xref: /openbmc/linux/lib/bitmap.c (revision f1770e3c)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/page.h>
22 
23 /**
24  * DOC: bitmap introduction
25  *
26  * bitmaps provide an array of bits, implemented using an an
27  * array of unsigned longs.  The number of valid bits in a
28  * given bitmap does _not_ need to be an exact multiple of
29  * BITS_PER_LONG.
30  *
31  * The possible unused bits in the last, partially used word
32  * of a bitmap are 'don't care'.  The implementation makes
33  * no particular effort to keep them zero.  It ensures that
34  * their value will not affect the results of any operation.
35  * The bitmap operations that return Boolean (bitmap_empty,
36  * for example) or scalar (bitmap_weight, for example) results
37  * carefully filter out these unused bits from impacting their
38  * results.
39  *
40  * The byte ordering of bitmaps is more natural on little
41  * endian architectures.  See the big-endian headers
42  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43  * for the best explanations of this ordering.
44  */
45 
46 int __bitmap_equal(const unsigned long *bitmap1,
47 		const unsigned long *bitmap2, unsigned int bits)
48 {
49 	unsigned int k, lim = bits/BITS_PER_LONG;
50 	for (k = 0; k < lim; ++k)
51 		if (bitmap1[k] != bitmap2[k])
52 			return 0;
53 
54 	if (bits % BITS_PER_LONG)
55 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 			return 0;
57 
58 	return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61 
62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
63 {
64 	unsigned int k, lim = BITS_TO_LONGS(bits);
65 	for (k = 0; k < lim; ++k)
66 		dst[k] = ~src[k];
67 }
68 EXPORT_SYMBOL(__bitmap_complement);
69 
70 /**
71  * __bitmap_shift_right - logical right shift of the bits in a bitmap
72  *   @dst : destination bitmap
73  *   @src : source bitmap
74  *   @shift : shift by this many bits
75  *   @nbits : bitmap size, in bits
76  *
77  * Shifting right (dividing) means moving bits in the MS -> LS bit
78  * direction.  Zeros are fed into the vacated MS positions and the
79  * LS bits shifted off the bottom are lost.
80  */
81 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
82 			unsigned shift, unsigned nbits)
83 {
84 	unsigned k, lim = BITS_TO_LONGS(nbits);
85 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
86 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
87 	for (k = 0; off + k < lim; ++k) {
88 		unsigned long upper, lower;
89 
90 		/*
91 		 * If shift is not word aligned, take lower rem bits of
92 		 * word above and make them the top rem bits of result.
93 		 */
94 		if (!rem || off + k + 1 >= lim)
95 			upper = 0;
96 		else {
97 			upper = src[off + k + 1];
98 			if (off + k + 1 == lim - 1)
99 				upper &= mask;
100 			upper <<= (BITS_PER_LONG - rem);
101 		}
102 		lower = src[off + k];
103 		if (off + k == lim - 1)
104 			lower &= mask;
105 		lower >>= rem;
106 		dst[k] = lower | upper;
107 	}
108 	if (off)
109 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
110 }
111 EXPORT_SYMBOL(__bitmap_shift_right);
112 
113 
114 /**
115  * __bitmap_shift_left - logical left shift of the bits in a bitmap
116  *   @dst : destination bitmap
117  *   @src : source bitmap
118  *   @shift : shift by this many bits
119  *   @nbits : bitmap size, in bits
120  *
121  * Shifting left (multiplying) means moving bits in the LS -> MS
122  * direction.  Zeros are fed into the vacated LS bit positions
123  * and those MS bits shifted off the top are lost.
124  */
125 
126 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
127 			unsigned int shift, unsigned int nbits)
128 {
129 	int k;
130 	unsigned int lim = BITS_TO_LONGS(nbits);
131 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
132 	for (k = lim - off - 1; k >= 0; --k) {
133 		unsigned long upper, lower;
134 
135 		/*
136 		 * If shift is not word aligned, take upper rem bits of
137 		 * word below and make them the bottom rem bits of result.
138 		 */
139 		if (rem && k > 0)
140 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
141 		else
142 			lower = 0;
143 		upper = src[k] << rem;
144 		dst[k + off] = lower | upper;
145 	}
146 	if (off)
147 		memset(dst, 0, off*sizeof(unsigned long));
148 }
149 EXPORT_SYMBOL(__bitmap_shift_left);
150 
151 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
152 				const unsigned long *bitmap2, unsigned int bits)
153 {
154 	unsigned int k;
155 	unsigned int lim = bits/BITS_PER_LONG;
156 	unsigned long result = 0;
157 
158 	for (k = 0; k < lim; k++)
159 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
160 	if (bits % BITS_PER_LONG)
161 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
162 			   BITMAP_LAST_WORD_MASK(bits));
163 	return result != 0;
164 }
165 EXPORT_SYMBOL(__bitmap_and);
166 
167 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
168 				const unsigned long *bitmap2, unsigned int bits)
169 {
170 	unsigned int k;
171 	unsigned int nr = BITS_TO_LONGS(bits);
172 
173 	for (k = 0; k < nr; k++)
174 		dst[k] = bitmap1[k] | bitmap2[k];
175 }
176 EXPORT_SYMBOL(__bitmap_or);
177 
178 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
179 				const unsigned long *bitmap2, unsigned int bits)
180 {
181 	unsigned int k;
182 	unsigned int nr = BITS_TO_LONGS(bits);
183 
184 	for (k = 0; k < nr; k++)
185 		dst[k] = bitmap1[k] ^ bitmap2[k];
186 }
187 EXPORT_SYMBOL(__bitmap_xor);
188 
189 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
190 				const unsigned long *bitmap2, unsigned int bits)
191 {
192 	unsigned int k;
193 	unsigned int lim = bits/BITS_PER_LONG;
194 	unsigned long result = 0;
195 
196 	for (k = 0; k < lim; k++)
197 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
198 	if (bits % BITS_PER_LONG)
199 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
200 			   BITMAP_LAST_WORD_MASK(bits));
201 	return result != 0;
202 }
203 EXPORT_SYMBOL(__bitmap_andnot);
204 
205 int __bitmap_intersects(const unsigned long *bitmap1,
206 			const unsigned long *bitmap2, unsigned int bits)
207 {
208 	unsigned int k, lim = bits/BITS_PER_LONG;
209 	for (k = 0; k < lim; ++k)
210 		if (bitmap1[k] & bitmap2[k])
211 			return 1;
212 
213 	if (bits % BITS_PER_LONG)
214 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
215 			return 1;
216 	return 0;
217 }
218 EXPORT_SYMBOL(__bitmap_intersects);
219 
220 int __bitmap_subset(const unsigned long *bitmap1,
221 		    const unsigned long *bitmap2, unsigned int bits)
222 {
223 	unsigned int k, lim = bits/BITS_PER_LONG;
224 	for (k = 0; k < lim; ++k)
225 		if (bitmap1[k] & ~bitmap2[k])
226 			return 0;
227 
228 	if (bits % BITS_PER_LONG)
229 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
230 			return 0;
231 	return 1;
232 }
233 EXPORT_SYMBOL(__bitmap_subset);
234 
235 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
236 {
237 	unsigned int k, lim = bits/BITS_PER_LONG;
238 	int w = 0;
239 
240 	for (k = 0; k < lim; k++)
241 		w += hweight_long(bitmap[k]);
242 
243 	if (bits % BITS_PER_LONG)
244 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
245 
246 	return w;
247 }
248 EXPORT_SYMBOL(__bitmap_weight);
249 
250 void __bitmap_set(unsigned long *map, unsigned int start, int len)
251 {
252 	unsigned long *p = map + BIT_WORD(start);
253 	const unsigned int size = start + len;
254 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
255 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
256 
257 	while (len - bits_to_set >= 0) {
258 		*p |= mask_to_set;
259 		len -= bits_to_set;
260 		bits_to_set = BITS_PER_LONG;
261 		mask_to_set = ~0UL;
262 		p++;
263 	}
264 	if (len) {
265 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
266 		*p |= mask_to_set;
267 	}
268 }
269 EXPORT_SYMBOL(__bitmap_set);
270 
271 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
272 {
273 	unsigned long *p = map + BIT_WORD(start);
274 	const unsigned int size = start + len;
275 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
276 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
277 
278 	while (len - bits_to_clear >= 0) {
279 		*p &= ~mask_to_clear;
280 		len -= bits_to_clear;
281 		bits_to_clear = BITS_PER_LONG;
282 		mask_to_clear = ~0UL;
283 		p++;
284 	}
285 	if (len) {
286 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
287 		*p &= ~mask_to_clear;
288 	}
289 }
290 EXPORT_SYMBOL(__bitmap_clear);
291 
292 /**
293  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
294  * @map: The address to base the search on
295  * @size: The bitmap size in bits
296  * @start: The bitnumber to start searching at
297  * @nr: The number of zeroed bits we're looking for
298  * @align_mask: Alignment mask for zero area
299  * @align_offset: Alignment offset for zero area.
300  *
301  * The @align_mask should be one less than a power of 2; the effect is that
302  * the bit offset of all zero areas this function finds plus @align_offset
303  * is multiple of that power of 2.
304  */
305 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
306 					     unsigned long size,
307 					     unsigned long start,
308 					     unsigned int nr,
309 					     unsigned long align_mask,
310 					     unsigned long align_offset)
311 {
312 	unsigned long index, end, i;
313 again:
314 	index = find_next_zero_bit(map, size, start);
315 
316 	/* Align allocation */
317 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
318 
319 	end = index + nr;
320 	if (end > size)
321 		return end;
322 	i = find_next_bit(map, end, index);
323 	if (i < end) {
324 		start = i + 1;
325 		goto again;
326 	}
327 	return index;
328 }
329 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
330 
331 /*
332  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
333  * second version by Paul Jackson, third by Joe Korty.
334  */
335 
336 #define CHUNKSZ				32
337 #define nbits_to_hold_value(val)	fls(val)
338 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
339 
340 /**
341  * __bitmap_parse - convert an ASCII hex string into a bitmap.
342  * @buf: pointer to buffer containing string.
343  * @buflen: buffer size in bytes.  If string is smaller than this
344  *    then it must be terminated with a \0.
345  * @is_user: location of buffer, 0 indicates kernel space
346  * @maskp: pointer to bitmap array that will contain result.
347  * @nmaskbits: size of bitmap, in bits.
348  *
349  * Commas group hex digits into chunks.  Each chunk defines exactly 32
350  * bits of the resultant bitmask.  No chunk may specify a value larger
351  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
352  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
353  * characters and for grouping errors such as "1,,5", ",44", "," and "".
354  * Leading and trailing whitespace accepted, but not embedded whitespace.
355  */
356 int __bitmap_parse(const char *buf, unsigned int buflen,
357 		int is_user, unsigned long *maskp,
358 		int nmaskbits)
359 {
360 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
361 	u32 chunk;
362 	const char __user __force *ubuf = (const char __user __force *)buf;
363 
364 	bitmap_zero(maskp, nmaskbits);
365 
366 	nchunks = nbits = totaldigits = c = 0;
367 	do {
368 		chunk = 0;
369 		ndigits = totaldigits;
370 
371 		/* Get the next chunk of the bitmap */
372 		while (buflen) {
373 			old_c = c;
374 			if (is_user) {
375 				if (__get_user(c, ubuf++))
376 					return -EFAULT;
377 			}
378 			else
379 				c = *buf++;
380 			buflen--;
381 			if (isspace(c))
382 				continue;
383 
384 			/*
385 			 * If the last character was a space and the current
386 			 * character isn't '\0', we've got embedded whitespace.
387 			 * This is a no-no, so throw an error.
388 			 */
389 			if (totaldigits && c && isspace(old_c))
390 				return -EINVAL;
391 
392 			/* A '\0' or a ',' signal the end of the chunk */
393 			if (c == '\0' || c == ',')
394 				break;
395 
396 			if (!isxdigit(c))
397 				return -EINVAL;
398 
399 			/*
400 			 * Make sure there are at least 4 free bits in 'chunk'.
401 			 * If not, this hexdigit will overflow 'chunk', so
402 			 * throw an error.
403 			 */
404 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
405 				return -EOVERFLOW;
406 
407 			chunk = (chunk << 4) | hex_to_bin(c);
408 			totaldigits++;
409 		}
410 		if (ndigits == totaldigits)
411 			return -EINVAL;
412 		if (nchunks == 0 && chunk == 0)
413 			continue;
414 
415 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
416 		*maskp |= chunk;
417 		nchunks++;
418 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
419 		if (nbits > nmaskbits)
420 			return -EOVERFLOW;
421 	} while (buflen && c == ',');
422 
423 	return 0;
424 }
425 EXPORT_SYMBOL(__bitmap_parse);
426 
427 /**
428  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
429  *
430  * @ubuf: pointer to user buffer containing string.
431  * @ulen: buffer size in bytes.  If string is smaller than this
432  *    then it must be terminated with a \0.
433  * @maskp: pointer to bitmap array that will contain result.
434  * @nmaskbits: size of bitmap, in bits.
435  *
436  * Wrapper for __bitmap_parse(), providing it with user buffer.
437  *
438  * We cannot have this as an inline function in bitmap.h because it needs
439  * linux/uaccess.h to get the access_ok() declaration and this causes
440  * cyclic dependencies.
441  */
442 int bitmap_parse_user(const char __user *ubuf,
443 			unsigned int ulen, unsigned long *maskp,
444 			int nmaskbits)
445 {
446 	if (!access_ok(VERIFY_READ, ubuf, ulen))
447 		return -EFAULT;
448 	return __bitmap_parse((const char __force *)ubuf,
449 				ulen, 1, maskp, nmaskbits);
450 
451 }
452 EXPORT_SYMBOL(bitmap_parse_user);
453 
454 /**
455  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
456  * @list: indicates whether the bitmap must be list
457  * @buf: page aligned buffer into which string is placed
458  * @maskp: pointer to bitmap to convert
459  * @nmaskbits: size of bitmap, in bits
460  *
461  * Output format is a comma-separated list of decimal numbers and
462  * ranges if list is specified or hex digits grouped into comma-separated
463  * sets of 8 digits/set. Returns the number of characters written to buf.
464  *
465  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
466  * area and that sufficient storage remains at @buf to accommodate the
467  * bitmap_print_to_pagebuf() output. Returns the number of characters
468  * actually printed to @buf, excluding terminating '\0'.
469  */
470 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
471 			    int nmaskbits)
472 {
473 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
474 
475 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
476 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
477 }
478 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
479 
480 /**
481  * __bitmap_parselist - convert list format ASCII string to bitmap
482  * @buf: read nul-terminated user string from this buffer
483  * @buflen: buffer size in bytes.  If string is smaller than this
484  *    then it must be terminated with a \0.
485  * @is_user: location of buffer, 0 indicates kernel space
486  * @maskp: write resulting mask here
487  * @nmaskbits: number of bits in mask to be written
488  *
489  * Input format is a comma-separated list of decimal numbers and
490  * ranges.  Consecutively set bits are shown as two hyphen-separated
491  * decimal numbers, the smallest and largest bit numbers set in
492  * the range.
493  * Optionally each range can be postfixed to denote that only parts of it
494  * should be set. The range will divided to groups of specific size.
495  * From each group will be used only defined amount of bits.
496  * Syntax: range:used_size/group_size
497  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
498  *
499  * Returns: 0 on success, -errno on invalid input strings. Error values:
500  *
501  *   - ``-EINVAL``: second number in range smaller than first
502  *   - ``-EINVAL``: invalid character in string
503  *   - ``-ERANGE``: bit number specified too large for mask
504  */
505 static int __bitmap_parselist(const char *buf, unsigned int buflen,
506 		int is_user, unsigned long *maskp,
507 		int nmaskbits)
508 {
509 	unsigned int a, b, old_a, old_b;
510 	unsigned int group_size, used_size, off;
511 	int c, old_c, totaldigits, ndigits;
512 	const char __user __force *ubuf = (const char __user __force *)buf;
513 	int at_start, in_range, in_partial_range;
514 
515 	totaldigits = c = 0;
516 	old_a = old_b = 0;
517 	group_size = used_size = 0;
518 	bitmap_zero(maskp, nmaskbits);
519 	do {
520 		at_start = 1;
521 		in_range = 0;
522 		in_partial_range = 0;
523 		a = b = 0;
524 		ndigits = totaldigits;
525 
526 		/* Get the next cpu# or a range of cpu#'s */
527 		while (buflen) {
528 			old_c = c;
529 			if (is_user) {
530 				if (__get_user(c, ubuf++))
531 					return -EFAULT;
532 			} else
533 				c = *buf++;
534 			buflen--;
535 			if (isspace(c))
536 				continue;
537 
538 			/* A '\0' or a ',' signal the end of a cpu# or range */
539 			if (c == '\0' || c == ',')
540 				break;
541 			/*
542 			* whitespaces between digits are not allowed,
543 			* but it's ok if whitespaces are on head or tail.
544 			* when old_c is whilespace,
545 			* if totaldigits == ndigits, whitespace is on head.
546 			* if whitespace is on tail, it should not run here.
547 			* as c was ',' or '\0',
548 			* the last code line has broken the current loop.
549 			*/
550 			if ((totaldigits != ndigits) && isspace(old_c))
551 				return -EINVAL;
552 
553 			if (c == '/') {
554 				used_size = a;
555 				at_start = 1;
556 				in_range = 0;
557 				a = b = 0;
558 				continue;
559 			}
560 
561 			if (c == ':') {
562 				old_a = a;
563 				old_b = b;
564 				at_start = 1;
565 				in_range = 0;
566 				in_partial_range = 1;
567 				a = b = 0;
568 				continue;
569 			}
570 
571 			if (c == '-') {
572 				if (at_start || in_range)
573 					return -EINVAL;
574 				b = 0;
575 				in_range = 1;
576 				at_start = 1;
577 				continue;
578 			}
579 
580 			if (!isdigit(c))
581 				return -EINVAL;
582 
583 			b = b * 10 + (c - '0');
584 			if (!in_range)
585 				a = b;
586 			at_start = 0;
587 			totaldigits++;
588 		}
589 		if (ndigits == totaldigits)
590 			continue;
591 		if (in_partial_range) {
592 			group_size = a;
593 			a = old_a;
594 			b = old_b;
595 			old_a = old_b = 0;
596 		} else {
597 			used_size = group_size = b - a + 1;
598 		}
599 		/* if no digit is after '-', it's wrong*/
600 		if (at_start && in_range)
601 			return -EINVAL;
602 		if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
603 			return -EINVAL;
604 		if (b >= nmaskbits)
605 			return -ERANGE;
606 		while (a <= b) {
607 			off = min(b - a + 1, used_size);
608 			bitmap_set(maskp, a, off);
609 			a += group_size;
610 		}
611 	} while (buflen && c == ',');
612 	return 0;
613 }
614 
615 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
616 {
617 	char *nl  = strchrnul(bp, '\n');
618 	int len = nl - bp;
619 
620 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
621 }
622 EXPORT_SYMBOL(bitmap_parselist);
623 
624 
625 /**
626  * bitmap_parselist_user()
627  *
628  * @ubuf: pointer to user buffer containing string.
629  * @ulen: buffer size in bytes.  If string is smaller than this
630  *    then it must be terminated with a \0.
631  * @maskp: pointer to bitmap array that will contain result.
632  * @nmaskbits: size of bitmap, in bits.
633  *
634  * Wrapper for bitmap_parselist(), providing it with user buffer.
635  *
636  * We cannot have this as an inline function in bitmap.h because it needs
637  * linux/uaccess.h to get the access_ok() declaration and this causes
638  * cyclic dependencies.
639  */
640 int bitmap_parselist_user(const char __user *ubuf,
641 			unsigned int ulen, unsigned long *maskp,
642 			int nmaskbits)
643 {
644 	if (!access_ok(VERIFY_READ, ubuf, ulen))
645 		return -EFAULT;
646 	return __bitmap_parselist((const char __force *)ubuf,
647 					ulen, 1, maskp, nmaskbits);
648 }
649 EXPORT_SYMBOL(bitmap_parselist_user);
650 
651 
652 /**
653  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
654  *	@buf: pointer to a bitmap
655  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
656  *	@nbits: number of valid bit positions in @buf
657  *
658  * Map the bit at position @pos in @buf (of length @nbits) to the
659  * ordinal of which set bit it is.  If it is not set or if @pos
660  * is not a valid bit position, map to -1.
661  *
662  * If for example, just bits 4 through 7 are set in @buf, then @pos
663  * values 4 through 7 will get mapped to 0 through 3, respectively,
664  * and other @pos values will get mapped to -1.  When @pos value 7
665  * gets mapped to (returns) @ord value 3 in this example, that means
666  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
667  *
668  * The bit positions 0 through @bits are valid positions in @buf.
669  */
670 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
671 {
672 	if (pos >= nbits || !test_bit(pos, buf))
673 		return -1;
674 
675 	return __bitmap_weight(buf, pos);
676 }
677 
678 /**
679  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
680  *	@buf: pointer to bitmap
681  *	@ord: ordinal bit position (n-th set bit, n >= 0)
682  *	@nbits: number of valid bit positions in @buf
683  *
684  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
685  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
686  * >= weight(buf), returns @nbits.
687  *
688  * If for example, just bits 4 through 7 are set in @buf, then @ord
689  * values 0 through 3 will get mapped to 4 through 7, respectively,
690  * and all other @ord values returns @nbits.  When @ord value 3
691  * gets mapped to (returns) @pos value 7 in this example, that means
692  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
693  *
694  * The bit positions 0 through @nbits-1 are valid positions in @buf.
695  */
696 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
697 {
698 	unsigned int pos;
699 
700 	for (pos = find_first_bit(buf, nbits);
701 	     pos < nbits && ord;
702 	     pos = find_next_bit(buf, nbits, pos + 1))
703 		ord--;
704 
705 	return pos;
706 }
707 
708 /**
709  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
710  *	@dst: remapped result
711  *	@src: subset to be remapped
712  *	@old: defines domain of map
713  *	@new: defines range of map
714  *	@nbits: number of bits in each of these bitmaps
715  *
716  * Let @old and @new define a mapping of bit positions, such that
717  * whatever position is held by the n-th set bit in @old is mapped
718  * to the n-th set bit in @new.  In the more general case, allowing
719  * for the possibility that the weight 'w' of @new is less than the
720  * weight of @old, map the position of the n-th set bit in @old to
721  * the position of the m-th set bit in @new, where m == n % w.
722  *
723  * If either of the @old and @new bitmaps are empty, or if @src and
724  * @dst point to the same location, then this routine copies @src
725  * to @dst.
726  *
727  * The positions of unset bits in @old are mapped to themselves
728  * (the identify map).
729  *
730  * Apply the above specified mapping to @src, placing the result in
731  * @dst, clearing any bits previously set in @dst.
732  *
733  * For example, lets say that @old has bits 4 through 7 set, and
734  * @new has bits 12 through 15 set.  This defines the mapping of bit
735  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
736  * bit positions unchanged.  So if say @src comes into this routine
737  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
738  * 13 and 15 set.
739  */
740 void bitmap_remap(unsigned long *dst, const unsigned long *src,
741 		const unsigned long *old, const unsigned long *new,
742 		unsigned int nbits)
743 {
744 	unsigned int oldbit, w;
745 
746 	if (dst == src)		/* following doesn't handle inplace remaps */
747 		return;
748 	bitmap_zero(dst, nbits);
749 
750 	w = bitmap_weight(new, nbits);
751 	for_each_set_bit(oldbit, src, nbits) {
752 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
753 
754 		if (n < 0 || w == 0)
755 			set_bit(oldbit, dst);	/* identity map */
756 		else
757 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
758 	}
759 }
760 EXPORT_SYMBOL(bitmap_remap);
761 
762 /**
763  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
764  *	@oldbit: bit position to be mapped
765  *	@old: defines domain of map
766  *	@new: defines range of map
767  *	@bits: number of bits in each of these bitmaps
768  *
769  * Let @old and @new define a mapping of bit positions, such that
770  * whatever position is held by the n-th set bit in @old is mapped
771  * to the n-th set bit in @new.  In the more general case, allowing
772  * for the possibility that the weight 'w' of @new is less than the
773  * weight of @old, map the position of the n-th set bit in @old to
774  * the position of the m-th set bit in @new, where m == n % w.
775  *
776  * The positions of unset bits in @old are mapped to themselves
777  * (the identify map).
778  *
779  * Apply the above specified mapping to bit position @oldbit, returning
780  * the new bit position.
781  *
782  * For example, lets say that @old has bits 4 through 7 set, and
783  * @new has bits 12 through 15 set.  This defines the mapping of bit
784  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
785  * bit positions unchanged.  So if say @oldbit is 5, then this routine
786  * returns 13.
787  */
788 int bitmap_bitremap(int oldbit, const unsigned long *old,
789 				const unsigned long *new, int bits)
790 {
791 	int w = bitmap_weight(new, bits);
792 	int n = bitmap_pos_to_ord(old, oldbit, bits);
793 	if (n < 0 || w == 0)
794 		return oldbit;
795 	else
796 		return bitmap_ord_to_pos(new, n % w, bits);
797 }
798 EXPORT_SYMBOL(bitmap_bitremap);
799 
800 /**
801  * bitmap_onto - translate one bitmap relative to another
802  *	@dst: resulting translated bitmap
803  * 	@orig: original untranslated bitmap
804  * 	@relmap: bitmap relative to which translated
805  *	@bits: number of bits in each of these bitmaps
806  *
807  * Set the n-th bit of @dst iff there exists some m such that the
808  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
809  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
810  * (If you understood the previous sentence the first time your
811  * read it, you're overqualified for your current job.)
812  *
813  * In other words, @orig is mapped onto (surjectively) @dst,
814  * using the map { <n, m> | the n-th bit of @relmap is the
815  * m-th set bit of @relmap }.
816  *
817  * Any set bits in @orig above bit number W, where W is the
818  * weight of (number of set bits in) @relmap are mapped nowhere.
819  * In particular, if for all bits m set in @orig, m >= W, then
820  * @dst will end up empty.  In situations where the possibility
821  * of such an empty result is not desired, one way to avoid it is
822  * to use the bitmap_fold() operator, below, to first fold the
823  * @orig bitmap over itself so that all its set bits x are in the
824  * range 0 <= x < W.  The bitmap_fold() operator does this by
825  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
826  *
827  * Example [1] for bitmap_onto():
828  *  Let's say @relmap has bits 30-39 set, and @orig has bits
829  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
830  *  @dst will have bits 31, 33, 35, 37 and 39 set.
831  *
832  *  When bit 0 is set in @orig, it means turn on the bit in
833  *  @dst corresponding to whatever is the first bit (if any)
834  *  that is turned on in @relmap.  Since bit 0 was off in the
835  *  above example, we leave off that bit (bit 30) in @dst.
836  *
837  *  When bit 1 is set in @orig (as in the above example), it
838  *  means turn on the bit in @dst corresponding to whatever
839  *  is the second bit that is turned on in @relmap.  The second
840  *  bit in @relmap that was turned on in the above example was
841  *  bit 31, so we turned on bit 31 in @dst.
842  *
843  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
844  *  because they were the 4th, 6th, 8th and 10th set bits
845  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
846  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
847  *
848  *  When bit 11 is set in @orig, it means turn on the bit in
849  *  @dst corresponding to whatever is the twelfth bit that is
850  *  turned on in @relmap.  In the above example, there were
851  *  only ten bits turned on in @relmap (30..39), so that bit
852  *  11 was set in @orig had no affect on @dst.
853  *
854  * Example [2] for bitmap_fold() + bitmap_onto():
855  *  Let's say @relmap has these ten bits set::
856  *
857  *		40 41 42 43 45 48 53 61 74 95
858  *
859  *  (for the curious, that's 40 plus the first ten terms of the
860  *  Fibonacci sequence.)
861  *
862  *  Further lets say we use the following code, invoking
863  *  bitmap_fold() then bitmap_onto, as suggested above to
864  *  avoid the possibility of an empty @dst result::
865  *
866  *	unsigned long *tmp;	// a temporary bitmap's bits
867  *
868  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
869  *	bitmap_onto(dst, tmp, relmap, bits);
870  *
871  *  Then this table shows what various values of @dst would be, for
872  *  various @orig's.  I list the zero-based positions of each set bit.
873  *  The tmp column shows the intermediate result, as computed by
874  *  using bitmap_fold() to fold the @orig bitmap modulo ten
875  *  (the weight of @relmap):
876  *
877  *      =============== ============== =================
878  *      @orig           tmp            @dst
879  *      0                0             40
880  *      1                1             41
881  *      9                9             95
882  *      10               0             40 [#f1]_
883  *      1 3 5 7          1 3 5 7       41 43 48 61
884  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
885  *      0 9 18 27        0 9 8 7       40 61 74 95
886  *      0 10 20 30       0             40
887  *      0 11 22 33       0 1 2 3       40 41 42 43
888  *      0 12 24 36       0 2 4 6       40 42 45 53
889  *      78 102 211       1 2 8         41 42 74 [#f1]_
890  *      =============== ============== =================
891  *
892  * .. [#f1]
893  *
894  *     For these marked lines, if we hadn't first done bitmap_fold()
895  *     into tmp, then the @dst result would have been empty.
896  *
897  * If either of @orig or @relmap is empty (no set bits), then @dst
898  * will be returned empty.
899  *
900  * If (as explained above) the only set bits in @orig are in positions
901  * m where m >= W, (where W is the weight of @relmap) then @dst will
902  * once again be returned empty.
903  *
904  * All bits in @dst not set by the above rule are cleared.
905  */
906 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
907 			const unsigned long *relmap, unsigned int bits)
908 {
909 	unsigned int n, m;	/* same meaning as in above comment */
910 
911 	if (dst == orig)	/* following doesn't handle inplace mappings */
912 		return;
913 	bitmap_zero(dst, bits);
914 
915 	/*
916 	 * The following code is a more efficient, but less
917 	 * obvious, equivalent to the loop:
918 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
919 	 *		n = bitmap_ord_to_pos(orig, m, bits);
920 	 *		if (test_bit(m, orig))
921 	 *			set_bit(n, dst);
922 	 *	}
923 	 */
924 
925 	m = 0;
926 	for_each_set_bit(n, relmap, bits) {
927 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
928 		if (test_bit(m, orig))
929 			set_bit(n, dst);
930 		m++;
931 	}
932 }
933 EXPORT_SYMBOL(bitmap_onto);
934 
935 /**
936  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
937  *	@dst: resulting smaller bitmap
938  *	@orig: original larger bitmap
939  *	@sz: specified size
940  *	@nbits: number of bits in each of these bitmaps
941  *
942  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
943  * Clear all other bits in @dst.  See further the comment and
944  * Example [2] for bitmap_onto() for why and how to use this.
945  */
946 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
947 			unsigned int sz, unsigned int nbits)
948 {
949 	unsigned int oldbit;
950 
951 	if (dst == orig)	/* following doesn't handle inplace mappings */
952 		return;
953 	bitmap_zero(dst, nbits);
954 
955 	for_each_set_bit(oldbit, orig, nbits)
956 		set_bit(oldbit % sz, dst);
957 }
958 EXPORT_SYMBOL(bitmap_fold);
959 
960 /*
961  * Common code for bitmap_*_region() routines.
962  *	bitmap: array of unsigned longs corresponding to the bitmap
963  *	pos: the beginning of the region
964  *	order: region size (log base 2 of number of bits)
965  *	reg_op: operation(s) to perform on that region of bitmap
966  *
967  * Can set, verify and/or release a region of bits in a bitmap,
968  * depending on which combination of REG_OP_* flag bits is set.
969  *
970  * A region of a bitmap is a sequence of bits in the bitmap, of
971  * some size '1 << order' (a power of two), aligned to that same
972  * '1 << order' power of two.
973  *
974  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
975  * Returns 0 in all other cases and reg_ops.
976  */
977 
978 enum {
979 	REG_OP_ISFREE,		/* true if region is all zero bits */
980 	REG_OP_ALLOC,		/* set all bits in region */
981 	REG_OP_RELEASE,		/* clear all bits in region */
982 };
983 
984 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
985 {
986 	int nbits_reg;		/* number of bits in region */
987 	int index;		/* index first long of region in bitmap */
988 	int offset;		/* bit offset region in bitmap[index] */
989 	int nlongs_reg;		/* num longs spanned by region in bitmap */
990 	int nbitsinlong;	/* num bits of region in each spanned long */
991 	unsigned long mask;	/* bitmask for one long of region */
992 	int i;			/* scans bitmap by longs */
993 	int ret = 0;		/* return value */
994 
995 	/*
996 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
997 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
998 	 */
999 	nbits_reg = 1 << order;
1000 	index = pos / BITS_PER_LONG;
1001 	offset = pos - (index * BITS_PER_LONG);
1002 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1003 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1004 
1005 	/*
1006 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1007 	 * overflows if nbitsinlong == BITS_PER_LONG.
1008 	 */
1009 	mask = (1UL << (nbitsinlong - 1));
1010 	mask += mask - 1;
1011 	mask <<= offset;
1012 
1013 	switch (reg_op) {
1014 	case REG_OP_ISFREE:
1015 		for (i = 0; i < nlongs_reg; i++) {
1016 			if (bitmap[index + i] & mask)
1017 				goto done;
1018 		}
1019 		ret = 1;	/* all bits in region free (zero) */
1020 		break;
1021 
1022 	case REG_OP_ALLOC:
1023 		for (i = 0; i < nlongs_reg; i++)
1024 			bitmap[index + i] |= mask;
1025 		break;
1026 
1027 	case REG_OP_RELEASE:
1028 		for (i = 0; i < nlongs_reg; i++)
1029 			bitmap[index + i] &= ~mask;
1030 		break;
1031 	}
1032 done:
1033 	return ret;
1034 }
1035 
1036 /**
1037  * bitmap_find_free_region - find a contiguous aligned mem region
1038  *	@bitmap: array of unsigned longs corresponding to the bitmap
1039  *	@bits: number of bits in the bitmap
1040  *	@order: region size (log base 2 of number of bits) to find
1041  *
1042  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1043  * allocate them (set them to one).  Only consider regions of length
1044  * a power (@order) of two, aligned to that power of two, which
1045  * makes the search algorithm much faster.
1046  *
1047  * Return the bit offset in bitmap of the allocated region,
1048  * or -errno on failure.
1049  */
1050 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1051 {
1052 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1053 
1054 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1055 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1056 			continue;
1057 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1058 		return pos;
1059 	}
1060 	return -ENOMEM;
1061 }
1062 EXPORT_SYMBOL(bitmap_find_free_region);
1063 
1064 /**
1065  * bitmap_release_region - release allocated bitmap region
1066  *	@bitmap: array of unsigned longs corresponding to the bitmap
1067  *	@pos: beginning of bit region to release
1068  *	@order: region size (log base 2 of number of bits) to release
1069  *
1070  * This is the complement to __bitmap_find_free_region() and releases
1071  * the found region (by clearing it in the bitmap).
1072  *
1073  * No return value.
1074  */
1075 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1076 {
1077 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1078 }
1079 EXPORT_SYMBOL(bitmap_release_region);
1080 
1081 /**
1082  * bitmap_allocate_region - allocate bitmap region
1083  *	@bitmap: array of unsigned longs corresponding to the bitmap
1084  *	@pos: beginning of bit region to allocate
1085  *	@order: region size (log base 2 of number of bits) to allocate
1086  *
1087  * Allocate (set bits in) a specified region of a bitmap.
1088  *
1089  * Return 0 on success, or %-EBUSY if specified region wasn't
1090  * free (not all bits were zero).
1091  */
1092 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1093 {
1094 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1095 		return -EBUSY;
1096 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1097 }
1098 EXPORT_SYMBOL(bitmap_allocate_region);
1099 
1100 /**
1101  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1102  * @dst:   destination buffer
1103  * @src:   bitmap to copy
1104  * @nbits: number of bits in the bitmap
1105  *
1106  * Require nbits % BITS_PER_LONG == 0.
1107  */
1108 #ifdef __BIG_ENDIAN
1109 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1110 {
1111 	unsigned int i;
1112 
1113 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1114 		if (BITS_PER_LONG == 64)
1115 			dst[i] = cpu_to_le64(src[i]);
1116 		else
1117 			dst[i] = cpu_to_le32(src[i]);
1118 	}
1119 }
1120 EXPORT_SYMBOL(bitmap_copy_le);
1121 #endif
1122 
1123 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1124 {
1125 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1126 			     flags);
1127 }
1128 EXPORT_SYMBOL(bitmap_alloc);
1129 
1130 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1131 {
1132 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1133 }
1134 EXPORT_SYMBOL(bitmap_zalloc);
1135 
1136 void bitmap_free(const unsigned long *bitmap)
1137 {
1138 	kfree(bitmap);
1139 }
1140 EXPORT_SYMBOL(bitmap_free);
1141 
1142 #if BITS_PER_LONG == 64
1143 /**
1144  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1145  *	@bitmap: array of unsigned longs, the destination bitmap
1146  *	@buf: array of u32 (in host byte order), the source bitmap
1147  *	@nbits: number of bits in @bitmap
1148  */
1149 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1150 {
1151 	unsigned int i, halfwords;
1152 
1153 	halfwords = DIV_ROUND_UP(nbits, 32);
1154 	for (i = 0; i < halfwords; i++) {
1155 		bitmap[i/2] = (unsigned long) buf[i];
1156 		if (++i < halfwords)
1157 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1158 	}
1159 
1160 	/* Clear tail bits in last word beyond nbits. */
1161 	if (nbits % BITS_PER_LONG)
1162 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1163 }
1164 EXPORT_SYMBOL(bitmap_from_arr32);
1165 
1166 /**
1167  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1168  *	@buf: array of u32 (in host byte order), the dest bitmap
1169  *	@bitmap: array of unsigned longs, the source bitmap
1170  *	@nbits: number of bits in @bitmap
1171  */
1172 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1173 {
1174 	unsigned int i, halfwords;
1175 
1176 	halfwords = DIV_ROUND_UP(nbits, 32);
1177 	for (i = 0; i < halfwords; i++) {
1178 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1179 		if (++i < halfwords)
1180 			buf[i] = (u32) (bitmap[i/2] >> 32);
1181 	}
1182 
1183 	/* Clear tail bits in last element of array beyond nbits. */
1184 	if (nbits % BITS_PER_LONG)
1185 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1186 }
1187 EXPORT_SYMBOL(bitmap_to_arr32);
1188 
1189 #endif
1190