282 * 283 * Note that the other details of endianness have been hidden in CRCPOLY 284 * (which must be bit-reversed) and next_input_bit(). 285 * 286 * However, as long as next_input_bit is returning the bits in a sensible 287 * order, we can actually do the merging 8 or more bits at a time rather 288 * than one bit at a time: 289 * for (i = 0; i < input_bytes; i++) { 290 * remainder ^= next_input_byte() << 24; 291 * for (j = 0; j < 8; j++) { 292 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; 293 * remainder = (remainder << 1) ^ multiple; 294 * } 295 * } 296 * Or in little-endian: 297 * for (i = 0; i < input_bytes; i++) { 298 * remainder ^= next_input_byte(); 299 * for (j = 0; j < 8; j++) { 300 * multiple = (remainder & 1) ? CRCPOLY : 0; 301 * remainder = (remainder << 1) ^ multiple; 302 * } 303 * } 304 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit 305 * word at a time and increase the inner loop count to 32. 306 * 307 * You can also mix and match the two loop styles, for example doing the 308 * bulk of a message byte-at-a-time and adding bit-at-a-time processing 309 * for any fractional bytes at the end. 310 * 311 * The only remaining optimization is to the byte-at-a-time table method. 312 * Here, rather than just shifting one bit of the remainder to decide 313 * in the correct multiple to subtract, we can shift a byte at a time. 314 * This produces a 40-bit (rather than a 33-bit) intermediate remainder, 315 * but again the multiple of the polynomial to subtract depends only on 316 * the high bits, the high 8 bits in this case. 317 * 318 * The multiple we need in that case is the low 32 bits of a 40-bit 319 * value whose high 8 bits are given, and which is a multiple of the 320 * generator polynomial. This is simply the CRC-32 of the given 321 * one-byte message. 322 * 323 * Two more details: normally, appending zero bits to a message which 324 * is already a multiple of a polynomial produces a larger multiple of that 325 * polynomial. To enable a CRC to detect this condition, it's common to 326 * invert the CRC before appending it. This makes the remainder of the 327 * message+crc come out not as zero, but some fixed non-zero value. 328 * 329 * The same problem applies to zero bits prepended to the message, and 330 * a similar solution is used. Instead of starting with a remainder of 331 * 0, an initial remainder of all ones is used. As long as you start 332 * the same way on decoding, it doesn't make a difference. 333 */ 334 335 #ifdef UNITTEST 336 337 #include <stdlib.h> 338 #include <stdio.h> 339 340 #if 0 /*Not used at present */ 341 static void 342 buf_dump(char const *prefix, unsigned char const *buf, size_t len) 343 { 344 fputs(prefix, stdout); 345 while (len--) 346 printf(" %02x", *buf++); 347 putchar('\n'); 348 349 } 350 #endif 351 352 static void bytereverse(unsigned char *buf, size_t len) 353 { 354 while (len--) { 355 unsigned char x = bitrev8(*buf); 356 *buf++ = x; 357 } 358 } 359 360 static void random_garbage(unsigned char *buf, size_t len) 361 { 362 while (len--) 363 *buf++ = (unsigned char) random(); 364 } 365 366 #if 0 /* Not used at present */ 367 static void store_le(u32 x, unsigned char *buf) 368 { 369 buf[0] = (unsigned char) x; 370 buf[1] = (unsigned char) (x >> 8); 371 buf[2] = (unsigned char) (x >> 16); 372 buf[3] = (unsigned char) (x >> 24); 373 } 374 #endif 375 376 static void store_be(u32 x, unsigned char *buf) 377 { 378 buf[0] = (unsigned char) (x >> 24); 379 buf[1] = (unsigned char) (x >> 16); 380 buf[2] = (unsigned char) (x >> 8); 381 buf[3] = (unsigned char) x; 382 } 383 384 /* 385 * This checks that CRC(buf + CRC(buf)) = 0, and that 386 * CRC commutes with bit-reversal. This has the side effect 387 * of bytewise bit-reversing the input buffer, and returns 388 * the CRC of the reversed buffer. 389 */ 390 static u32 test_step(u32 init, unsigned char *buf, size_t len) 391 { 392 u32 crc1, crc2; 393 size_t i; 394 395 crc1 = crc32_be(init, buf, len); 396 store_be(crc1, buf + len); 397 crc2 = crc32_be(init, buf, len + 4); 398 if (crc2) 399 printf("\nCRC cancellation fail: 0x%08x should be 0\n", 400 crc2); 401 402 for (i = 0; i <= len + 4; i++) { 403 crc2 = crc32_be(init, buf, i); 404 crc2 = crc32_be(crc2, buf + i, len + 4 - i); 405 if (crc2) 406 printf("\nCRC split fail: 0x%08x\n", crc2); 407 } 408 409 /* Now swap it around for the other test */ 410 411 bytereverse(buf, len + 4); 412 init = bitrev32(init); 413 crc2 = bitrev32(crc1); 414 if (crc1 != bitrev32(crc2)) 415 printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", 416 crc1, crc2, bitrev32(crc2)); 417 crc1 = crc32_le(init, buf, len); 418 if (crc1 != crc2) 419 printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, 420 crc2); 421 crc2 = crc32_le(init, buf, len + 4); 422 if (crc2) 423 printf("\nCRC cancellation fail: 0x%08x should be 0\n", 424 crc2); 425 426 for (i = 0; i <= len + 4; i++) { 427 crc2 = crc32_le(init, buf, i); 428 crc2 = crc32_le(crc2, buf + i, len + 4 - i); 429 if (crc2) 430 printf("\nCRC split fail: 0x%08x\n", crc2); 431 } 432 433 return crc1; 434 } 435 436 #define SIZE 64 437 #define INIT1 0 438 #define INIT2 0 439 440 int main(void) 441 { 442 unsigned char buf1[SIZE + 4]; 443 unsigned char buf2[SIZE + 4]; 444 unsigned char buf3[SIZE + 4]; 445 int i, j; 446 u32 crc1, crc2, crc3; 447 448 for (i = 0; i <= SIZE; i++) { 449 printf("\rTesting length %d...", i); 450 fflush(stdout); 451 random_garbage(buf1, i); 452 random_garbage(buf2, i); 453 for (j = 0; j < i; j++) 454 buf3[j] = buf1[j] ^ buf2[j]; 455 456 crc1 = test_step(INIT1, buf1, i); 457 crc2 = test_step(INIT2, buf2, i); 458 /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ 459 crc3 = test_step(INIT1 ^ INIT2, buf3, i); 460 if (crc3 != (crc1 ^ crc2)) 461 printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", 462 crc3, crc1, crc2); 463 } 464 printf("\nAll test complete. No failures expected.\n"); 465 return 0; 466 } 467 468 #endif /* UNITTEST */ 469