1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 9 #include <linux/bug.h> 10 #include <linux/ctype.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/export.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/thread_info.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/page.h> 22 23 #include "kstrtox.h" 24 25 /** 26 * DOC: bitmap introduction 27 * 28 * bitmaps provide an array of bits, implemented using an 29 * array of unsigned longs. The number of valid bits in a 30 * given bitmap does _not_ need to be an exact multiple of 31 * BITS_PER_LONG. 32 * 33 * The possible unused bits in the last, partially used word 34 * of a bitmap are 'don't care'. The implementation makes 35 * no particular effort to keep them zero. It ensures that 36 * their value will not affect the results of any operation. 37 * The bitmap operations that return Boolean (bitmap_empty, 38 * for example) or scalar (bitmap_weight, for example) results 39 * carefully filter out these unused bits from impacting their 40 * results. 41 * 42 * The byte ordering of bitmaps is more natural on little 43 * endian architectures. See the big-endian headers 44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 45 * for the best explanations of this ordering. 46 */ 47 48 bool __bitmap_equal(const unsigned long *bitmap1, 49 const unsigned long *bitmap2, unsigned int bits) 50 { 51 unsigned int k, lim = bits/BITS_PER_LONG; 52 for (k = 0; k < lim; ++k) 53 if (bitmap1[k] != bitmap2[k]) 54 return false; 55 56 if (bits % BITS_PER_LONG) 57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 58 return false; 59 60 return true; 61 } 62 EXPORT_SYMBOL(__bitmap_equal); 63 64 bool __bitmap_or_equal(const unsigned long *bitmap1, 65 const unsigned long *bitmap2, 66 const unsigned long *bitmap3, 67 unsigned int bits) 68 { 69 unsigned int k, lim = bits / BITS_PER_LONG; 70 unsigned long tmp; 71 72 for (k = 0; k < lim; ++k) { 73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 74 return false; 75 } 76 77 if (!(bits % BITS_PER_LONG)) 78 return true; 79 80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 82 } 83 84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 85 { 86 unsigned int k, lim = BITS_TO_LONGS(bits); 87 for (k = 0; k < lim; ++k) 88 dst[k] = ~src[k]; 89 } 90 EXPORT_SYMBOL(__bitmap_complement); 91 92 /** 93 * __bitmap_shift_right - logical right shift of the bits in a bitmap 94 * @dst : destination bitmap 95 * @src : source bitmap 96 * @shift : shift by this many bits 97 * @nbits : bitmap size, in bits 98 * 99 * Shifting right (dividing) means moving bits in the MS -> LS bit 100 * direction. Zeros are fed into the vacated MS positions and the 101 * LS bits shifted off the bottom are lost. 102 */ 103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 104 unsigned shift, unsigned nbits) 105 { 106 unsigned k, lim = BITS_TO_LONGS(nbits); 107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 109 for (k = 0; off + k < lim; ++k) { 110 unsigned long upper, lower; 111 112 /* 113 * If shift is not word aligned, take lower rem bits of 114 * word above and make them the top rem bits of result. 115 */ 116 if (!rem || off + k + 1 >= lim) 117 upper = 0; 118 else { 119 upper = src[off + k + 1]; 120 if (off + k + 1 == lim - 1) 121 upper &= mask; 122 upper <<= (BITS_PER_LONG - rem); 123 } 124 lower = src[off + k]; 125 if (off + k == lim - 1) 126 lower &= mask; 127 lower >>= rem; 128 dst[k] = lower | upper; 129 } 130 if (off) 131 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 132 } 133 EXPORT_SYMBOL(__bitmap_shift_right); 134 135 136 /** 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap 138 * @dst : destination bitmap 139 * @src : source bitmap 140 * @shift : shift by this many bits 141 * @nbits : bitmap size, in bits 142 * 143 * Shifting left (multiplying) means moving bits in the LS -> MS 144 * direction. Zeros are fed into the vacated LS bit positions 145 * and those MS bits shifted off the top are lost. 146 */ 147 148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 149 unsigned int shift, unsigned int nbits) 150 { 151 int k; 152 unsigned int lim = BITS_TO_LONGS(nbits); 153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 154 for (k = lim - off - 1; k >= 0; --k) { 155 unsigned long upper, lower; 156 157 /* 158 * If shift is not word aligned, take upper rem bits of 159 * word below and make them the bottom rem bits of result. 160 */ 161 if (rem && k > 0) 162 lower = src[k - 1] >> (BITS_PER_LONG - rem); 163 else 164 lower = 0; 165 upper = src[k] << rem; 166 dst[k + off] = lower | upper; 167 } 168 if (off) 169 memset(dst, 0, off*sizeof(unsigned long)); 170 } 171 EXPORT_SYMBOL(__bitmap_shift_left); 172 173 /** 174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 175 * @dst: destination bitmap, might overlap with src 176 * @src: source bitmap 177 * @first: start bit of region to be removed 178 * @cut: number of bits to remove 179 * @nbits: bitmap size, in bits 180 * 181 * Set the n-th bit of @dst iff the n-th bit of @src is set and 182 * n is less than @first, or the m-th bit of @src is set for any 183 * m such that @first <= n < nbits, and m = n + @cut. 184 * 185 * In pictures, example for a big-endian 32-bit architecture: 186 * 187 * The @src bitmap is:: 188 * 189 * 31 63 190 * | | 191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 192 * | | | | 193 * 16 14 0 32 194 * 195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 196 * 197 * 31 63 198 * | | 199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 200 * | | | 201 * 14 (bit 17 0 32 202 * from @src) 203 * 204 * Note that @dst and @src might overlap partially or entirely. 205 * 206 * This is implemented in the obvious way, with a shift and carry 207 * step for each moved bit. Optimisation is left as an exercise 208 * for the compiler. 209 */ 210 void bitmap_cut(unsigned long *dst, const unsigned long *src, 211 unsigned int first, unsigned int cut, unsigned int nbits) 212 { 213 unsigned int len = BITS_TO_LONGS(nbits); 214 unsigned long keep = 0, carry; 215 int i; 216 217 if (first % BITS_PER_LONG) { 218 keep = src[first / BITS_PER_LONG] & 219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 220 } 221 222 memmove(dst, src, len * sizeof(*dst)); 223 224 while (cut--) { 225 for (i = first / BITS_PER_LONG; i < len; i++) { 226 if (i < len - 1) 227 carry = dst[i + 1] & 1UL; 228 else 229 carry = 0; 230 231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 232 } 233 } 234 235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 236 dst[first / BITS_PER_LONG] |= keep; 237 } 238 EXPORT_SYMBOL(bitmap_cut); 239 240 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 241 const unsigned long *bitmap2, unsigned int bits) 242 { 243 unsigned int k; 244 unsigned int lim = bits/BITS_PER_LONG; 245 unsigned long result = 0; 246 247 for (k = 0; k < lim; k++) 248 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 249 if (bits % BITS_PER_LONG) 250 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 251 BITMAP_LAST_WORD_MASK(bits)); 252 return result != 0; 253 } 254 EXPORT_SYMBOL(__bitmap_and); 255 256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 257 const unsigned long *bitmap2, unsigned int bits) 258 { 259 unsigned int k; 260 unsigned int nr = BITS_TO_LONGS(bits); 261 262 for (k = 0; k < nr; k++) 263 dst[k] = bitmap1[k] | bitmap2[k]; 264 } 265 EXPORT_SYMBOL(__bitmap_or); 266 267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 268 const unsigned long *bitmap2, unsigned int bits) 269 { 270 unsigned int k; 271 unsigned int nr = BITS_TO_LONGS(bits); 272 273 for (k = 0; k < nr; k++) 274 dst[k] = bitmap1[k] ^ bitmap2[k]; 275 } 276 EXPORT_SYMBOL(__bitmap_xor); 277 278 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 279 const unsigned long *bitmap2, unsigned int bits) 280 { 281 unsigned int k; 282 unsigned int lim = bits/BITS_PER_LONG; 283 unsigned long result = 0; 284 285 for (k = 0; k < lim; k++) 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 287 if (bits % BITS_PER_LONG) 288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 289 BITMAP_LAST_WORD_MASK(bits)); 290 return result != 0; 291 } 292 EXPORT_SYMBOL(__bitmap_andnot); 293 294 void __bitmap_replace(unsigned long *dst, 295 const unsigned long *old, const unsigned long *new, 296 const unsigned long *mask, unsigned int nbits) 297 { 298 unsigned int k; 299 unsigned int nr = BITS_TO_LONGS(nbits); 300 301 for (k = 0; k < nr; k++) 302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 303 } 304 EXPORT_SYMBOL(__bitmap_replace); 305 306 bool __bitmap_intersects(const unsigned long *bitmap1, 307 const unsigned long *bitmap2, unsigned int bits) 308 { 309 unsigned int k, lim = bits/BITS_PER_LONG; 310 for (k = 0; k < lim; ++k) 311 if (bitmap1[k] & bitmap2[k]) 312 return true; 313 314 if (bits % BITS_PER_LONG) 315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 316 return true; 317 return false; 318 } 319 EXPORT_SYMBOL(__bitmap_intersects); 320 321 bool __bitmap_subset(const unsigned long *bitmap1, 322 const unsigned long *bitmap2, unsigned int bits) 323 { 324 unsigned int k, lim = bits/BITS_PER_LONG; 325 for (k = 0; k < lim; ++k) 326 if (bitmap1[k] & ~bitmap2[k]) 327 return false; 328 329 if (bits % BITS_PER_LONG) 330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 331 return false; 332 return true; 333 } 334 EXPORT_SYMBOL(__bitmap_subset); 335 336 #define BITMAP_WEIGHT(FETCH, bits) \ 337 ({ \ 338 unsigned int __bits = (bits), idx, w = 0; \ 339 \ 340 for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \ 341 w += hweight_long(FETCH); \ 342 \ 343 if (__bits % BITS_PER_LONG) \ 344 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \ 345 \ 346 w; \ 347 }) 348 349 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 350 { 351 return BITMAP_WEIGHT(bitmap[idx], bits); 352 } 353 EXPORT_SYMBOL(__bitmap_weight); 354 355 unsigned int __bitmap_weight_and(const unsigned long *bitmap1, 356 const unsigned long *bitmap2, unsigned int bits) 357 { 358 return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits); 359 } 360 EXPORT_SYMBOL(__bitmap_weight_and); 361 362 void __bitmap_set(unsigned long *map, unsigned int start, int len) 363 { 364 unsigned long *p = map + BIT_WORD(start); 365 const unsigned int size = start + len; 366 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 367 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 368 369 while (len - bits_to_set >= 0) { 370 *p |= mask_to_set; 371 len -= bits_to_set; 372 bits_to_set = BITS_PER_LONG; 373 mask_to_set = ~0UL; 374 p++; 375 } 376 if (len) { 377 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 378 *p |= mask_to_set; 379 } 380 } 381 EXPORT_SYMBOL(__bitmap_set); 382 383 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 384 { 385 unsigned long *p = map + BIT_WORD(start); 386 const unsigned int size = start + len; 387 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 388 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 389 390 while (len - bits_to_clear >= 0) { 391 *p &= ~mask_to_clear; 392 len -= bits_to_clear; 393 bits_to_clear = BITS_PER_LONG; 394 mask_to_clear = ~0UL; 395 p++; 396 } 397 if (len) { 398 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 399 *p &= ~mask_to_clear; 400 } 401 } 402 EXPORT_SYMBOL(__bitmap_clear); 403 404 /** 405 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 406 * @map: The address to base the search on 407 * @size: The bitmap size in bits 408 * @start: The bitnumber to start searching at 409 * @nr: The number of zeroed bits we're looking for 410 * @align_mask: Alignment mask for zero area 411 * @align_offset: Alignment offset for zero area. 412 * 413 * The @align_mask should be one less than a power of 2; the effect is that 414 * the bit offset of all zero areas this function finds plus @align_offset 415 * is multiple of that power of 2. 416 */ 417 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 418 unsigned long size, 419 unsigned long start, 420 unsigned int nr, 421 unsigned long align_mask, 422 unsigned long align_offset) 423 { 424 unsigned long index, end, i; 425 again: 426 index = find_next_zero_bit(map, size, start); 427 428 /* Align allocation */ 429 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 430 431 end = index + nr; 432 if (end > size) 433 return end; 434 i = find_next_bit(map, end, index); 435 if (i < end) { 436 start = i + 1; 437 goto again; 438 } 439 return index; 440 } 441 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 442 443 /* 444 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 445 * second version by Paul Jackson, third by Joe Korty. 446 */ 447 448 /** 449 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 450 * 451 * @ubuf: pointer to user buffer containing string. 452 * @ulen: buffer size in bytes. If string is smaller than this 453 * then it must be terminated with a \0. 454 * @maskp: pointer to bitmap array that will contain result. 455 * @nmaskbits: size of bitmap, in bits. 456 */ 457 int bitmap_parse_user(const char __user *ubuf, 458 unsigned int ulen, unsigned long *maskp, 459 int nmaskbits) 460 { 461 char *buf; 462 int ret; 463 464 buf = memdup_user_nul(ubuf, ulen); 465 if (IS_ERR(buf)) 466 return PTR_ERR(buf); 467 468 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); 469 470 kfree(buf); 471 return ret; 472 } 473 EXPORT_SYMBOL(bitmap_parse_user); 474 475 /** 476 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 477 * @list: indicates whether the bitmap must be list 478 * @buf: page aligned buffer into which string is placed 479 * @maskp: pointer to bitmap to convert 480 * @nmaskbits: size of bitmap, in bits 481 * 482 * Output format is a comma-separated list of decimal numbers and 483 * ranges if list is specified or hex digits grouped into comma-separated 484 * sets of 8 digits/set. Returns the number of characters written to buf. 485 * 486 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 487 * area and that sufficient storage remains at @buf to accommodate the 488 * bitmap_print_to_pagebuf() output. Returns the number of characters 489 * actually printed to @buf, excluding terminating '\0'. 490 */ 491 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 492 int nmaskbits) 493 { 494 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 495 496 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 497 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 498 } 499 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 500 501 /** 502 * bitmap_print_to_buf - convert bitmap to list or hex format ASCII string 503 * @list: indicates whether the bitmap must be list 504 * true: print in decimal list format 505 * false: print in hexadecimal bitmask format 506 * @buf: buffer into which string is placed 507 * @maskp: pointer to bitmap to convert 508 * @nmaskbits: size of bitmap, in bits 509 * @off: in the string from which we are copying, We copy to @buf 510 * @count: the maximum number of bytes to print 511 */ 512 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp, 513 int nmaskbits, loff_t off, size_t count) 514 { 515 const char *fmt = list ? "%*pbl\n" : "%*pb\n"; 516 ssize_t size; 517 void *data; 518 519 data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp); 520 if (!data) 521 return -ENOMEM; 522 523 size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1); 524 kfree(data); 525 526 return size; 527 } 528 529 /** 530 * bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string 531 * @buf: buffer into which string is placed 532 * @maskp: pointer to bitmap to convert 533 * @nmaskbits: size of bitmap, in bits 534 * @off: in the string from which we are copying, We copy to @buf 535 * @count: the maximum number of bytes to print 536 * 537 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper 538 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal 539 * bitmask and decimal list to userspace by sysfs ABI. 540 * Drivers might be using a normal attribute for this kind of ABIs. A 541 * normal attribute typically has show entry as below:: 542 * 543 * static ssize_t example_attribute_show(struct device *dev, 544 * struct device_attribute *attr, char *buf) 545 * { 546 * ... 547 * return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max); 548 * } 549 * 550 * show entry of attribute has no offset and count parameters and this 551 * means the file is limited to one page only. 552 * bitmap_print_to_pagebuf() API works terribly well for this kind of 553 * normal attribute with buf parameter and without offset, count:: 554 * 555 * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 556 * int nmaskbits) 557 * { 558 * } 559 * 560 * The problem is once we have a large bitmap, we have a chance to get a 561 * bitmask or list more than one page. Especially for list, it could be 562 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size. 563 * It turns out bin_attribute is a way to break this limit. bin_attribute 564 * has show entry as below:: 565 * 566 * static ssize_t 567 * example_bin_attribute_show(struct file *filp, struct kobject *kobj, 568 * struct bin_attribute *attr, char *buf, 569 * loff_t offset, size_t count) 570 * { 571 * ... 572 * } 573 * 574 * With the new offset and count parameters, this makes sysfs ABI be able 575 * to support file size more than one page. For example, offset could be 576 * >= 4096. 577 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their 578 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf() 579 * make those drivers be able to support large bitmask and list after they 580 * move to use bin_attribute. In result, we have to pass the corresponding 581 * parameters such as off, count from bin_attribute show entry to this API. 582 * 583 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf() 584 * is similar with cpumap_print_to_pagebuf(), the difference is that 585 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption 586 * the destination buffer is exactly one page and won't be more than one page. 587 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other 588 * hand, mainly serves bin_attribute which doesn't work with exact one page, 589 * and it can break the size limit of converted decimal list and hexadecimal 590 * bitmask. 591 * 592 * WARNING! 593 * 594 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf(). 595 * It is intended to workaround sysfs limitations discussed above and should be 596 * used carefully in general case for the following reasons: 597 * 598 * - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf(). 599 * - Memory complexity is O(nbits), comparing to O(1) for snprintf(). 600 * - @off and @count are NOT offset and number of bits to print. 601 * - If printing part of bitmap as list, the resulting string is not a correct 602 * list representation of bitmap. Particularly, some bits within or out of 603 * related interval may be erroneously set or unset. The format of the string 604 * may be broken, so bitmap_parselist-like parser may fail parsing it. 605 * - If printing the whole bitmap as list by parts, user must ensure the order 606 * of calls of the function such that the offset is incremented linearly. 607 * - If printing the whole bitmap as list by parts, user must keep bitmap 608 * unchanged between the very first and very last call. Otherwise concatenated 609 * result may be incorrect, and format may be broken. 610 * 611 * Returns the number of characters actually printed to @buf 612 */ 613 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, 614 int nmaskbits, loff_t off, size_t count) 615 { 616 return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count); 617 } 618 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf); 619 620 /** 621 * bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string 622 * @buf: buffer into which string is placed 623 * @maskp: pointer to bitmap to convert 624 * @nmaskbits: size of bitmap, in bits 625 * @off: in the string from which we are copying, We copy to @buf 626 * @count: the maximum number of bytes to print 627 * 628 * Everything is same with the above bitmap_print_bitmask_to_buf() except 629 * the print format. 630 */ 631 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, 632 int nmaskbits, loff_t off, size_t count) 633 { 634 return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count); 635 } 636 EXPORT_SYMBOL(bitmap_print_list_to_buf); 637 638 /* 639 * Region 9-38:4/10 describes the following bitmap structure: 640 * 0 9 12 18 38 N 641 * .........****......****......****.................. 642 * ^ ^ ^ ^ ^ 643 * start off group_len end nbits 644 */ 645 struct region { 646 unsigned int start; 647 unsigned int off; 648 unsigned int group_len; 649 unsigned int end; 650 unsigned int nbits; 651 }; 652 653 static void bitmap_set_region(const struct region *r, unsigned long *bitmap) 654 { 655 unsigned int start; 656 657 for (start = r->start; start <= r->end; start += r->group_len) 658 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 659 } 660 661 static int bitmap_check_region(const struct region *r) 662 { 663 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 664 return -EINVAL; 665 666 if (r->end >= r->nbits) 667 return -ERANGE; 668 669 return 0; 670 } 671 672 static const char *bitmap_getnum(const char *str, unsigned int *num, 673 unsigned int lastbit) 674 { 675 unsigned long long n; 676 unsigned int len; 677 678 if (str[0] == 'N') { 679 *num = lastbit; 680 return str + 1; 681 } 682 683 len = _parse_integer(str, 10, &n); 684 if (!len) 685 return ERR_PTR(-EINVAL); 686 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 687 return ERR_PTR(-EOVERFLOW); 688 689 *num = n; 690 return str + len; 691 } 692 693 static inline bool end_of_str(char c) 694 { 695 return c == '\0' || c == '\n'; 696 } 697 698 static inline bool __end_of_region(char c) 699 { 700 return isspace(c) || c == ','; 701 } 702 703 static inline bool end_of_region(char c) 704 { 705 return __end_of_region(c) || end_of_str(c); 706 } 707 708 /* 709 * The format allows commas and whitespaces at the beginning 710 * of the region. 711 */ 712 static const char *bitmap_find_region(const char *str) 713 { 714 while (__end_of_region(*str)) 715 str++; 716 717 return end_of_str(*str) ? NULL : str; 718 } 719 720 static const char *bitmap_find_region_reverse(const char *start, const char *end) 721 { 722 while (start <= end && __end_of_region(*end)) 723 end--; 724 725 return end; 726 } 727 728 static const char *bitmap_parse_region(const char *str, struct region *r) 729 { 730 unsigned int lastbit = r->nbits - 1; 731 732 if (!strncasecmp(str, "all", 3)) { 733 r->start = 0; 734 r->end = lastbit; 735 str += 3; 736 737 goto check_pattern; 738 } 739 740 str = bitmap_getnum(str, &r->start, lastbit); 741 if (IS_ERR(str)) 742 return str; 743 744 if (end_of_region(*str)) 745 goto no_end; 746 747 if (*str != '-') 748 return ERR_PTR(-EINVAL); 749 750 str = bitmap_getnum(str + 1, &r->end, lastbit); 751 if (IS_ERR(str)) 752 return str; 753 754 check_pattern: 755 if (end_of_region(*str)) 756 goto no_pattern; 757 758 if (*str != ':') 759 return ERR_PTR(-EINVAL); 760 761 str = bitmap_getnum(str + 1, &r->off, lastbit); 762 if (IS_ERR(str)) 763 return str; 764 765 if (*str != '/') 766 return ERR_PTR(-EINVAL); 767 768 return bitmap_getnum(str + 1, &r->group_len, lastbit); 769 770 no_end: 771 r->end = r->start; 772 no_pattern: 773 r->off = r->end + 1; 774 r->group_len = r->end + 1; 775 776 return end_of_str(*str) ? NULL : str; 777 } 778 779 /** 780 * bitmap_parselist - convert list format ASCII string to bitmap 781 * @buf: read user string from this buffer; must be terminated 782 * with a \0 or \n. 783 * @maskp: write resulting mask here 784 * @nmaskbits: number of bits in mask to be written 785 * 786 * Input format is a comma-separated list of decimal numbers and 787 * ranges. Consecutively set bits are shown as two hyphen-separated 788 * decimal numbers, the smallest and largest bit numbers set in 789 * the range. 790 * Optionally each range can be postfixed to denote that only parts of it 791 * should be set. The range will divided to groups of specific size. 792 * From each group will be used only defined amount of bits. 793 * Syntax: range:used_size/group_size 794 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 795 * The value 'N' can be used as a dynamically substituted token for the 796 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is 797 * dynamic, so if system changes cause the bitmap width to change, such 798 * as more cores in a CPU list, then any ranges using N will also change. 799 * 800 * Returns: 0 on success, -errno on invalid input strings. Error values: 801 * 802 * - ``-EINVAL``: wrong region format 803 * - ``-EINVAL``: invalid character in string 804 * - ``-ERANGE``: bit number specified too large for mask 805 * - ``-EOVERFLOW``: integer overflow in the input parameters 806 */ 807 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 808 { 809 struct region r; 810 long ret; 811 812 r.nbits = nmaskbits; 813 bitmap_zero(maskp, r.nbits); 814 815 while (buf) { 816 buf = bitmap_find_region(buf); 817 if (buf == NULL) 818 return 0; 819 820 buf = bitmap_parse_region(buf, &r); 821 if (IS_ERR(buf)) 822 return PTR_ERR(buf); 823 824 ret = bitmap_check_region(&r); 825 if (ret) 826 return ret; 827 828 bitmap_set_region(&r, maskp); 829 } 830 831 return 0; 832 } 833 EXPORT_SYMBOL(bitmap_parselist); 834 835 836 /** 837 * bitmap_parselist_user() - convert user buffer's list format ASCII 838 * string to bitmap 839 * 840 * @ubuf: pointer to user buffer containing string. 841 * @ulen: buffer size in bytes. If string is smaller than this 842 * then it must be terminated with a \0. 843 * @maskp: pointer to bitmap array that will contain result. 844 * @nmaskbits: size of bitmap, in bits. 845 * 846 * Wrapper for bitmap_parselist(), providing it with user buffer. 847 */ 848 int bitmap_parselist_user(const char __user *ubuf, 849 unsigned int ulen, unsigned long *maskp, 850 int nmaskbits) 851 { 852 char *buf; 853 int ret; 854 855 buf = memdup_user_nul(ubuf, ulen); 856 if (IS_ERR(buf)) 857 return PTR_ERR(buf); 858 859 ret = bitmap_parselist(buf, maskp, nmaskbits); 860 861 kfree(buf); 862 return ret; 863 } 864 EXPORT_SYMBOL(bitmap_parselist_user); 865 866 static const char *bitmap_get_x32_reverse(const char *start, 867 const char *end, u32 *num) 868 { 869 u32 ret = 0; 870 int c, i; 871 872 for (i = 0; i < 32; i += 4) { 873 c = hex_to_bin(*end--); 874 if (c < 0) 875 return ERR_PTR(-EINVAL); 876 877 ret |= c << i; 878 879 if (start > end || __end_of_region(*end)) 880 goto out; 881 } 882 883 if (hex_to_bin(*end--) >= 0) 884 return ERR_PTR(-EOVERFLOW); 885 out: 886 *num = ret; 887 return end; 888 } 889 890 /** 891 * bitmap_parse - convert an ASCII hex string into a bitmap. 892 * @start: pointer to buffer containing string. 893 * @buflen: buffer size in bytes. If string is smaller than this 894 * then it must be terminated with a \0 or \n. In that case, 895 * UINT_MAX may be provided instead of string length. 896 * @maskp: pointer to bitmap array that will contain result. 897 * @nmaskbits: size of bitmap, in bits. 898 * 899 * Commas group hex digits into chunks. Each chunk defines exactly 32 900 * bits of the resultant bitmask. No chunk may specify a value larger 901 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 902 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 903 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. 904 * Leading, embedded and trailing whitespace accepted. 905 */ 906 int bitmap_parse(const char *start, unsigned int buflen, 907 unsigned long *maskp, int nmaskbits) 908 { 909 const char *end = strnchrnul(start, buflen, '\n') - 1; 910 int chunks = BITS_TO_U32(nmaskbits); 911 u32 *bitmap = (u32 *)maskp; 912 int unset_bit; 913 int chunk; 914 915 for (chunk = 0; ; chunk++) { 916 end = bitmap_find_region_reverse(start, end); 917 if (start > end) 918 break; 919 920 if (!chunks--) 921 return -EOVERFLOW; 922 923 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 924 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]); 925 #else 926 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]); 927 #endif 928 if (IS_ERR(end)) 929 return PTR_ERR(end); 930 } 931 932 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; 933 if (unset_bit < nmaskbits) { 934 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); 935 return 0; 936 } 937 938 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) 939 return -EOVERFLOW; 940 941 return 0; 942 } 943 EXPORT_SYMBOL(bitmap_parse); 944 945 /** 946 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 947 * @buf: pointer to a bitmap 948 * @pos: a bit position in @buf (0 <= @pos < @nbits) 949 * @nbits: number of valid bit positions in @buf 950 * 951 * Map the bit at position @pos in @buf (of length @nbits) to the 952 * ordinal of which set bit it is. If it is not set or if @pos 953 * is not a valid bit position, map to -1. 954 * 955 * If for example, just bits 4 through 7 are set in @buf, then @pos 956 * values 4 through 7 will get mapped to 0 through 3, respectively, 957 * and other @pos values will get mapped to -1. When @pos value 7 958 * gets mapped to (returns) @ord value 3 in this example, that means 959 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 960 * 961 * The bit positions 0 through @bits are valid positions in @buf. 962 */ 963 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 964 { 965 if (pos >= nbits || !test_bit(pos, buf)) 966 return -1; 967 968 return bitmap_weight(buf, pos); 969 } 970 971 /** 972 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 973 * @dst: remapped result 974 * @src: subset to be remapped 975 * @old: defines domain of map 976 * @new: defines range of map 977 * @nbits: number of bits in each of these bitmaps 978 * 979 * Let @old and @new define a mapping of bit positions, such that 980 * whatever position is held by the n-th set bit in @old is mapped 981 * to the n-th set bit in @new. In the more general case, allowing 982 * for the possibility that the weight 'w' of @new is less than the 983 * weight of @old, map the position of the n-th set bit in @old to 984 * the position of the m-th set bit in @new, where m == n % w. 985 * 986 * If either of the @old and @new bitmaps are empty, or if @src and 987 * @dst point to the same location, then this routine copies @src 988 * to @dst. 989 * 990 * The positions of unset bits in @old are mapped to themselves 991 * (the identify map). 992 * 993 * Apply the above specified mapping to @src, placing the result in 994 * @dst, clearing any bits previously set in @dst. 995 * 996 * For example, lets say that @old has bits 4 through 7 set, and 997 * @new has bits 12 through 15 set. This defines the mapping of bit 998 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 999 * bit positions unchanged. So if say @src comes into this routine 1000 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 1001 * 13 and 15 set. 1002 */ 1003 void bitmap_remap(unsigned long *dst, const unsigned long *src, 1004 const unsigned long *old, const unsigned long *new, 1005 unsigned int nbits) 1006 { 1007 unsigned int oldbit, w; 1008 1009 if (dst == src) /* following doesn't handle inplace remaps */ 1010 return; 1011 bitmap_zero(dst, nbits); 1012 1013 w = bitmap_weight(new, nbits); 1014 for_each_set_bit(oldbit, src, nbits) { 1015 int n = bitmap_pos_to_ord(old, oldbit, nbits); 1016 1017 if (n < 0 || w == 0) 1018 set_bit(oldbit, dst); /* identity map */ 1019 else 1020 set_bit(find_nth_bit(new, nbits, n % w), dst); 1021 } 1022 } 1023 EXPORT_SYMBOL(bitmap_remap); 1024 1025 /** 1026 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 1027 * @oldbit: bit position to be mapped 1028 * @old: defines domain of map 1029 * @new: defines range of map 1030 * @bits: number of bits in each of these bitmaps 1031 * 1032 * Let @old and @new define a mapping of bit positions, such that 1033 * whatever position is held by the n-th set bit in @old is mapped 1034 * to the n-th set bit in @new. In the more general case, allowing 1035 * for the possibility that the weight 'w' of @new is less than the 1036 * weight of @old, map the position of the n-th set bit in @old to 1037 * the position of the m-th set bit in @new, where m == n % w. 1038 * 1039 * The positions of unset bits in @old are mapped to themselves 1040 * (the identify map). 1041 * 1042 * Apply the above specified mapping to bit position @oldbit, returning 1043 * the new bit position. 1044 * 1045 * For example, lets say that @old has bits 4 through 7 set, and 1046 * @new has bits 12 through 15 set. This defines the mapping of bit 1047 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 1048 * bit positions unchanged. So if say @oldbit is 5, then this routine 1049 * returns 13. 1050 */ 1051 int bitmap_bitremap(int oldbit, const unsigned long *old, 1052 const unsigned long *new, int bits) 1053 { 1054 int w = bitmap_weight(new, bits); 1055 int n = bitmap_pos_to_ord(old, oldbit, bits); 1056 if (n < 0 || w == 0) 1057 return oldbit; 1058 else 1059 return find_nth_bit(new, bits, n % w); 1060 } 1061 EXPORT_SYMBOL(bitmap_bitremap); 1062 1063 #ifdef CONFIG_NUMA 1064 /** 1065 * bitmap_onto - translate one bitmap relative to another 1066 * @dst: resulting translated bitmap 1067 * @orig: original untranslated bitmap 1068 * @relmap: bitmap relative to which translated 1069 * @bits: number of bits in each of these bitmaps 1070 * 1071 * Set the n-th bit of @dst iff there exists some m such that the 1072 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 1073 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 1074 * (If you understood the previous sentence the first time your 1075 * read it, you're overqualified for your current job.) 1076 * 1077 * In other words, @orig is mapped onto (surjectively) @dst, 1078 * using the map { <n, m> | the n-th bit of @relmap is the 1079 * m-th set bit of @relmap }. 1080 * 1081 * Any set bits in @orig above bit number W, where W is the 1082 * weight of (number of set bits in) @relmap are mapped nowhere. 1083 * In particular, if for all bits m set in @orig, m >= W, then 1084 * @dst will end up empty. In situations where the possibility 1085 * of such an empty result is not desired, one way to avoid it is 1086 * to use the bitmap_fold() operator, below, to first fold the 1087 * @orig bitmap over itself so that all its set bits x are in the 1088 * range 0 <= x < W. The bitmap_fold() operator does this by 1089 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 1090 * 1091 * Example [1] for bitmap_onto(): 1092 * Let's say @relmap has bits 30-39 set, and @orig has bits 1093 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 1094 * @dst will have bits 31, 33, 35, 37 and 39 set. 1095 * 1096 * When bit 0 is set in @orig, it means turn on the bit in 1097 * @dst corresponding to whatever is the first bit (if any) 1098 * that is turned on in @relmap. Since bit 0 was off in the 1099 * above example, we leave off that bit (bit 30) in @dst. 1100 * 1101 * When bit 1 is set in @orig (as in the above example), it 1102 * means turn on the bit in @dst corresponding to whatever 1103 * is the second bit that is turned on in @relmap. The second 1104 * bit in @relmap that was turned on in the above example was 1105 * bit 31, so we turned on bit 31 in @dst. 1106 * 1107 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 1108 * because they were the 4th, 6th, 8th and 10th set bits 1109 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 1110 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 1111 * 1112 * When bit 11 is set in @orig, it means turn on the bit in 1113 * @dst corresponding to whatever is the twelfth bit that is 1114 * turned on in @relmap. In the above example, there were 1115 * only ten bits turned on in @relmap (30..39), so that bit 1116 * 11 was set in @orig had no affect on @dst. 1117 * 1118 * Example [2] for bitmap_fold() + bitmap_onto(): 1119 * Let's say @relmap has these ten bits set:: 1120 * 1121 * 40 41 42 43 45 48 53 61 74 95 1122 * 1123 * (for the curious, that's 40 plus the first ten terms of the 1124 * Fibonacci sequence.) 1125 * 1126 * Further lets say we use the following code, invoking 1127 * bitmap_fold() then bitmap_onto, as suggested above to 1128 * avoid the possibility of an empty @dst result:: 1129 * 1130 * unsigned long *tmp; // a temporary bitmap's bits 1131 * 1132 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 1133 * bitmap_onto(dst, tmp, relmap, bits); 1134 * 1135 * Then this table shows what various values of @dst would be, for 1136 * various @orig's. I list the zero-based positions of each set bit. 1137 * The tmp column shows the intermediate result, as computed by 1138 * using bitmap_fold() to fold the @orig bitmap modulo ten 1139 * (the weight of @relmap): 1140 * 1141 * =============== ============== ================= 1142 * @orig tmp @dst 1143 * 0 0 40 1144 * 1 1 41 1145 * 9 9 95 1146 * 10 0 40 [#f1]_ 1147 * 1 3 5 7 1 3 5 7 41 43 48 61 1148 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 1149 * 0 9 18 27 0 9 8 7 40 61 74 95 1150 * 0 10 20 30 0 40 1151 * 0 11 22 33 0 1 2 3 40 41 42 43 1152 * 0 12 24 36 0 2 4 6 40 42 45 53 1153 * 78 102 211 1 2 8 41 42 74 [#f1]_ 1154 * =============== ============== ================= 1155 * 1156 * .. [#f1] 1157 * 1158 * For these marked lines, if we hadn't first done bitmap_fold() 1159 * into tmp, then the @dst result would have been empty. 1160 * 1161 * If either of @orig or @relmap is empty (no set bits), then @dst 1162 * will be returned empty. 1163 * 1164 * If (as explained above) the only set bits in @orig are in positions 1165 * m where m >= W, (where W is the weight of @relmap) then @dst will 1166 * once again be returned empty. 1167 * 1168 * All bits in @dst not set by the above rule are cleared. 1169 */ 1170 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 1171 const unsigned long *relmap, unsigned int bits) 1172 { 1173 unsigned int n, m; /* same meaning as in above comment */ 1174 1175 if (dst == orig) /* following doesn't handle inplace mappings */ 1176 return; 1177 bitmap_zero(dst, bits); 1178 1179 /* 1180 * The following code is a more efficient, but less 1181 * obvious, equivalent to the loop: 1182 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 1183 * n = find_nth_bit(orig, bits, m); 1184 * if (test_bit(m, orig)) 1185 * set_bit(n, dst); 1186 * } 1187 */ 1188 1189 m = 0; 1190 for_each_set_bit(n, relmap, bits) { 1191 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1192 if (test_bit(m, orig)) 1193 set_bit(n, dst); 1194 m++; 1195 } 1196 } 1197 1198 /** 1199 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1200 * @dst: resulting smaller bitmap 1201 * @orig: original larger bitmap 1202 * @sz: specified size 1203 * @nbits: number of bits in each of these bitmaps 1204 * 1205 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1206 * Clear all other bits in @dst. See further the comment and 1207 * Example [2] for bitmap_onto() for why and how to use this. 1208 */ 1209 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1210 unsigned int sz, unsigned int nbits) 1211 { 1212 unsigned int oldbit; 1213 1214 if (dst == orig) /* following doesn't handle inplace mappings */ 1215 return; 1216 bitmap_zero(dst, nbits); 1217 1218 for_each_set_bit(oldbit, orig, nbits) 1219 set_bit(oldbit % sz, dst); 1220 } 1221 #endif /* CONFIG_NUMA */ 1222 1223 /* 1224 * Common code for bitmap_*_region() routines. 1225 * bitmap: array of unsigned longs corresponding to the bitmap 1226 * pos: the beginning of the region 1227 * order: region size (log base 2 of number of bits) 1228 * reg_op: operation(s) to perform on that region of bitmap 1229 * 1230 * Can set, verify and/or release a region of bits in a bitmap, 1231 * depending on which combination of REG_OP_* flag bits is set. 1232 * 1233 * A region of a bitmap is a sequence of bits in the bitmap, of 1234 * some size '1 << order' (a power of two), aligned to that same 1235 * '1 << order' power of two. 1236 * 1237 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1238 * Returns 0 in all other cases and reg_ops. 1239 */ 1240 1241 enum { 1242 REG_OP_ISFREE, /* true if region is all zero bits */ 1243 REG_OP_ALLOC, /* set all bits in region */ 1244 REG_OP_RELEASE, /* clear all bits in region */ 1245 }; 1246 1247 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1248 { 1249 int nbits_reg; /* number of bits in region */ 1250 int index; /* index first long of region in bitmap */ 1251 int offset; /* bit offset region in bitmap[index] */ 1252 int nlongs_reg; /* num longs spanned by region in bitmap */ 1253 int nbitsinlong; /* num bits of region in each spanned long */ 1254 unsigned long mask; /* bitmask for one long of region */ 1255 int i; /* scans bitmap by longs */ 1256 int ret = 0; /* return value */ 1257 1258 /* 1259 * Either nlongs_reg == 1 (for small orders that fit in one long) 1260 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1261 */ 1262 nbits_reg = 1 << order; 1263 index = pos / BITS_PER_LONG; 1264 offset = pos - (index * BITS_PER_LONG); 1265 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1266 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1267 1268 /* 1269 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1270 * overflows if nbitsinlong == BITS_PER_LONG. 1271 */ 1272 mask = (1UL << (nbitsinlong - 1)); 1273 mask += mask - 1; 1274 mask <<= offset; 1275 1276 switch (reg_op) { 1277 case REG_OP_ISFREE: 1278 for (i = 0; i < nlongs_reg; i++) { 1279 if (bitmap[index + i] & mask) 1280 goto done; 1281 } 1282 ret = 1; /* all bits in region free (zero) */ 1283 break; 1284 1285 case REG_OP_ALLOC: 1286 for (i = 0; i < nlongs_reg; i++) 1287 bitmap[index + i] |= mask; 1288 break; 1289 1290 case REG_OP_RELEASE: 1291 for (i = 0; i < nlongs_reg; i++) 1292 bitmap[index + i] &= ~mask; 1293 break; 1294 } 1295 done: 1296 return ret; 1297 } 1298 1299 /** 1300 * bitmap_find_free_region - find a contiguous aligned mem region 1301 * @bitmap: array of unsigned longs corresponding to the bitmap 1302 * @bits: number of bits in the bitmap 1303 * @order: region size (log base 2 of number of bits) to find 1304 * 1305 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1306 * allocate them (set them to one). Only consider regions of length 1307 * a power (@order) of two, aligned to that power of two, which 1308 * makes the search algorithm much faster. 1309 * 1310 * Return the bit offset in bitmap of the allocated region, 1311 * or -errno on failure. 1312 */ 1313 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1314 { 1315 unsigned int pos, end; /* scans bitmap by regions of size order */ 1316 1317 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1318 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1319 continue; 1320 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1321 return pos; 1322 } 1323 return -ENOMEM; 1324 } 1325 EXPORT_SYMBOL(bitmap_find_free_region); 1326 1327 /** 1328 * bitmap_release_region - release allocated bitmap region 1329 * @bitmap: array of unsigned longs corresponding to the bitmap 1330 * @pos: beginning of bit region to release 1331 * @order: region size (log base 2 of number of bits) to release 1332 * 1333 * This is the complement to __bitmap_find_free_region() and releases 1334 * the found region (by clearing it in the bitmap). 1335 * 1336 * No return value. 1337 */ 1338 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1339 { 1340 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1341 } 1342 EXPORT_SYMBOL(bitmap_release_region); 1343 1344 /** 1345 * bitmap_allocate_region - allocate bitmap region 1346 * @bitmap: array of unsigned longs corresponding to the bitmap 1347 * @pos: beginning of bit region to allocate 1348 * @order: region size (log base 2 of number of bits) to allocate 1349 * 1350 * Allocate (set bits in) a specified region of a bitmap. 1351 * 1352 * Return 0 on success, or %-EBUSY if specified region wasn't 1353 * free (not all bits were zero). 1354 */ 1355 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1356 { 1357 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1358 return -EBUSY; 1359 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1360 } 1361 EXPORT_SYMBOL(bitmap_allocate_region); 1362 1363 /** 1364 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1365 * @dst: destination buffer 1366 * @src: bitmap to copy 1367 * @nbits: number of bits in the bitmap 1368 * 1369 * Require nbits % BITS_PER_LONG == 0. 1370 */ 1371 #ifdef __BIG_ENDIAN 1372 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1373 { 1374 unsigned int i; 1375 1376 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1377 if (BITS_PER_LONG == 64) 1378 dst[i] = cpu_to_le64(src[i]); 1379 else 1380 dst[i] = cpu_to_le32(src[i]); 1381 } 1382 } 1383 EXPORT_SYMBOL(bitmap_copy_le); 1384 #endif 1385 1386 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1387 { 1388 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1389 flags); 1390 } 1391 EXPORT_SYMBOL(bitmap_alloc); 1392 1393 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1394 { 1395 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1396 } 1397 EXPORT_SYMBOL(bitmap_zalloc); 1398 1399 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) 1400 { 1401 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1402 flags, node); 1403 } 1404 EXPORT_SYMBOL(bitmap_alloc_node); 1405 1406 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) 1407 { 1408 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); 1409 } 1410 EXPORT_SYMBOL(bitmap_zalloc_node); 1411 1412 void bitmap_free(const unsigned long *bitmap) 1413 { 1414 kfree(bitmap); 1415 } 1416 EXPORT_SYMBOL(bitmap_free); 1417 1418 static void devm_bitmap_free(void *data) 1419 { 1420 unsigned long *bitmap = data; 1421 1422 bitmap_free(bitmap); 1423 } 1424 1425 unsigned long *devm_bitmap_alloc(struct device *dev, 1426 unsigned int nbits, gfp_t flags) 1427 { 1428 unsigned long *bitmap; 1429 int ret; 1430 1431 bitmap = bitmap_alloc(nbits, flags); 1432 if (!bitmap) 1433 return NULL; 1434 1435 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); 1436 if (ret) 1437 return NULL; 1438 1439 return bitmap; 1440 } 1441 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 1442 1443 unsigned long *devm_bitmap_zalloc(struct device *dev, 1444 unsigned int nbits, gfp_t flags) 1445 { 1446 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); 1447 } 1448 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 1449 1450 #if BITS_PER_LONG == 64 1451 /** 1452 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1453 * @bitmap: array of unsigned longs, the destination bitmap 1454 * @buf: array of u32 (in host byte order), the source bitmap 1455 * @nbits: number of bits in @bitmap 1456 */ 1457 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1458 { 1459 unsigned int i, halfwords; 1460 1461 halfwords = DIV_ROUND_UP(nbits, 32); 1462 for (i = 0; i < halfwords; i++) { 1463 bitmap[i/2] = (unsigned long) buf[i]; 1464 if (++i < halfwords) 1465 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1466 } 1467 1468 /* Clear tail bits in last word beyond nbits. */ 1469 if (nbits % BITS_PER_LONG) 1470 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1471 } 1472 EXPORT_SYMBOL(bitmap_from_arr32); 1473 1474 /** 1475 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1476 * @buf: array of u32 (in host byte order), the dest bitmap 1477 * @bitmap: array of unsigned longs, the source bitmap 1478 * @nbits: number of bits in @bitmap 1479 */ 1480 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1481 { 1482 unsigned int i, halfwords; 1483 1484 halfwords = DIV_ROUND_UP(nbits, 32); 1485 for (i = 0; i < halfwords; i++) { 1486 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1487 if (++i < halfwords) 1488 buf[i] = (u32) (bitmap[i/2] >> 32); 1489 } 1490 1491 /* Clear tail bits in last element of array beyond nbits. */ 1492 if (nbits % BITS_PER_LONG) 1493 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1494 } 1495 EXPORT_SYMBOL(bitmap_to_arr32); 1496 #endif 1497 1498 #if BITS_PER_LONG == 32 1499 /** 1500 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap 1501 * @bitmap: array of unsigned longs, the destination bitmap 1502 * @buf: array of u64 (in host byte order), the source bitmap 1503 * @nbits: number of bits in @bitmap 1504 */ 1505 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) 1506 { 1507 int n; 1508 1509 for (n = nbits; n > 0; n -= 64) { 1510 u64 val = *buf++; 1511 1512 *bitmap++ = val; 1513 if (n > 32) 1514 *bitmap++ = val >> 32; 1515 } 1516 1517 /* 1518 * Clear tail bits in the last word beyond nbits. 1519 * 1520 * Negative index is OK because here we point to the word next 1521 * to the last word of the bitmap, except for nbits == 0, which 1522 * is tested implicitly. 1523 */ 1524 if (nbits % BITS_PER_LONG) 1525 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); 1526 } 1527 EXPORT_SYMBOL(bitmap_from_arr64); 1528 1529 /** 1530 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits 1531 * @buf: array of u64 (in host byte order), the dest bitmap 1532 * @bitmap: array of unsigned longs, the source bitmap 1533 * @nbits: number of bits in @bitmap 1534 */ 1535 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) 1536 { 1537 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); 1538 1539 while (bitmap < end) { 1540 *buf = *bitmap++; 1541 if (bitmap < end) 1542 *buf |= (u64)(*bitmap++) << 32; 1543 buf++; 1544 } 1545 1546 /* Clear tail bits in the last element of array beyond nbits. */ 1547 if (nbits % 64) 1548 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0); 1549 } 1550 EXPORT_SYMBOL(bitmap_to_arr64); 1551 #endif 1552