xref: /openbmc/linux/lib/bitmap.c (revision fd589a8f)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40 
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43 	int k, lim = bits/BITS_PER_LONG;
44 	for (k = 0; k < lim; ++k)
45 		if (bitmap[k])
46 			return 0;
47 
48 	if (bits % BITS_PER_LONG)
49 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 			return 0;
51 
52 	return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55 
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58 	int k, lim = bits/BITS_PER_LONG;
59 	for (k = 0; k < lim; ++k)
60 		if (~bitmap[k])
61 			return 0;
62 
63 	if (bits % BITS_PER_LONG)
64 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 			return 0;
66 
67 	return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70 
71 int __bitmap_equal(const unsigned long *bitmap1,
72 		const unsigned long *bitmap2, int bits)
73 {
74 	int k, lim = bits/BITS_PER_LONG;
75 	for (k = 0; k < lim; ++k)
76 		if (bitmap1[k] != bitmap2[k])
77 			return 0;
78 
79 	if (bits % BITS_PER_LONG)
80 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 			return 0;
82 
83 	return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86 
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89 	int k, lim = bits/BITS_PER_LONG;
90 	for (k = 0; k < lim; ++k)
91 		dst[k] = ~src[k];
92 
93 	if (bits % BITS_PER_LONG)
94 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97 
98 /**
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst : destination bitmap
101  *   @src : source bitmap
102  *   @shift : shift by this many bits
103  *   @bits : bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110 			const unsigned long *src, int shift, int bits)
111 {
112 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 	unsigned long mask = (1UL << left) - 1;
115 	for (k = 0; off + k < lim; ++k) {
116 		unsigned long upper, lower;
117 
118 		/*
119 		 * If shift is not word aligned, take lower rem bits of
120 		 * word above and make them the top rem bits of result.
121 		 */
122 		if (!rem || off + k + 1 >= lim)
123 			upper = 0;
124 		else {
125 			upper = src[off + k + 1];
126 			if (off + k + 1 == lim - 1 && left)
127 				upper &= mask;
128 		}
129 		lower = src[off + k];
130 		if (left && off + k == lim - 1)
131 			lower &= mask;
132 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 		if (left && k == lim - 1)
134 			dst[k] &= mask;
135 	}
136 	if (off)
137 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140 
141 
142 /**
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst : destination bitmap
145  *   @src : source bitmap
146  *   @shift : shift by this many bits
147  *   @bits : bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153 
154 void __bitmap_shift_left(unsigned long *dst,
155 			const unsigned long *src, int shift, int bits)
156 {
157 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 	for (k = lim - off - 1; k >= 0; --k) {
160 		unsigned long upper, lower;
161 
162 		/*
163 		 * If shift is not word aligned, take upper rem bits of
164 		 * word below and make them the bottom rem bits of result.
165 		 */
166 		if (rem && k > 0)
167 			lower = src[k - 1];
168 		else
169 			lower = 0;
170 		upper = src[k];
171 		if (left && k == lim - 1)
172 			upper &= (1UL << left) - 1;
173 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174 		if (left && k + off == lim - 1)
175 			dst[k + off] &= (1UL << left) - 1;
176 	}
177 	if (off)
178 		memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181 
182 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, int bits)
184 {
185 	int k;
186 	int nr = BITS_TO_LONGS(bits);
187 	unsigned long result = 0;
188 
189 	for (k = 0; k < nr; k++)
190 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191 	return result != 0;
192 }
193 EXPORT_SYMBOL(__bitmap_and);
194 
195 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
196 				const unsigned long *bitmap2, int bits)
197 {
198 	int k;
199 	int nr = BITS_TO_LONGS(bits);
200 
201 	for (k = 0; k < nr; k++)
202 		dst[k] = bitmap1[k] | bitmap2[k];
203 }
204 EXPORT_SYMBOL(__bitmap_or);
205 
206 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
207 				const unsigned long *bitmap2, int bits)
208 {
209 	int k;
210 	int nr = BITS_TO_LONGS(bits);
211 
212 	for (k = 0; k < nr; k++)
213 		dst[k] = bitmap1[k] ^ bitmap2[k];
214 }
215 EXPORT_SYMBOL(__bitmap_xor);
216 
217 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
218 				const unsigned long *bitmap2, int bits)
219 {
220 	int k;
221 	int nr = BITS_TO_LONGS(bits);
222 	unsigned long result = 0;
223 
224 	for (k = 0; k < nr; k++)
225 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
226 	return result != 0;
227 }
228 EXPORT_SYMBOL(__bitmap_andnot);
229 
230 int __bitmap_intersects(const unsigned long *bitmap1,
231 				const unsigned long *bitmap2, int bits)
232 {
233 	int k, lim = bits/BITS_PER_LONG;
234 	for (k = 0; k < lim; ++k)
235 		if (bitmap1[k] & bitmap2[k])
236 			return 1;
237 
238 	if (bits % BITS_PER_LONG)
239 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
240 			return 1;
241 	return 0;
242 }
243 EXPORT_SYMBOL(__bitmap_intersects);
244 
245 int __bitmap_subset(const unsigned long *bitmap1,
246 				const unsigned long *bitmap2, int bits)
247 {
248 	int k, lim = bits/BITS_PER_LONG;
249 	for (k = 0; k < lim; ++k)
250 		if (bitmap1[k] & ~bitmap2[k])
251 			return 0;
252 
253 	if (bits % BITS_PER_LONG)
254 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
255 			return 0;
256 	return 1;
257 }
258 EXPORT_SYMBOL(__bitmap_subset);
259 
260 int __bitmap_weight(const unsigned long *bitmap, int bits)
261 {
262 	int k, w = 0, lim = bits/BITS_PER_LONG;
263 
264 	for (k = 0; k < lim; k++)
265 		w += hweight_long(bitmap[k]);
266 
267 	if (bits % BITS_PER_LONG)
268 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
269 
270 	return w;
271 }
272 EXPORT_SYMBOL(__bitmap_weight);
273 
274 /*
275  * Bitmap printing & parsing functions: first version by Bill Irwin,
276  * second version by Paul Jackson, third by Joe Korty.
277  */
278 
279 #define CHUNKSZ				32
280 #define nbits_to_hold_value(val)	fls(val)
281 #define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
282 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
283 
284 /**
285  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
286  * @buf: byte buffer into which string is placed
287  * @buflen: reserved size of @buf, in bytes
288  * @maskp: pointer to bitmap to convert
289  * @nmaskbits: size of bitmap, in bits
290  *
291  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
292  * comma-separated sets of eight digits per set.
293  */
294 int bitmap_scnprintf(char *buf, unsigned int buflen,
295 	const unsigned long *maskp, int nmaskbits)
296 {
297 	int i, word, bit, len = 0;
298 	unsigned long val;
299 	const char *sep = "";
300 	int chunksz;
301 	u32 chunkmask;
302 
303 	chunksz = nmaskbits & (CHUNKSZ - 1);
304 	if (chunksz == 0)
305 		chunksz = CHUNKSZ;
306 
307 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
308 	for (; i >= 0; i -= CHUNKSZ) {
309 		chunkmask = ((1ULL << chunksz) - 1);
310 		word = i / BITS_PER_LONG;
311 		bit = i % BITS_PER_LONG;
312 		val = (maskp[word] >> bit) & chunkmask;
313 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
314 			(chunksz+3)/4, val);
315 		chunksz = CHUNKSZ;
316 		sep = ",";
317 	}
318 	return len;
319 }
320 EXPORT_SYMBOL(bitmap_scnprintf);
321 
322 /**
323  * __bitmap_parse - convert an ASCII hex string into a bitmap.
324  * @buf: pointer to buffer containing string.
325  * @buflen: buffer size in bytes.  If string is smaller than this
326  *    then it must be terminated with a \0.
327  * @is_user: location of buffer, 0 indicates kernel space
328  * @maskp: pointer to bitmap array that will contain result.
329  * @nmaskbits: size of bitmap, in bits.
330  *
331  * Commas group hex digits into chunks.  Each chunk defines exactly 32
332  * bits of the resultant bitmask.  No chunk may specify a value larger
333  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
334  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
335  * characters and for grouping errors such as "1,,5", ",44", "," and "".
336  * Leading and trailing whitespace accepted, but not embedded whitespace.
337  */
338 int __bitmap_parse(const char *buf, unsigned int buflen,
339 		int is_user, unsigned long *maskp,
340 		int nmaskbits)
341 {
342 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
343 	u32 chunk;
344 	const char __user *ubuf = buf;
345 
346 	bitmap_zero(maskp, nmaskbits);
347 
348 	nchunks = nbits = totaldigits = c = 0;
349 	do {
350 		chunk = ndigits = 0;
351 
352 		/* Get the next chunk of the bitmap */
353 		while (buflen) {
354 			old_c = c;
355 			if (is_user) {
356 				if (__get_user(c, ubuf++))
357 					return -EFAULT;
358 			}
359 			else
360 				c = *buf++;
361 			buflen--;
362 			if (isspace(c))
363 				continue;
364 
365 			/*
366 			 * If the last character was a space and the current
367 			 * character isn't '\0', we've got embedded whitespace.
368 			 * This is a no-no, so throw an error.
369 			 */
370 			if (totaldigits && c && isspace(old_c))
371 				return -EINVAL;
372 
373 			/* A '\0' or a ',' signal the end of the chunk */
374 			if (c == '\0' || c == ',')
375 				break;
376 
377 			if (!isxdigit(c))
378 				return -EINVAL;
379 
380 			/*
381 			 * Make sure there are at least 4 free bits in 'chunk'.
382 			 * If not, this hexdigit will overflow 'chunk', so
383 			 * throw an error.
384 			 */
385 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
386 				return -EOVERFLOW;
387 
388 			chunk = (chunk << 4) | unhex(c);
389 			ndigits++; totaldigits++;
390 		}
391 		if (ndigits == 0)
392 			return -EINVAL;
393 		if (nchunks == 0 && chunk == 0)
394 			continue;
395 
396 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
397 		*maskp |= chunk;
398 		nchunks++;
399 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
400 		if (nbits > nmaskbits)
401 			return -EOVERFLOW;
402 	} while (buflen && c == ',');
403 
404 	return 0;
405 }
406 EXPORT_SYMBOL(__bitmap_parse);
407 
408 /**
409  * bitmap_parse_user()
410  *
411  * @ubuf: pointer to user buffer containing string.
412  * @ulen: buffer size in bytes.  If string is smaller than this
413  *    then it must be terminated with a \0.
414  * @maskp: pointer to bitmap array that will contain result.
415  * @nmaskbits: size of bitmap, in bits.
416  *
417  * Wrapper for __bitmap_parse(), providing it with user buffer.
418  *
419  * We cannot have this as an inline function in bitmap.h because it needs
420  * linux/uaccess.h to get the access_ok() declaration and this causes
421  * cyclic dependencies.
422  */
423 int bitmap_parse_user(const char __user *ubuf,
424 			unsigned int ulen, unsigned long *maskp,
425 			int nmaskbits)
426 {
427 	if (!access_ok(VERIFY_READ, ubuf, ulen))
428 		return -EFAULT;
429 	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
430 }
431 EXPORT_SYMBOL(bitmap_parse_user);
432 
433 /*
434  * bscnl_emit(buf, buflen, rbot, rtop, bp)
435  *
436  * Helper routine for bitmap_scnlistprintf().  Write decimal number
437  * or range to buf, suppressing output past buf+buflen, with optional
438  * comma-prefix.  Return len of what would be written to buf, if it
439  * all fit.
440  */
441 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
442 {
443 	if (len > 0)
444 		len += scnprintf(buf + len, buflen - len, ",");
445 	if (rbot == rtop)
446 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
447 	else
448 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
449 	return len;
450 }
451 
452 /**
453  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
454  * @buf: byte buffer into which string is placed
455  * @buflen: reserved size of @buf, in bytes
456  * @maskp: pointer to bitmap to convert
457  * @nmaskbits: size of bitmap, in bits
458  *
459  * Output format is a comma-separated list of decimal numbers and
460  * ranges.  Consecutively set bits are shown as two hyphen-separated
461  * decimal numbers, the smallest and largest bit numbers set in
462  * the range.  Output format is compatible with the format
463  * accepted as input by bitmap_parselist().
464  *
465  * The return value is the number of characters which would be
466  * generated for the given input, excluding the trailing '\0', as
467  * per ISO C99.
468  */
469 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
470 	const unsigned long *maskp, int nmaskbits)
471 {
472 	int len = 0;
473 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
474 	int cur, rbot, rtop;
475 
476 	if (buflen == 0)
477 		return 0;
478 	buf[0] = 0;
479 
480 	rbot = cur = find_first_bit(maskp, nmaskbits);
481 	while (cur < nmaskbits) {
482 		rtop = cur;
483 		cur = find_next_bit(maskp, nmaskbits, cur+1);
484 		if (cur >= nmaskbits || cur > rtop + 1) {
485 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
486 			rbot = cur;
487 		}
488 	}
489 	return len;
490 }
491 EXPORT_SYMBOL(bitmap_scnlistprintf);
492 
493 /**
494  * bitmap_parselist - convert list format ASCII string to bitmap
495  * @bp: read nul-terminated user string from this buffer
496  * @maskp: write resulting mask here
497  * @nmaskbits: number of bits in mask to be written
498  *
499  * Input format is a comma-separated list of decimal numbers and
500  * ranges.  Consecutively set bits are shown as two hyphen-separated
501  * decimal numbers, the smallest and largest bit numbers set in
502  * the range.
503  *
504  * Returns 0 on success, -errno on invalid input strings.
505  * Error values:
506  *    %-EINVAL: second number in range smaller than first
507  *    %-EINVAL: invalid character in string
508  *    %-ERANGE: bit number specified too large for mask
509  */
510 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
511 {
512 	unsigned a, b;
513 
514 	bitmap_zero(maskp, nmaskbits);
515 	do {
516 		if (!isdigit(*bp))
517 			return -EINVAL;
518 		b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
519 		if (*bp == '-') {
520 			bp++;
521 			if (!isdigit(*bp))
522 				return -EINVAL;
523 			b = simple_strtoul(bp, (char **)&bp, BASEDEC);
524 		}
525 		if (!(a <= b))
526 			return -EINVAL;
527 		if (b >= nmaskbits)
528 			return -ERANGE;
529 		while (a <= b) {
530 			set_bit(a, maskp);
531 			a++;
532 		}
533 		if (*bp == ',')
534 			bp++;
535 	} while (*bp != '\0' && *bp != '\n');
536 	return 0;
537 }
538 EXPORT_SYMBOL(bitmap_parselist);
539 
540 /**
541  * bitmap_pos_to_ord(buf, pos, bits)
542  *	@buf: pointer to a bitmap
543  *	@pos: a bit position in @buf (0 <= @pos < @bits)
544  *	@bits: number of valid bit positions in @buf
545  *
546  * Map the bit at position @pos in @buf (of length @bits) to the
547  * ordinal of which set bit it is.  If it is not set or if @pos
548  * is not a valid bit position, map to -1.
549  *
550  * If for example, just bits 4 through 7 are set in @buf, then @pos
551  * values 4 through 7 will get mapped to 0 through 3, respectively,
552  * and other @pos values will get mapped to 0.  When @pos value 7
553  * gets mapped to (returns) @ord value 3 in this example, that means
554  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
555  *
556  * The bit positions 0 through @bits are valid positions in @buf.
557  */
558 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
559 {
560 	int i, ord;
561 
562 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
563 		return -1;
564 
565 	i = find_first_bit(buf, bits);
566 	ord = 0;
567 	while (i < pos) {
568 		i = find_next_bit(buf, bits, i + 1);
569 	     	ord++;
570 	}
571 	BUG_ON(i != pos);
572 
573 	return ord;
574 }
575 
576 /**
577  * bitmap_ord_to_pos(buf, ord, bits)
578  *	@buf: pointer to bitmap
579  *	@ord: ordinal bit position (n-th set bit, n >= 0)
580  *	@bits: number of valid bit positions in @buf
581  *
582  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
583  * Value of @ord should be in range 0 <= @ord < weight(buf), else
584  * results are undefined.
585  *
586  * If for example, just bits 4 through 7 are set in @buf, then @ord
587  * values 0 through 3 will get mapped to 4 through 7, respectively,
588  * and all other @ord values return undefined values.  When @ord value 3
589  * gets mapped to (returns) @pos value 7 in this example, that means
590  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
591  *
592  * The bit positions 0 through @bits are valid positions in @buf.
593  */
594 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
595 {
596 	int pos = 0;
597 
598 	if (ord >= 0 && ord < bits) {
599 		int i;
600 
601 		for (i = find_first_bit(buf, bits);
602 		     i < bits && ord > 0;
603 		     i = find_next_bit(buf, bits, i + 1))
604 	     		ord--;
605 		if (i < bits && ord == 0)
606 			pos = i;
607 	}
608 
609 	return pos;
610 }
611 
612 /**
613  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
614  *	@dst: remapped result
615  *	@src: subset to be remapped
616  *	@old: defines domain of map
617  *	@new: defines range of map
618  *	@bits: number of bits in each of these bitmaps
619  *
620  * Let @old and @new define a mapping of bit positions, such that
621  * whatever position is held by the n-th set bit in @old is mapped
622  * to the n-th set bit in @new.  In the more general case, allowing
623  * for the possibility that the weight 'w' of @new is less than the
624  * weight of @old, map the position of the n-th set bit in @old to
625  * the position of the m-th set bit in @new, where m == n % w.
626  *
627  * If either of the @old and @new bitmaps are empty, or if @src and
628  * @dst point to the same location, then this routine copies @src
629  * to @dst.
630  *
631  * The positions of unset bits in @old are mapped to themselves
632  * (the identify map).
633  *
634  * Apply the above specified mapping to @src, placing the result in
635  * @dst, clearing any bits previously set in @dst.
636  *
637  * For example, lets say that @old has bits 4 through 7 set, and
638  * @new has bits 12 through 15 set.  This defines the mapping of bit
639  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
640  * bit positions unchanged.  So if say @src comes into this routine
641  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
642  * 13 and 15 set.
643  */
644 void bitmap_remap(unsigned long *dst, const unsigned long *src,
645 		const unsigned long *old, const unsigned long *new,
646 		int bits)
647 {
648 	int oldbit, w;
649 
650 	if (dst == src)		/* following doesn't handle inplace remaps */
651 		return;
652 	bitmap_zero(dst, bits);
653 
654 	w = bitmap_weight(new, bits);
655 	for (oldbit = find_first_bit(src, bits);
656 	     oldbit < bits;
657 	     oldbit = find_next_bit(src, bits, oldbit + 1)) {
658 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
659 		if (n < 0 || w == 0)
660 			set_bit(oldbit, dst);	/* identity map */
661 		else
662 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
663 	}
664 }
665 EXPORT_SYMBOL(bitmap_remap);
666 
667 /**
668  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
669  *	@oldbit: bit position to be mapped
670  *	@old: defines domain of map
671  *	@new: defines range of map
672  *	@bits: number of bits in each of these bitmaps
673  *
674  * Let @old and @new define a mapping of bit positions, such that
675  * whatever position is held by the n-th set bit in @old is mapped
676  * to the n-th set bit in @new.  In the more general case, allowing
677  * for the possibility that the weight 'w' of @new is less than the
678  * weight of @old, map the position of the n-th set bit in @old to
679  * the position of the m-th set bit in @new, where m == n % w.
680  *
681  * The positions of unset bits in @old are mapped to themselves
682  * (the identify map).
683  *
684  * Apply the above specified mapping to bit position @oldbit, returning
685  * the new bit position.
686  *
687  * For example, lets say that @old has bits 4 through 7 set, and
688  * @new has bits 12 through 15 set.  This defines the mapping of bit
689  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
690  * bit positions unchanged.  So if say @oldbit is 5, then this routine
691  * returns 13.
692  */
693 int bitmap_bitremap(int oldbit, const unsigned long *old,
694 				const unsigned long *new, int bits)
695 {
696 	int w = bitmap_weight(new, bits);
697 	int n = bitmap_pos_to_ord(old, oldbit, bits);
698 	if (n < 0 || w == 0)
699 		return oldbit;
700 	else
701 		return bitmap_ord_to_pos(new, n % w, bits);
702 }
703 EXPORT_SYMBOL(bitmap_bitremap);
704 
705 /**
706  * bitmap_onto - translate one bitmap relative to another
707  *	@dst: resulting translated bitmap
708  * 	@orig: original untranslated bitmap
709  * 	@relmap: bitmap relative to which translated
710  *	@bits: number of bits in each of these bitmaps
711  *
712  * Set the n-th bit of @dst iff there exists some m such that the
713  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
714  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
715  * (If you understood the previous sentence the first time your
716  * read it, you're overqualified for your current job.)
717  *
718  * In other words, @orig is mapped onto (surjectively) @dst,
719  * using the the map { <n, m> | the n-th bit of @relmap is the
720  * m-th set bit of @relmap }.
721  *
722  * Any set bits in @orig above bit number W, where W is the
723  * weight of (number of set bits in) @relmap are mapped nowhere.
724  * In particular, if for all bits m set in @orig, m >= W, then
725  * @dst will end up empty.  In situations where the possibility
726  * of such an empty result is not desired, one way to avoid it is
727  * to use the bitmap_fold() operator, below, to first fold the
728  * @orig bitmap over itself so that all its set bits x are in the
729  * range 0 <= x < W.  The bitmap_fold() operator does this by
730  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
731  *
732  * Example [1] for bitmap_onto():
733  *  Let's say @relmap has bits 30-39 set, and @orig has bits
734  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
735  *  @dst will have bits 31, 33, 35, 37 and 39 set.
736  *
737  *  When bit 0 is set in @orig, it means turn on the bit in
738  *  @dst corresponding to whatever is the first bit (if any)
739  *  that is turned on in @relmap.  Since bit 0 was off in the
740  *  above example, we leave off that bit (bit 30) in @dst.
741  *
742  *  When bit 1 is set in @orig (as in the above example), it
743  *  means turn on the bit in @dst corresponding to whatever
744  *  is the second bit that is turned on in @relmap.  The second
745  *  bit in @relmap that was turned on in the above example was
746  *  bit 31, so we turned on bit 31 in @dst.
747  *
748  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
749  *  because they were the 4th, 6th, 8th and 10th set bits
750  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
751  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
752  *
753  *  When bit 11 is set in @orig, it means turn on the bit in
754  *  @dst corresponding to whatever is the twelth bit that is
755  *  turned on in @relmap.  In the above example, there were
756  *  only ten bits turned on in @relmap (30..39), so that bit
757  *  11 was set in @orig had no affect on @dst.
758  *
759  * Example [2] for bitmap_fold() + bitmap_onto():
760  *  Let's say @relmap has these ten bits set:
761  *		40 41 42 43 45 48 53 61 74 95
762  *  (for the curious, that's 40 plus the first ten terms of the
763  *  Fibonacci sequence.)
764  *
765  *  Further lets say we use the following code, invoking
766  *  bitmap_fold() then bitmap_onto, as suggested above to
767  *  avoid the possitility of an empty @dst result:
768  *
769  *	unsigned long *tmp;	// a temporary bitmap's bits
770  *
771  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
772  *	bitmap_onto(dst, tmp, relmap, bits);
773  *
774  *  Then this table shows what various values of @dst would be, for
775  *  various @orig's.  I list the zero-based positions of each set bit.
776  *  The tmp column shows the intermediate result, as computed by
777  *  using bitmap_fold() to fold the @orig bitmap modulo ten
778  *  (the weight of @relmap).
779  *
780  *      @orig           tmp            @dst
781  *      0                0             40
782  *      1                1             41
783  *      9                9             95
784  *      10               0             40 (*)
785  *      1 3 5 7          1 3 5 7       41 43 48 61
786  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
787  *      0 9 18 27        0 9 8 7       40 61 74 95
788  *      0 10 20 30       0             40
789  *      0 11 22 33       0 1 2 3       40 41 42 43
790  *      0 12 24 36       0 2 4 6       40 42 45 53
791  *      78 102 211       1 2 8         41 42 74 (*)
792  *
793  * (*) For these marked lines, if we hadn't first done bitmap_fold()
794  *     into tmp, then the @dst result would have been empty.
795  *
796  * If either of @orig or @relmap is empty (no set bits), then @dst
797  * will be returned empty.
798  *
799  * If (as explained above) the only set bits in @orig are in positions
800  * m where m >= W, (where W is the weight of @relmap) then @dst will
801  * once again be returned empty.
802  *
803  * All bits in @dst not set by the above rule are cleared.
804  */
805 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
806 			const unsigned long *relmap, int bits)
807 {
808 	int n, m;       	/* same meaning as in above comment */
809 
810 	if (dst == orig)	/* following doesn't handle inplace mappings */
811 		return;
812 	bitmap_zero(dst, bits);
813 
814 	/*
815 	 * The following code is a more efficient, but less
816 	 * obvious, equivalent to the loop:
817 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
818 	 *		n = bitmap_ord_to_pos(orig, m, bits);
819 	 *		if (test_bit(m, orig))
820 	 *			set_bit(n, dst);
821 	 *	}
822 	 */
823 
824 	m = 0;
825 	for (n = find_first_bit(relmap, bits);
826 	     n < bits;
827 	     n = find_next_bit(relmap, bits, n + 1)) {
828 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
829 		if (test_bit(m, orig))
830 			set_bit(n, dst);
831 		m++;
832 	}
833 }
834 EXPORT_SYMBOL(bitmap_onto);
835 
836 /**
837  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
838  *	@dst: resulting smaller bitmap
839  *	@orig: original larger bitmap
840  *	@sz: specified size
841  *	@bits: number of bits in each of these bitmaps
842  *
843  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
844  * Clear all other bits in @dst.  See further the comment and
845  * Example [2] for bitmap_onto() for why and how to use this.
846  */
847 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
848 			int sz, int bits)
849 {
850 	int oldbit;
851 
852 	if (dst == orig)	/* following doesn't handle inplace mappings */
853 		return;
854 	bitmap_zero(dst, bits);
855 
856 	for (oldbit = find_first_bit(orig, bits);
857 	     oldbit < bits;
858 	     oldbit = find_next_bit(orig, bits, oldbit + 1))
859 		set_bit(oldbit % sz, dst);
860 }
861 EXPORT_SYMBOL(bitmap_fold);
862 
863 /*
864  * Common code for bitmap_*_region() routines.
865  *	bitmap: array of unsigned longs corresponding to the bitmap
866  *	pos: the beginning of the region
867  *	order: region size (log base 2 of number of bits)
868  *	reg_op: operation(s) to perform on that region of bitmap
869  *
870  * Can set, verify and/or release a region of bits in a bitmap,
871  * depending on which combination of REG_OP_* flag bits is set.
872  *
873  * A region of a bitmap is a sequence of bits in the bitmap, of
874  * some size '1 << order' (a power of two), aligned to that same
875  * '1 << order' power of two.
876  *
877  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
878  * Returns 0 in all other cases and reg_ops.
879  */
880 
881 enum {
882 	REG_OP_ISFREE,		/* true if region is all zero bits */
883 	REG_OP_ALLOC,		/* set all bits in region */
884 	REG_OP_RELEASE,		/* clear all bits in region */
885 };
886 
887 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
888 {
889 	int nbits_reg;		/* number of bits in region */
890 	int index;		/* index first long of region in bitmap */
891 	int offset;		/* bit offset region in bitmap[index] */
892 	int nlongs_reg;		/* num longs spanned by region in bitmap */
893 	int nbitsinlong;	/* num bits of region in each spanned long */
894 	unsigned long mask;	/* bitmask for one long of region */
895 	int i;			/* scans bitmap by longs */
896 	int ret = 0;		/* return value */
897 
898 	/*
899 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
900 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
901 	 */
902 	nbits_reg = 1 << order;
903 	index = pos / BITS_PER_LONG;
904 	offset = pos - (index * BITS_PER_LONG);
905 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
906 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
907 
908 	/*
909 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
910 	 * overflows if nbitsinlong == BITS_PER_LONG.
911 	 */
912 	mask = (1UL << (nbitsinlong - 1));
913 	mask += mask - 1;
914 	mask <<= offset;
915 
916 	switch (reg_op) {
917 	case REG_OP_ISFREE:
918 		for (i = 0; i < nlongs_reg; i++) {
919 			if (bitmap[index + i] & mask)
920 				goto done;
921 		}
922 		ret = 1;	/* all bits in region free (zero) */
923 		break;
924 
925 	case REG_OP_ALLOC:
926 		for (i = 0; i < nlongs_reg; i++)
927 			bitmap[index + i] |= mask;
928 		break;
929 
930 	case REG_OP_RELEASE:
931 		for (i = 0; i < nlongs_reg; i++)
932 			bitmap[index + i] &= ~mask;
933 		break;
934 	}
935 done:
936 	return ret;
937 }
938 
939 /**
940  * bitmap_find_free_region - find a contiguous aligned mem region
941  *	@bitmap: array of unsigned longs corresponding to the bitmap
942  *	@bits: number of bits in the bitmap
943  *	@order: region size (log base 2 of number of bits) to find
944  *
945  * Find a region of free (zero) bits in a @bitmap of @bits bits and
946  * allocate them (set them to one).  Only consider regions of length
947  * a power (@order) of two, aligned to that power of two, which
948  * makes the search algorithm much faster.
949  *
950  * Return the bit offset in bitmap of the allocated region,
951  * or -errno on failure.
952  */
953 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
954 {
955 	int pos, end;		/* scans bitmap by regions of size order */
956 
957 	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
958 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
959 			continue;
960 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
961 		return pos;
962 	}
963 	return -ENOMEM;
964 }
965 EXPORT_SYMBOL(bitmap_find_free_region);
966 
967 /**
968  * bitmap_release_region - release allocated bitmap region
969  *	@bitmap: array of unsigned longs corresponding to the bitmap
970  *	@pos: beginning of bit region to release
971  *	@order: region size (log base 2 of number of bits) to release
972  *
973  * This is the complement to __bitmap_find_free_region() and releases
974  * the found region (by clearing it in the bitmap).
975  *
976  * No return value.
977  */
978 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
979 {
980 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
981 }
982 EXPORT_SYMBOL(bitmap_release_region);
983 
984 /**
985  * bitmap_allocate_region - allocate bitmap region
986  *	@bitmap: array of unsigned longs corresponding to the bitmap
987  *	@pos: beginning of bit region to allocate
988  *	@order: region size (log base 2 of number of bits) to allocate
989  *
990  * Allocate (set bits in) a specified region of a bitmap.
991  *
992  * Return 0 on success, or %-EBUSY if specified region wasn't
993  * free (not all bits were zero).
994  */
995 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
996 {
997 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
998 		return -EBUSY;
999 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL(bitmap_allocate_region);
1003 
1004 /**
1005  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1006  * @dst:   destination buffer
1007  * @src:   bitmap to copy
1008  * @nbits: number of bits in the bitmap
1009  *
1010  * Require nbits % BITS_PER_LONG == 0.
1011  */
1012 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1013 {
1014 	unsigned long *d = dst;
1015 	int i;
1016 
1017 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1018 		if (BITS_PER_LONG == 64)
1019 			d[i] = cpu_to_le64(src[i]);
1020 		else
1021 			d[i] = cpu_to_le32(src[i]);
1022 	}
1023 }
1024 EXPORT_SYMBOL(bitmap_copy_le);
1025