xref: /openbmc/linux/lib/crc32.c (revision 1da177e4)
1 /*
2  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
4  * Code was from the public domain, copyright abandoned.  Code was
5  * subsequently included in the kernel, thus was re-licensed under the
6  * GNU GPL v2.
7  *
8  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9  * Same crc32 function was used in 5 other places in the kernel.
10  * I made one version, and deleted the others.
11  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
12  * Some xor at the end with ~0.  The generic crc32() function takes
13  * seed as an argument, and doesn't xor at the end.  Then individual
14  * users can do whatever they need.
15  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
17  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
18  *
19  * This source code is licensed under the GNU General Public License,
20  * Version 2.  See the file COPYING for more details.
21  */
22 
23 #include <linux/crc32.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/compiler.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/init.h>
30 #include <asm/atomic.h>
31 #include "crc32defs.h"
32 #if CRC_LE_BITS == 8
33 #define tole(x) __constant_cpu_to_le32(x)
34 #define tobe(x) __constant_cpu_to_be32(x)
35 #else
36 #define tole(x) (x)
37 #define tobe(x) (x)
38 #endif
39 #include "crc32table.h"
40 
41 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
42 MODULE_DESCRIPTION("Ethernet CRC32 calculations");
43 MODULE_LICENSE("GPL");
44 
45 #if CRC_LE_BITS == 1
46 /*
47  * In fact, the table-based code will work in this case, but it can be
48  * simplified by inlining the table in ?: form.
49  */
50 
51 /**
52  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
53  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
54  *        other uses, or the previous crc32 value if computing incrementally.
55  * @p   - pointer to buffer over which CRC is run
56  * @len - length of buffer @p
57  *
58  */
59 u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
60 {
61 	int i;
62 	while (len--) {
63 		crc ^= *p++;
64 		for (i = 0; i < 8; i++)
65 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
66 	}
67 	return crc;
68 }
69 #else				/* Table-based approach */
70 
71 /**
72  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
73  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
74  *        other uses, or the previous crc32 value if computing incrementally.
75  * @p   - pointer to buffer over which CRC is run
76  * @len - length of buffer @p
77  *
78  */
79 u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
80 {
81 # if CRC_LE_BITS == 8
82 	const u32      *b =(u32 *)p;
83 	const u32      *tab = crc32table_le;
84 
85 # ifdef __LITTLE_ENDIAN
86 #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
87 # else
88 #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
89 # endif
90 
91 	crc = __cpu_to_le32(crc);
92 	/* Align it */
93 	if(unlikely(((long)b)&3 && len)){
94 		do {
95 			u8 *p = (u8 *)b;
96 			DO_CRC(*p++);
97 			b = (void *)p;
98 		} while ((--len) && ((long)b)&3 );
99 	}
100 	if(likely(len >= 4)){
101 		/* load data 32 bits wide, xor data 32 bits wide. */
102 		size_t save_len = len & 3;
103 	        len = len >> 2;
104 		--b; /* use pre increment below(*++b) for speed */
105 		do {
106 			crc ^= *++b;
107 			DO_CRC(0);
108 			DO_CRC(0);
109 			DO_CRC(0);
110 			DO_CRC(0);
111 		} while (--len);
112 		b++; /* point to next byte(s) */
113 		len = save_len;
114 	}
115 	/* And the last few bytes */
116 	if(len){
117 		do {
118 			u8 *p = (u8 *)b;
119 			DO_CRC(*p++);
120 			b = (void *)p;
121 		} while (--len);
122 	}
123 
124 	return __le32_to_cpu(crc);
125 #undef ENDIAN_SHIFT
126 #undef DO_CRC
127 
128 # elif CRC_LE_BITS == 4
129 	while (len--) {
130 		crc ^= *p++;
131 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
132 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
133 	}
134 	return crc;
135 # elif CRC_LE_BITS == 2
136 	while (len--) {
137 		crc ^= *p++;
138 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
139 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
140 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
141 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
142 	}
143 	return crc;
144 # endif
145 }
146 #endif
147 
148 #if CRC_BE_BITS == 1
149 /*
150  * In fact, the table-based code will work in this case, but it can be
151  * simplified by inlining the table in ?: form.
152  */
153 
154 /**
155  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
156  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
157  *        other uses, or the previous crc32 value if computing incrementally.
158  * @p   - pointer to buffer over which CRC is run
159  * @len - length of buffer @p
160  *
161  */
162 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
163 {
164 	int i;
165 	while (len--) {
166 		crc ^= *p++ << 24;
167 		for (i = 0; i < 8; i++)
168 			crc =
169 			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
170 					  0);
171 	}
172 	return crc;
173 }
174 
175 #else				/* Table-based approach */
176 /**
177  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
178  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
179  *        other uses, or the previous crc32 value if computing incrementally.
180  * @p   - pointer to buffer over which CRC is run
181  * @len - length of buffer @p
182  *
183  */
184 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
185 {
186 # if CRC_BE_BITS == 8
187 	const u32      *b =(u32 *)p;
188 	const u32      *tab = crc32table_be;
189 
190 # ifdef __LITTLE_ENDIAN
191 #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
192 # else
193 #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
194 # endif
195 
196 	crc = __cpu_to_be32(crc);
197 	/* Align it */
198 	if(unlikely(((long)b)&3 && len)){
199 		do {
200 			u8 *p = (u8 *)b;
201 			DO_CRC(*p++);
202 			b = (u32 *)p;
203 		} while ((--len) && ((long)b)&3 );
204 	}
205 	if(likely(len >= 4)){
206 		/* load data 32 bits wide, xor data 32 bits wide. */
207 		size_t save_len = len & 3;
208 	        len = len >> 2;
209 		--b; /* use pre increment below(*++b) for speed */
210 		do {
211 			crc ^= *++b;
212 			DO_CRC(0);
213 			DO_CRC(0);
214 			DO_CRC(0);
215 			DO_CRC(0);
216 		} while (--len);
217 		b++; /* point to next byte(s) */
218 		len = save_len;
219 	}
220 	/* And the last few bytes */
221 	if(len){
222 		do {
223 			u8 *p = (u8 *)b;
224 			DO_CRC(*p++);
225 			b = (void *)p;
226 		} while (--len);
227 	}
228 	return __be32_to_cpu(crc);
229 #undef ENDIAN_SHIFT
230 #undef DO_CRC
231 
232 # elif CRC_BE_BITS == 4
233 	while (len--) {
234 		crc ^= *p++ << 24;
235 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
236 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
237 	}
238 	return crc;
239 # elif CRC_BE_BITS == 2
240 	while (len--) {
241 		crc ^= *p++ << 24;
242 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
243 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
244 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
245 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
246 	}
247 	return crc;
248 # endif
249 }
250 #endif
251 
252 u32 bitreverse(u32 x)
253 {
254 	x = (x >> 16) | (x << 16);
255 	x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00);
256 	x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0);
257 	x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc);
258 	x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa);
259 	return x;
260 }
261 
262 EXPORT_SYMBOL(crc32_le);
263 EXPORT_SYMBOL(crc32_be);
264 EXPORT_SYMBOL(bitreverse);
265 
266 /*
267  * A brief CRC tutorial.
268  *
269  * A CRC is a long-division remainder.  You add the CRC to the message,
270  * and the whole thing (message+CRC) is a multiple of the given
271  * CRC polynomial.  To check the CRC, you can either check that the
272  * CRC matches the recomputed value, *or* you can check that the
273  * remainder computed on the message+CRC is 0.  This latter approach
274  * is used by a lot of hardware implementations, and is why so many
275  * protocols put the end-of-frame flag after the CRC.
276  *
277  * It's actually the same long division you learned in school, except that
278  * - We're working in binary, so the digits are only 0 and 1, and
279  * - When dividing polynomials, there are no carries.  Rather than add and
280  *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
281  *   the difference between adding and subtracting.
282  *
283  * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
284  * 33 bits long, bit 32 is always going to be set, so usually the CRC
285  * is written in hex with the most significant bit omitted.  (If you're
286  * familiar with the IEEE 754 floating-point format, it's the same idea.)
287  *
288  * Note that a CRC is computed over a string of *bits*, so you have
289  * to decide on the endianness of the bits within each byte.  To get
290  * the best error-detecting properties, this should correspond to the
291  * order they're actually sent.  For example, standard RS-232 serial is
292  * little-endian; the most significant bit (sometimes used for parity)
293  * is sent last.  And when appending a CRC word to a message, you should
294  * do it in the right order, matching the endianness.
295  *
296  * Just like with ordinary division, the remainder is always smaller than
297  * the divisor (the CRC polynomial) you're dividing by.  Each step of the
298  * division, you take one more digit (bit) of the dividend and append it
299  * to the current remainder.  Then you figure out the appropriate multiple
300  * of the divisor to subtract to being the remainder back into range.
301  * In binary, it's easy - it has to be either 0 or 1, and to make the
302  * XOR cancel, it's just a copy of bit 32 of the remainder.
303  *
304  * When computing a CRC, we don't care about the quotient, so we can
305  * throw the quotient bit away, but subtract the appropriate multiple of
306  * the polynomial from the remainder and we're back to where we started,
307  * ready to process the next bit.
308  *
309  * A big-endian CRC written this way would be coded like:
310  * for (i = 0; i < input_bits; i++) {
311  * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0;
312  * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple;
313  * }
314  * Notice how, to get at bit 32 of the shifted remainder, we look
315  * at bit 31 of the remainder *before* shifting it.
316  *
317  * But also notice how the next_input_bit() bits we're shifting into
318  * the remainder don't actually affect any decision-making until
319  * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
320  * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
321  * the end, so we have to add 32 extra cycles shifting in zeros at the
322  * end of every message,
323  *
324  * So the standard trick is to rearrage merging in the next_input_bit()
325  * until the moment it's needed.  Then the first 32 cycles can be precomputed,
326  * and merging in the final 32 zero bits to make room for the CRC can be
327  * skipped entirely.
328  * This changes the code to:
329  * for (i = 0; i < input_bits; i++) {
330  *      remainder ^= next_input_bit() << 31;
331  * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
332  * 	remainder = (remainder << 1) ^ multiple;
333  * }
334  * With this optimization, the little-endian code is simpler:
335  * for (i = 0; i < input_bits; i++) {
336  *      remainder ^= next_input_bit();
337  * 	multiple = (remainder & 1) ? CRCPOLY : 0;
338  * 	remainder = (remainder >> 1) ^ multiple;
339  * }
340  *
341  * Note that the other details of endianness have been hidden in CRCPOLY
342  * (which must be bit-reversed) and next_input_bit().
343  *
344  * However, as long as next_input_bit is returning the bits in a sensible
345  * order, we can actually do the merging 8 or more bits at a time rather
346  * than one bit at a time:
347  * for (i = 0; i < input_bytes; i++) {
348  * 	remainder ^= next_input_byte() << 24;
349  * 	for (j = 0; j < 8; j++) {
350  * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
351  * 		remainder = (remainder << 1) ^ multiple;
352  * 	}
353  * }
354  * Or in little-endian:
355  * for (i = 0; i < input_bytes; i++) {
356  * 	remainder ^= next_input_byte();
357  * 	for (j = 0; j < 8; j++) {
358  * 		multiple = (remainder & 1) ? CRCPOLY : 0;
359  * 		remainder = (remainder << 1) ^ multiple;
360  * 	}
361  * }
362  * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
363  * word at a time and increase the inner loop count to 32.
364  *
365  * You can also mix and match the two loop styles, for example doing the
366  * bulk of a message byte-at-a-time and adding bit-at-a-time processing
367  * for any fractional bytes at the end.
368  *
369  * The only remaining optimization is to the byte-at-a-time table method.
370  * Here, rather than just shifting one bit of the remainder to decide
371  * in the correct multiple to subtract, we can shift a byte at a time.
372  * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
373  * but again the multiple of the polynomial to subtract depends only on
374  * the high bits, the high 8 bits in this case.
375  *
376  * The multile we need in that case is the low 32 bits of a 40-bit
377  * value whose high 8 bits are given, and which is a multiple of the
378  * generator polynomial.  This is simply the CRC-32 of the given
379  * one-byte message.
380  *
381  * Two more details: normally, appending zero bits to a message which
382  * is already a multiple of a polynomial produces a larger multiple of that
383  * polynomial.  To enable a CRC to detect this condition, it's common to
384  * invert the CRC before appending it.  This makes the remainder of the
385  * message+crc come out not as zero, but some fixed non-zero value.
386  *
387  * The same problem applies to zero bits prepended to the message, and
388  * a similar solution is used.  Instead of starting with a remainder of
389  * 0, an initial remainder of all ones is used.  As long as you start
390  * the same way on decoding, it doesn't make a difference.
391  */
392 
393 #ifdef UNITTEST
394 
395 #include <stdlib.h>
396 #include <stdio.h>
397 
398 #if 0				/*Not used at present */
399 static void
400 buf_dump(char const *prefix, unsigned char const *buf, size_t len)
401 {
402 	fputs(prefix, stdout);
403 	while (len--)
404 		printf(" %02x", *buf++);
405 	putchar('\n');
406 
407 }
408 #endif
409 
410 static void bytereverse(unsigned char *buf, size_t len)
411 {
412 	while (len--) {
413 		unsigned char x = *buf;
414 		x = (x >> 4) | (x << 4);
415 		x = (x >> 2 & 0x33) | (x << 2 & 0xcc);
416 		x = (x >> 1 & 0x55) | (x << 1 & 0xaa);
417 		*buf++ = x;
418 	}
419 }
420 
421 static void random_garbage(unsigned char *buf, size_t len)
422 {
423 	while (len--)
424 		*buf++ = (unsigned char) random();
425 }
426 
427 #if 0				/* Not used at present */
428 static void store_le(u32 x, unsigned char *buf)
429 {
430 	buf[0] = (unsigned char) x;
431 	buf[1] = (unsigned char) (x >> 8);
432 	buf[2] = (unsigned char) (x >> 16);
433 	buf[3] = (unsigned char) (x >> 24);
434 }
435 #endif
436 
437 static void store_be(u32 x, unsigned char *buf)
438 {
439 	buf[0] = (unsigned char) (x >> 24);
440 	buf[1] = (unsigned char) (x >> 16);
441 	buf[2] = (unsigned char) (x >> 8);
442 	buf[3] = (unsigned char) x;
443 }
444 
445 /*
446  * This checks that CRC(buf + CRC(buf)) = 0, and that
447  * CRC commutes with bit-reversal.  This has the side effect
448  * of bytewise bit-reversing the input buffer, and returns
449  * the CRC of the reversed buffer.
450  */
451 static u32 test_step(u32 init, unsigned char *buf, size_t len)
452 {
453 	u32 crc1, crc2;
454 	size_t i;
455 
456 	crc1 = crc32_be(init, buf, len);
457 	store_be(crc1, buf + len);
458 	crc2 = crc32_be(init, buf, len + 4);
459 	if (crc2)
460 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
461 		       crc2);
462 
463 	for (i = 0; i <= len + 4; i++) {
464 		crc2 = crc32_be(init, buf, i);
465 		crc2 = crc32_be(crc2, buf + i, len + 4 - i);
466 		if (crc2)
467 			printf("\nCRC split fail: 0x%08x\n", crc2);
468 	}
469 
470 	/* Now swap it around for the other test */
471 
472 	bytereverse(buf, len + 4);
473 	init = bitreverse(init);
474 	crc2 = bitreverse(crc1);
475 	if (crc1 != bitreverse(crc2))
476 		printf("\nBit reversal fail: 0x%08x -> %0x08x -> 0x%08x\n",
477 		       crc1, crc2, bitreverse(crc2));
478 	crc1 = crc32_le(init, buf, len);
479 	if (crc1 != crc2)
480 		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
481 		       crc2);
482 	crc2 = crc32_le(init, buf, len + 4);
483 	if (crc2)
484 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
485 		       crc2);
486 
487 	for (i = 0; i <= len + 4; i++) {
488 		crc2 = crc32_le(init, buf, i);
489 		crc2 = crc32_le(crc2, buf + i, len + 4 - i);
490 		if (crc2)
491 			printf("\nCRC split fail: 0x%08x\n", crc2);
492 	}
493 
494 	return crc1;
495 }
496 
497 #define SIZE 64
498 #define INIT1 0
499 #define INIT2 0
500 
501 int main(void)
502 {
503 	unsigned char buf1[SIZE + 4];
504 	unsigned char buf2[SIZE + 4];
505 	unsigned char buf3[SIZE + 4];
506 	int i, j;
507 	u32 crc1, crc2, crc3;
508 
509 	for (i = 0; i <= SIZE; i++) {
510 		printf("\rTesting length %d...", i);
511 		fflush(stdout);
512 		random_garbage(buf1, i);
513 		random_garbage(buf2, i);
514 		for (j = 0; j < i; j++)
515 			buf3[j] = buf1[j] ^ buf2[j];
516 
517 		crc1 = test_step(INIT1, buf1, i);
518 		crc2 = test_step(INIT2, buf2, i);
519 		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
520 		crc3 = test_step(INIT1 ^ INIT2, buf3, i);
521 		if (crc3 != (crc1 ^ crc2))
522 			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
523 			       crc3, crc1, crc2);
524 	}
525 	printf("\nAll test complete.  No failures expected.\n");
526 	return 0;
527 }
528 
529 #endif				/* UNITTEST */
530