1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/page.h> 22 23 /** 24 * DOC: bitmap introduction 25 * 26 * bitmaps provide an array of bits, implemented using an an 27 * array of unsigned longs. The number of valid bits in a 28 * given bitmap does _not_ need to be an exact multiple of 29 * BITS_PER_LONG. 30 * 31 * The possible unused bits in the last, partially used word 32 * of a bitmap are 'don't care'. The implementation makes 33 * no particular effort to keep them zero. It ensures that 34 * their value will not affect the results of any operation. 35 * The bitmap operations that return Boolean (bitmap_empty, 36 * for example) or scalar (bitmap_weight, for example) results 37 * carefully filter out these unused bits from impacting their 38 * results. 39 * 40 * The byte ordering of bitmaps is more natural on little 41 * endian architectures. See the big-endian headers 42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 43 * for the best explanations of this ordering. 44 */ 45 46 int __bitmap_equal(const unsigned long *bitmap1, 47 const unsigned long *bitmap2, unsigned int bits) 48 { 49 unsigned int k, lim = bits/BITS_PER_LONG; 50 for (k = 0; k < lim; ++k) 51 if (bitmap1[k] != bitmap2[k]) 52 return 0; 53 54 if (bits % BITS_PER_LONG) 55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 56 return 0; 57 58 return 1; 59 } 60 EXPORT_SYMBOL(__bitmap_equal); 61 62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 63 { 64 unsigned int k, lim = BITS_TO_LONGS(bits); 65 for (k = 0; k < lim; ++k) 66 dst[k] = ~src[k]; 67 } 68 EXPORT_SYMBOL(__bitmap_complement); 69 70 /** 71 * __bitmap_shift_right - logical right shift of the bits in a bitmap 72 * @dst : destination bitmap 73 * @src : source bitmap 74 * @shift : shift by this many bits 75 * @nbits : bitmap size, in bits 76 * 77 * Shifting right (dividing) means moving bits in the MS -> LS bit 78 * direction. Zeros are fed into the vacated MS positions and the 79 * LS bits shifted off the bottom are lost. 80 */ 81 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 82 unsigned shift, unsigned nbits) 83 { 84 unsigned k, lim = BITS_TO_LONGS(nbits); 85 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 86 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 87 for (k = 0; off + k < lim; ++k) { 88 unsigned long upper, lower; 89 90 /* 91 * If shift is not word aligned, take lower rem bits of 92 * word above and make them the top rem bits of result. 93 */ 94 if (!rem || off + k + 1 >= lim) 95 upper = 0; 96 else { 97 upper = src[off + k + 1]; 98 if (off + k + 1 == lim - 1) 99 upper &= mask; 100 upper <<= (BITS_PER_LONG - rem); 101 } 102 lower = src[off + k]; 103 if (off + k == lim - 1) 104 lower &= mask; 105 lower >>= rem; 106 dst[k] = lower | upper; 107 } 108 if (off) 109 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 110 } 111 EXPORT_SYMBOL(__bitmap_shift_right); 112 113 114 /** 115 * __bitmap_shift_left - logical left shift of the bits in a bitmap 116 * @dst : destination bitmap 117 * @src : source bitmap 118 * @shift : shift by this many bits 119 * @nbits : bitmap size, in bits 120 * 121 * Shifting left (multiplying) means moving bits in the LS -> MS 122 * direction. Zeros are fed into the vacated LS bit positions 123 * and those MS bits shifted off the top are lost. 124 */ 125 126 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 127 unsigned int shift, unsigned int nbits) 128 { 129 int k; 130 unsigned int lim = BITS_TO_LONGS(nbits); 131 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 132 for (k = lim - off - 1; k >= 0; --k) { 133 unsigned long upper, lower; 134 135 /* 136 * If shift is not word aligned, take upper rem bits of 137 * word below and make them the bottom rem bits of result. 138 */ 139 if (rem && k > 0) 140 lower = src[k - 1] >> (BITS_PER_LONG - rem); 141 else 142 lower = 0; 143 upper = src[k] << rem; 144 dst[k + off] = lower | upper; 145 } 146 if (off) 147 memset(dst, 0, off*sizeof(unsigned long)); 148 } 149 EXPORT_SYMBOL(__bitmap_shift_left); 150 151 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 152 const unsigned long *bitmap2, unsigned int bits) 153 { 154 unsigned int k; 155 unsigned int lim = bits/BITS_PER_LONG; 156 unsigned long result = 0; 157 158 for (k = 0; k < lim; k++) 159 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 160 if (bits % BITS_PER_LONG) 161 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 162 BITMAP_LAST_WORD_MASK(bits)); 163 return result != 0; 164 } 165 EXPORT_SYMBOL(__bitmap_and); 166 167 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 168 const unsigned long *bitmap2, unsigned int bits) 169 { 170 unsigned int k; 171 unsigned int nr = BITS_TO_LONGS(bits); 172 173 for (k = 0; k < nr; k++) 174 dst[k] = bitmap1[k] | bitmap2[k]; 175 } 176 EXPORT_SYMBOL(__bitmap_or); 177 178 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 179 const unsigned long *bitmap2, unsigned int bits) 180 { 181 unsigned int k; 182 unsigned int nr = BITS_TO_LONGS(bits); 183 184 for (k = 0; k < nr; k++) 185 dst[k] = bitmap1[k] ^ bitmap2[k]; 186 } 187 EXPORT_SYMBOL(__bitmap_xor); 188 189 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 190 const unsigned long *bitmap2, unsigned int bits) 191 { 192 unsigned int k; 193 unsigned int lim = bits/BITS_PER_LONG; 194 unsigned long result = 0; 195 196 for (k = 0; k < lim; k++) 197 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 198 if (bits % BITS_PER_LONG) 199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 200 BITMAP_LAST_WORD_MASK(bits)); 201 return result != 0; 202 } 203 EXPORT_SYMBOL(__bitmap_andnot); 204 205 int __bitmap_intersects(const unsigned long *bitmap1, 206 const unsigned long *bitmap2, unsigned int bits) 207 { 208 unsigned int k, lim = bits/BITS_PER_LONG; 209 for (k = 0; k < lim; ++k) 210 if (bitmap1[k] & bitmap2[k]) 211 return 1; 212 213 if (bits % BITS_PER_LONG) 214 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 215 return 1; 216 return 0; 217 } 218 EXPORT_SYMBOL(__bitmap_intersects); 219 220 int __bitmap_subset(const unsigned long *bitmap1, 221 const unsigned long *bitmap2, unsigned int bits) 222 { 223 unsigned int k, lim = bits/BITS_PER_LONG; 224 for (k = 0; k < lim; ++k) 225 if (bitmap1[k] & ~bitmap2[k]) 226 return 0; 227 228 if (bits % BITS_PER_LONG) 229 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 230 return 0; 231 return 1; 232 } 233 EXPORT_SYMBOL(__bitmap_subset); 234 235 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 236 { 237 unsigned int k, lim = bits/BITS_PER_LONG; 238 int w = 0; 239 240 for (k = 0; k < lim; k++) 241 w += hweight_long(bitmap[k]); 242 243 if (bits % BITS_PER_LONG) 244 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 245 246 return w; 247 } 248 EXPORT_SYMBOL(__bitmap_weight); 249 250 void __bitmap_set(unsigned long *map, unsigned int start, int len) 251 { 252 unsigned long *p = map + BIT_WORD(start); 253 const unsigned int size = start + len; 254 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 255 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 256 257 while (len - bits_to_set >= 0) { 258 *p |= mask_to_set; 259 len -= bits_to_set; 260 bits_to_set = BITS_PER_LONG; 261 mask_to_set = ~0UL; 262 p++; 263 } 264 if (len) { 265 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 266 *p |= mask_to_set; 267 } 268 } 269 EXPORT_SYMBOL(__bitmap_set); 270 271 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 272 { 273 unsigned long *p = map + BIT_WORD(start); 274 const unsigned int size = start + len; 275 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 276 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 277 278 while (len - bits_to_clear >= 0) { 279 *p &= ~mask_to_clear; 280 len -= bits_to_clear; 281 bits_to_clear = BITS_PER_LONG; 282 mask_to_clear = ~0UL; 283 p++; 284 } 285 if (len) { 286 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 287 *p &= ~mask_to_clear; 288 } 289 } 290 EXPORT_SYMBOL(__bitmap_clear); 291 292 /** 293 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 294 * @map: The address to base the search on 295 * @size: The bitmap size in bits 296 * @start: The bitnumber to start searching at 297 * @nr: The number of zeroed bits we're looking for 298 * @align_mask: Alignment mask for zero area 299 * @align_offset: Alignment offset for zero area. 300 * 301 * The @align_mask should be one less than a power of 2; the effect is that 302 * the bit offset of all zero areas this function finds plus @align_offset 303 * is multiple of that power of 2. 304 */ 305 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 306 unsigned long size, 307 unsigned long start, 308 unsigned int nr, 309 unsigned long align_mask, 310 unsigned long align_offset) 311 { 312 unsigned long index, end, i; 313 again: 314 index = find_next_zero_bit(map, size, start); 315 316 /* Align allocation */ 317 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 318 319 end = index + nr; 320 if (end > size) 321 return end; 322 i = find_next_bit(map, end, index); 323 if (i < end) { 324 start = i + 1; 325 goto again; 326 } 327 return index; 328 } 329 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 330 331 /* 332 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 333 * second version by Paul Jackson, third by Joe Korty. 334 */ 335 336 #define CHUNKSZ 32 337 #define nbits_to_hold_value(val) fls(val) 338 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 339 340 /** 341 * __bitmap_parse - convert an ASCII hex string into a bitmap. 342 * @buf: pointer to buffer containing string. 343 * @buflen: buffer size in bytes. If string is smaller than this 344 * then it must be terminated with a \0. 345 * @is_user: location of buffer, 0 indicates kernel space 346 * @maskp: pointer to bitmap array that will contain result. 347 * @nmaskbits: size of bitmap, in bits. 348 * 349 * Commas group hex digits into chunks. Each chunk defines exactly 32 350 * bits of the resultant bitmask. No chunk may specify a value larger 351 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 352 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 353 * characters and for grouping errors such as "1,,5", ",44", "," and "". 354 * Leading and trailing whitespace accepted, but not embedded whitespace. 355 */ 356 int __bitmap_parse(const char *buf, unsigned int buflen, 357 int is_user, unsigned long *maskp, 358 int nmaskbits) 359 { 360 int c, old_c, totaldigits, ndigits, nchunks, nbits; 361 u32 chunk; 362 const char __user __force *ubuf = (const char __user __force *)buf; 363 364 bitmap_zero(maskp, nmaskbits); 365 366 nchunks = nbits = totaldigits = c = 0; 367 do { 368 chunk = 0; 369 ndigits = totaldigits; 370 371 /* Get the next chunk of the bitmap */ 372 while (buflen) { 373 old_c = c; 374 if (is_user) { 375 if (__get_user(c, ubuf++)) 376 return -EFAULT; 377 } 378 else 379 c = *buf++; 380 buflen--; 381 if (isspace(c)) 382 continue; 383 384 /* 385 * If the last character was a space and the current 386 * character isn't '\0', we've got embedded whitespace. 387 * This is a no-no, so throw an error. 388 */ 389 if (totaldigits && c && isspace(old_c)) 390 return -EINVAL; 391 392 /* A '\0' or a ',' signal the end of the chunk */ 393 if (c == '\0' || c == ',') 394 break; 395 396 if (!isxdigit(c)) 397 return -EINVAL; 398 399 /* 400 * Make sure there are at least 4 free bits in 'chunk'. 401 * If not, this hexdigit will overflow 'chunk', so 402 * throw an error. 403 */ 404 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 405 return -EOVERFLOW; 406 407 chunk = (chunk << 4) | hex_to_bin(c); 408 totaldigits++; 409 } 410 if (ndigits == totaldigits) 411 return -EINVAL; 412 if (nchunks == 0 && chunk == 0) 413 continue; 414 415 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 416 *maskp |= chunk; 417 nchunks++; 418 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 419 if (nbits > nmaskbits) 420 return -EOVERFLOW; 421 } while (buflen && c == ','); 422 423 return 0; 424 } 425 EXPORT_SYMBOL(__bitmap_parse); 426 427 /** 428 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 429 * 430 * @ubuf: pointer to user buffer containing string. 431 * @ulen: buffer size in bytes. If string is smaller than this 432 * then it must be terminated with a \0. 433 * @maskp: pointer to bitmap array that will contain result. 434 * @nmaskbits: size of bitmap, in bits. 435 * 436 * Wrapper for __bitmap_parse(), providing it with user buffer. 437 * 438 * We cannot have this as an inline function in bitmap.h because it needs 439 * linux/uaccess.h to get the access_ok() declaration and this causes 440 * cyclic dependencies. 441 */ 442 int bitmap_parse_user(const char __user *ubuf, 443 unsigned int ulen, unsigned long *maskp, 444 int nmaskbits) 445 { 446 if (!access_ok(VERIFY_READ, ubuf, ulen)) 447 return -EFAULT; 448 return __bitmap_parse((const char __force *)ubuf, 449 ulen, 1, maskp, nmaskbits); 450 451 } 452 EXPORT_SYMBOL(bitmap_parse_user); 453 454 /** 455 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 456 * @list: indicates whether the bitmap must be list 457 * @buf: page aligned buffer into which string is placed 458 * @maskp: pointer to bitmap to convert 459 * @nmaskbits: size of bitmap, in bits 460 * 461 * Output format is a comma-separated list of decimal numbers and 462 * ranges if list is specified or hex digits grouped into comma-separated 463 * sets of 8 digits/set. Returns the number of characters written to buf. 464 * 465 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 466 * area and that sufficient storage remains at @buf to accommodate the 467 * bitmap_print_to_pagebuf() output. Returns the number of characters 468 * actually printed to @buf, excluding terminating '\0'. 469 */ 470 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 471 int nmaskbits) 472 { 473 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 474 475 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 476 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 477 } 478 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 479 480 /** 481 * __bitmap_parselist - convert list format ASCII string to bitmap 482 * @buf: read nul-terminated user string from this buffer 483 * @buflen: buffer size in bytes. If string is smaller than this 484 * then it must be terminated with a \0. 485 * @is_user: location of buffer, 0 indicates kernel space 486 * @maskp: write resulting mask here 487 * @nmaskbits: number of bits in mask to be written 488 * 489 * Input format is a comma-separated list of decimal numbers and 490 * ranges. Consecutively set bits are shown as two hyphen-separated 491 * decimal numbers, the smallest and largest bit numbers set in 492 * the range. 493 * Optionally each range can be postfixed to denote that only parts of it 494 * should be set. The range will divided to groups of specific size. 495 * From each group will be used only defined amount of bits. 496 * Syntax: range:used_size/group_size 497 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 498 * 499 * Returns: 0 on success, -errno on invalid input strings. Error values: 500 * 501 * - ``-EINVAL``: second number in range smaller than first 502 * - ``-EINVAL``: invalid character in string 503 * - ``-ERANGE``: bit number specified too large for mask 504 */ 505 static int __bitmap_parselist(const char *buf, unsigned int buflen, 506 int is_user, unsigned long *maskp, 507 int nmaskbits) 508 { 509 unsigned int a, b, old_a, old_b; 510 unsigned int group_size, used_size, off; 511 int c, old_c, totaldigits, ndigits; 512 const char __user __force *ubuf = (const char __user __force *)buf; 513 int at_start, in_range, in_partial_range; 514 515 totaldigits = c = 0; 516 old_a = old_b = 0; 517 group_size = used_size = 0; 518 bitmap_zero(maskp, nmaskbits); 519 do { 520 at_start = 1; 521 in_range = 0; 522 in_partial_range = 0; 523 a = b = 0; 524 ndigits = totaldigits; 525 526 /* Get the next cpu# or a range of cpu#'s */ 527 while (buflen) { 528 old_c = c; 529 if (is_user) { 530 if (__get_user(c, ubuf++)) 531 return -EFAULT; 532 } else 533 c = *buf++; 534 buflen--; 535 if (isspace(c)) 536 continue; 537 538 /* A '\0' or a ',' signal the end of a cpu# or range */ 539 if (c == '\0' || c == ',') 540 break; 541 /* 542 * whitespaces between digits are not allowed, 543 * but it's ok if whitespaces are on head or tail. 544 * when old_c is whilespace, 545 * if totaldigits == ndigits, whitespace is on head. 546 * if whitespace is on tail, it should not run here. 547 * as c was ',' or '\0', 548 * the last code line has broken the current loop. 549 */ 550 if ((totaldigits != ndigits) && isspace(old_c)) 551 return -EINVAL; 552 553 if (c == '/') { 554 used_size = a; 555 at_start = 1; 556 in_range = 0; 557 a = b = 0; 558 continue; 559 } 560 561 if (c == ':') { 562 old_a = a; 563 old_b = b; 564 at_start = 1; 565 in_range = 0; 566 in_partial_range = 1; 567 a = b = 0; 568 continue; 569 } 570 571 if (c == '-') { 572 if (at_start || in_range) 573 return -EINVAL; 574 b = 0; 575 in_range = 1; 576 at_start = 1; 577 continue; 578 } 579 580 if (!isdigit(c)) 581 return -EINVAL; 582 583 b = b * 10 + (c - '0'); 584 if (!in_range) 585 a = b; 586 at_start = 0; 587 totaldigits++; 588 } 589 if (ndigits == totaldigits) 590 continue; 591 if (in_partial_range) { 592 group_size = a; 593 a = old_a; 594 b = old_b; 595 old_a = old_b = 0; 596 } else { 597 used_size = group_size = b - a + 1; 598 } 599 /* if no digit is after '-', it's wrong*/ 600 if (at_start && in_range) 601 return -EINVAL; 602 if (!(a <= b) || group_size == 0 || !(used_size <= group_size)) 603 return -EINVAL; 604 if (b >= nmaskbits) 605 return -ERANGE; 606 while (a <= b) { 607 off = min(b - a + 1, used_size); 608 bitmap_set(maskp, a, off); 609 a += group_size; 610 } 611 } while (buflen && c == ','); 612 return 0; 613 } 614 615 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 616 { 617 char *nl = strchrnul(bp, '\n'); 618 int len = nl - bp; 619 620 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 621 } 622 EXPORT_SYMBOL(bitmap_parselist); 623 624 625 /** 626 * bitmap_parselist_user() 627 * 628 * @ubuf: pointer to user buffer containing string. 629 * @ulen: buffer size in bytes. If string is smaller than this 630 * then it must be terminated with a \0. 631 * @maskp: pointer to bitmap array that will contain result. 632 * @nmaskbits: size of bitmap, in bits. 633 * 634 * Wrapper for bitmap_parselist(), providing it with user buffer. 635 * 636 * We cannot have this as an inline function in bitmap.h because it needs 637 * linux/uaccess.h to get the access_ok() declaration and this causes 638 * cyclic dependencies. 639 */ 640 int bitmap_parselist_user(const char __user *ubuf, 641 unsigned int ulen, unsigned long *maskp, 642 int nmaskbits) 643 { 644 if (!access_ok(VERIFY_READ, ubuf, ulen)) 645 return -EFAULT; 646 return __bitmap_parselist((const char __force *)ubuf, 647 ulen, 1, maskp, nmaskbits); 648 } 649 EXPORT_SYMBOL(bitmap_parselist_user); 650 651 652 /** 653 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 654 * @buf: pointer to a bitmap 655 * @pos: a bit position in @buf (0 <= @pos < @nbits) 656 * @nbits: number of valid bit positions in @buf 657 * 658 * Map the bit at position @pos in @buf (of length @nbits) to the 659 * ordinal of which set bit it is. If it is not set or if @pos 660 * is not a valid bit position, map to -1. 661 * 662 * If for example, just bits 4 through 7 are set in @buf, then @pos 663 * values 4 through 7 will get mapped to 0 through 3, respectively, 664 * and other @pos values will get mapped to -1. When @pos value 7 665 * gets mapped to (returns) @ord value 3 in this example, that means 666 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 667 * 668 * The bit positions 0 through @bits are valid positions in @buf. 669 */ 670 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 671 { 672 if (pos >= nbits || !test_bit(pos, buf)) 673 return -1; 674 675 return __bitmap_weight(buf, pos); 676 } 677 678 /** 679 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 680 * @buf: pointer to bitmap 681 * @ord: ordinal bit position (n-th set bit, n >= 0) 682 * @nbits: number of valid bit positions in @buf 683 * 684 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 685 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 686 * >= weight(buf), returns @nbits. 687 * 688 * If for example, just bits 4 through 7 are set in @buf, then @ord 689 * values 0 through 3 will get mapped to 4 through 7, respectively, 690 * and all other @ord values returns @nbits. When @ord value 3 691 * gets mapped to (returns) @pos value 7 in this example, that means 692 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 693 * 694 * The bit positions 0 through @nbits-1 are valid positions in @buf. 695 */ 696 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 697 { 698 unsigned int pos; 699 700 for (pos = find_first_bit(buf, nbits); 701 pos < nbits && ord; 702 pos = find_next_bit(buf, nbits, pos + 1)) 703 ord--; 704 705 return pos; 706 } 707 708 /** 709 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 710 * @dst: remapped result 711 * @src: subset to be remapped 712 * @old: defines domain of map 713 * @new: defines range of map 714 * @nbits: number of bits in each of these bitmaps 715 * 716 * Let @old and @new define a mapping of bit positions, such that 717 * whatever position is held by the n-th set bit in @old is mapped 718 * to the n-th set bit in @new. In the more general case, allowing 719 * for the possibility that the weight 'w' of @new is less than the 720 * weight of @old, map the position of the n-th set bit in @old to 721 * the position of the m-th set bit in @new, where m == n % w. 722 * 723 * If either of the @old and @new bitmaps are empty, or if @src and 724 * @dst point to the same location, then this routine copies @src 725 * to @dst. 726 * 727 * The positions of unset bits in @old are mapped to themselves 728 * (the identify map). 729 * 730 * Apply the above specified mapping to @src, placing the result in 731 * @dst, clearing any bits previously set in @dst. 732 * 733 * For example, lets say that @old has bits 4 through 7 set, and 734 * @new has bits 12 through 15 set. This defines the mapping of bit 735 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 736 * bit positions unchanged. So if say @src comes into this routine 737 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 738 * 13 and 15 set. 739 */ 740 void bitmap_remap(unsigned long *dst, const unsigned long *src, 741 const unsigned long *old, const unsigned long *new, 742 unsigned int nbits) 743 { 744 unsigned int oldbit, w; 745 746 if (dst == src) /* following doesn't handle inplace remaps */ 747 return; 748 bitmap_zero(dst, nbits); 749 750 w = bitmap_weight(new, nbits); 751 for_each_set_bit(oldbit, src, nbits) { 752 int n = bitmap_pos_to_ord(old, oldbit, nbits); 753 754 if (n < 0 || w == 0) 755 set_bit(oldbit, dst); /* identity map */ 756 else 757 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 758 } 759 } 760 EXPORT_SYMBOL(bitmap_remap); 761 762 /** 763 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 764 * @oldbit: bit position to be mapped 765 * @old: defines domain of map 766 * @new: defines range of map 767 * @bits: number of bits in each of these bitmaps 768 * 769 * Let @old and @new define a mapping of bit positions, such that 770 * whatever position is held by the n-th set bit in @old is mapped 771 * to the n-th set bit in @new. In the more general case, allowing 772 * for the possibility that the weight 'w' of @new is less than the 773 * weight of @old, map the position of the n-th set bit in @old to 774 * the position of the m-th set bit in @new, where m == n % w. 775 * 776 * The positions of unset bits in @old are mapped to themselves 777 * (the identify map). 778 * 779 * Apply the above specified mapping to bit position @oldbit, returning 780 * the new bit position. 781 * 782 * For example, lets say that @old has bits 4 through 7 set, and 783 * @new has bits 12 through 15 set. This defines the mapping of bit 784 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 785 * bit positions unchanged. So if say @oldbit is 5, then this routine 786 * returns 13. 787 */ 788 int bitmap_bitremap(int oldbit, const unsigned long *old, 789 const unsigned long *new, int bits) 790 { 791 int w = bitmap_weight(new, bits); 792 int n = bitmap_pos_to_ord(old, oldbit, bits); 793 if (n < 0 || w == 0) 794 return oldbit; 795 else 796 return bitmap_ord_to_pos(new, n % w, bits); 797 } 798 EXPORT_SYMBOL(bitmap_bitremap); 799 800 /** 801 * bitmap_onto - translate one bitmap relative to another 802 * @dst: resulting translated bitmap 803 * @orig: original untranslated bitmap 804 * @relmap: bitmap relative to which translated 805 * @bits: number of bits in each of these bitmaps 806 * 807 * Set the n-th bit of @dst iff there exists some m such that the 808 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 809 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 810 * (If you understood the previous sentence the first time your 811 * read it, you're overqualified for your current job.) 812 * 813 * In other words, @orig is mapped onto (surjectively) @dst, 814 * using the map { <n, m> | the n-th bit of @relmap is the 815 * m-th set bit of @relmap }. 816 * 817 * Any set bits in @orig above bit number W, where W is the 818 * weight of (number of set bits in) @relmap are mapped nowhere. 819 * In particular, if for all bits m set in @orig, m >= W, then 820 * @dst will end up empty. In situations where the possibility 821 * of such an empty result is not desired, one way to avoid it is 822 * to use the bitmap_fold() operator, below, to first fold the 823 * @orig bitmap over itself so that all its set bits x are in the 824 * range 0 <= x < W. The bitmap_fold() operator does this by 825 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 826 * 827 * Example [1] for bitmap_onto(): 828 * Let's say @relmap has bits 30-39 set, and @orig has bits 829 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 830 * @dst will have bits 31, 33, 35, 37 and 39 set. 831 * 832 * When bit 0 is set in @orig, it means turn on the bit in 833 * @dst corresponding to whatever is the first bit (if any) 834 * that is turned on in @relmap. Since bit 0 was off in the 835 * above example, we leave off that bit (bit 30) in @dst. 836 * 837 * When bit 1 is set in @orig (as in the above example), it 838 * means turn on the bit in @dst corresponding to whatever 839 * is the second bit that is turned on in @relmap. The second 840 * bit in @relmap that was turned on in the above example was 841 * bit 31, so we turned on bit 31 in @dst. 842 * 843 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 844 * because they were the 4th, 6th, 8th and 10th set bits 845 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 846 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 847 * 848 * When bit 11 is set in @orig, it means turn on the bit in 849 * @dst corresponding to whatever is the twelfth bit that is 850 * turned on in @relmap. In the above example, there were 851 * only ten bits turned on in @relmap (30..39), so that bit 852 * 11 was set in @orig had no affect on @dst. 853 * 854 * Example [2] for bitmap_fold() + bitmap_onto(): 855 * Let's say @relmap has these ten bits set:: 856 * 857 * 40 41 42 43 45 48 53 61 74 95 858 * 859 * (for the curious, that's 40 plus the first ten terms of the 860 * Fibonacci sequence.) 861 * 862 * Further lets say we use the following code, invoking 863 * bitmap_fold() then bitmap_onto, as suggested above to 864 * avoid the possibility of an empty @dst result:: 865 * 866 * unsigned long *tmp; // a temporary bitmap's bits 867 * 868 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 869 * bitmap_onto(dst, tmp, relmap, bits); 870 * 871 * Then this table shows what various values of @dst would be, for 872 * various @orig's. I list the zero-based positions of each set bit. 873 * The tmp column shows the intermediate result, as computed by 874 * using bitmap_fold() to fold the @orig bitmap modulo ten 875 * (the weight of @relmap): 876 * 877 * =============== ============== ================= 878 * @orig tmp @dst 879 * 0 0 40 880 * 1 1 41 881 * 9 9 95 882 * 10 0 40 [#f1]_ 883 * 1 3 5 7 1 3 5 7 41 43 48 61 884 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 885 * 0 9 18 27 0 9 8 7 40 61 74 95 886 * 0 10 20 30 0 40 887 * 0 11 22 33 0 1 2 3 40 41 42 43 888 * 0 12 24 36 0 2 4 6 40 42 45 53 889 * 78 102 211 1 2 8 41 42 74 [#f1]_ 890 * =============== ============== ================= 891 * 892 * .. [#f1] 893 * 894 * For these marked lines, if we hadn't first done bitmap_fold() 895 * into tmp, then the @dst result would have been empty. 896 * 897 * If either of @orig or @relmap is empty (no set bits), then @dst 898 * will be returned empty. 899 * 900 * If (as explained above) the only set bits in @orig are in positions 901 * m where m >= W, (where W is the weight of @relmap) then @dst will 902 * once again be returned empty. 903 * 904 * All bits in @dst not set by the above rule are cleared. 905 */ 906 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 907 const unsigned long *relmap, unsigned int bits) 908 { 909 unsigned int n, m; /* same meaning as in above comment */ 910 911 if (dst == orig) /* following doesn't handle inplace mappings */ 912 return; 913 bitmap_zero(dst, bits); 914 915 /* 916 * The following code is a more efficient, but less 917 * obvious, equivalent to the loop: 918 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 919 * n = bitmap_ord_to_pos(orig, m, bits); 920 * if (test_bit(m, orig)) 921 * set_bit(n, dst); 922 * } 923 */ 924 925 m = 0; 926 for_each_set_bit(n, relmap, bits) { 927 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 928 if (test_bit(m, orig)) 929 set_bit(n, dst); 930 m++; 931 } 932 } 933 EXPORT_SYMBOL(bitmap_onto); 934 935 /** 936 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 937 * @dst: resulting smaller bitmap 938 * @orig: original larger bitmap 939 * @sz: specified size 940 * @nbits: number of bits in each of these bitmaps 941 * 942 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 943 * Clear all other bits in @dst. See further the comment and 944 * Example [2] for bitmap_onto() for why and how to use this. 945 */ 946 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 947 unsigned int sz, unsigned int nbits) 948 { 949 unsigned int oldbit; 950 951 if (dst == orig) /* following doesn't handle inplace mappings */ 952 return; 953 bitmap_zero(dst, nbits); 954 955 for_each_set_bit(oldbit, orig, nbits) 956 set_bit(oldbit % sz, dst); 957 } 958 EXPORT_SYMBOL(bitmap_fold); 959 960 /* 961 * Common code for bitmap_*_region() routines. 962 * bitmap: array of unsigned longs corresponding to the bitmap 963 * pos: the beginning of the region 964 * order: region size (log base 2 of number of bits) 965 * reg_op: operation(s) to perform on that region of bitmap 966 * 967 * Can set, verify and/or release a region of bits in a bitmap, 968 * depending on which combination of REG_OP_* flag bits is set. 969 * 970 * A region of a bitmap is a sequence of bits in the bitmap, of 971 * some size '1 << order' (a power of two), aligned to that same 972 * '1 << order' power of two. 973 * 974 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 975 * Returns 0 in all other cases and reg_ops. 976 */ 977 978 enum { 979 REG_OP_ISFREE, /* true if region is all zero bits */ 980 REG_OP_ALLOC, /* set all bits in region */ 981 REG_OP_RELEASE, /* clear all bits in region */ 982 }; 983 984 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 985 { 986 int nbits_reg; /* number of bits in region */ 987 int index; /* index first long of region in bitmap */ 988 int offset; /* bit offset region in bitmap[index] */ 989 int nlongs_reg; /* num longs spanned by region in bitmap */ 990 int nbitsinlong; /* num bits of region in each spanned long */ 991 unsigned long mask; /* bitmask for one long of region */ 992 int i; /* scans bitmap by longs */ 993 int ret = 0; /* return value */ 994 995 /* 996 * Either nlongs_reg == 1 (for small orders that fit in one long) 997 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 998 */ 999 nbits_reg = 1 << order; 1000 index = pos / BITS_PER_LONG; 1001 offset = pos - (index * BITS_PER_LONG); 1002 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1003 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1004 1005 /* 1006 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1007 * overflows if nbitsinlong == BITS_PER_LONG. 1008 */ 1009 mask = (1UL << (nbitsinlong - 1)); 1010 mask += mask - 1; 1011 mask <<= offset; 1012 1013 switch (reg_op) { 1014 case REG_OP_ISFREE: 1015 for (i = 0; i < nlongs_reg; i++) { 1016 if (bitmap[index + i] & mask) 1017 goto done; 1018 } 1019 ret = 1; /* all bits in region free (zero) */ 1020 break; 1021 1022 case REG_OP_ALLOC: 1023 for (i = 0; i < nlongs_reg; i++) 1024 bitmap[index + i] |= mask; 1025 break; 1026 1027 case REG_OP_RELEASE: 1028 for (i = 0; i < nlongs_reg; i++) 1029 bitmap[index + i] &= ~mask; 1030 break; 1031 } 1032 done: 1033 return ret; 1034 } 1035 1036 /** 1037 * bitmap_find_free_region - find a contiguous aligned mem region 1038 * @bitmap: array of unsigned longs corresponding to the bitmap 1039 * @bits: number of bits in the bitmap 1040 * @order: region size (log base 2 of number of bits) to find 1041 * 1042 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1043 * allocate them (set them to one). Only consider regions of length 1044 * a power (@order) of two, aligned to that power of two, which 1045 * makes the search algorithm much faster. 1046 * 1047 * Return the bit offset in bitmap of the allocated region, 1048 * or -errno on failure. 1049 */ 1050 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1051 { 1052 unsigned int pos, end; /* scans bitmap by regions of size order */ 1053 1054 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1055 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1056 continue; 1057 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1058 return pos; 1059 } 1060 return -ENOMEM; 1061 } 1062 EXPORT_SYMBOL(bitmap_find_free_region); 1063 1064 /** 1065 * bitmap_release_region - release allocated bitmap region 1066 * @bitmap: array of unsigned longs corresponding to the bitmap 1067 * @pos: beginning of bit region to release 1068 * @order: region size (log base 2 of number of bits) to release 1069 * 1070 * This is the complement to __bitmap_find_free_region() and releases 1071 * the found region (by clearing it in the bitmap). 1072 * 1073 * No return value. 1074 */ 1075 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1076 { 1077 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1078 } 1079 EXPORT_SYMBOL(bitmap_release_region); 1080 1081 /** 1082 * bitmap_allocate_region - allocate bitmap region 1083 * @bitmap: array of unsigned longs corresponding to the bitmap 1084 * @pos: beginning of bit region to allocate 1085 * @order: region size (log base 2 of number of bits) to allocate 1086 * 1087 * Allocate (set bits in) a specified region of a bitmap. 1088 * 1089 * Return 0 on success, or %-EBUSY if specified region wasn't 1090 * free (not all bits were zero). 1091 */ 1092 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1093 { 1094 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1095 return -EBUSY; 1096 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1097 } 1098 EXPORT_SYMBOL(bitmap_allocate_region); 1099 1100 /** 1101 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1102 * @dst: destination buffer 1103 * @src: bitmap to copy 1104 * @nbits: number of bits in the bitmap 1105 * 1106 * Require nbits % BITS_PER_LONG == 0. 1107 */ 1108 #ifdef __BIG_ENDIAN 1109 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1110 { 1111 unsigned int i; 1112 1113 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1114 if (BITS_PER_LONG == 64) 1115 dst[i] = cpu_to_le64(src[i]); 1116 else 1117 dst[i] = cpu_to_le32(src[i]); 1118 } 1119 } 1120 EXPORT_SYMBOL(bitmap_copy_le); 1121 #endif 1122 1123 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1124 { 1125 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1126 flags); 1127 } 1128 EXPORT_SYMBOL(bitmap_alloc); 1129 1130 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1131 { 1132 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1133 } 1134 EXPORT_SYMBOL(bitmap_zalloc); 1135 1136 void bitmap_free(const unsigned long *bitmap) 1137 { 1138 kfree(bitmap); 1139 } 1140 EXPORT_SYMBOL(bitmap_free); 1141 1142 #if BITS_PER_LONG == 64 1143 /** 1144 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1145 * @bitmap: array of unsigned longs, the destination bitmap 1146 * @buf: array of u32 (in host byte order), the source bitmap 1147 * @nbits: number of bits in @bitmap 1148 */ 1149 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1150 { 1151 unsigned int i, halfwords; 1152 1153 halfwords = DIV_ROUND_UP(nbits, 32); 1154 for (i = 0; i < halfwords; i++) { 1155 bitmap[i/2] = (unsigned long) buf[i]; 1156 if (++i < halfwords) 1157 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1158 } 1159 1160 /* Clear tail bits in last word beyond nbits. */ 1161 if (nbits % BITS_PER_LONG) 1162 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1163 } 1164 EXPORT_SYMBOL(bitmap_from_arr32); 1165 1166 /** 1167 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1168 * @buf: array of u32 (in host byte order), the dest bitmap 1169 * @bitmap: array of unsigned longs, the source bitmap 1170 * @nbits: number of bits in @bitmap 1171 */ 1172 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1173 { 1174 unsigned int i, halfwords; 1175 1176 halfwords = DIV_ROUND_UP(nbits, 32); 1177 for (i = 0; i < halfwords; i++) { 1178 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1179 if (++i < halfwords) 1180 buf[i] = (u32) (bitmap[i/2] >> 32); 1181 } 1182 1183 /* Clear tail bits in last element of array beyond nbits. */ 1184 if (nbits % BITS_PER_LONG) 1185 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1186 } 1187 EXPORT_SYMBOL(bitmap_to_arr32); 1188 1189 #endif 1190