1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 16 #include <asm/page.h> 17 #include <asm/uaccess.h> 18 19 /* 20 * bitmaps provide an array of bits, implemented using an an 21 * array of unsigned longs. The number of valid bits in a 22 * given bitmap does _not_ need to be an exact multiple of 23 * BITS_PER_LONG. 24 * 25 * The possible unused bits in the last, partially used word 26 * of a bitmap are 'don't care'. The implementation makes 27 * no particular effort to keep them zero. It ensures that 28 * their value will not affect the results of any operation. 29 * The bitmap operations that return Boolean (bitmap_empty, 30 * for example) or scalar (bitmap_weight, for example) results 31 * carefully filter out these unused bits from impacting their 32 * results. 33 * 34 * These operations actually hold to a slightly stronger rule: 35 * if you don't input any bitmaps to these ops that have some 36 * unused bits set, then they won't output any set unused bits 37 * in output bitmaps. 38 * 39 * The byte ordering of bitmaps is more natural on little 40 * endian architectures. See the big-endian headers 41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 42 * for the best explanations of this ordering. 43 */ 44 45 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits) 46 { 47 unsigned int k, lim = bits/BITS_PER_LONG; 48 for (k = 0; k < lim; ++k) 49 if (bitmap[k]) 50 return 0; 51 52 if (bits % BITS_PER_LONG) 53 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 54 return 0; 55 56 return 1; 57 } 58 EXPORT_SYMBOL(__bitmap_empty); 59 60 int __bitmap_full(const unsigned long *bitmap, unsigned int bits) 61 { 62 unsigned int k, lim = bits/BITS_PER_LONG; 63 for (k = 0; k < lim; ++k) 64 if (~bitmap[k]) 65 return 0; 66 67 if (bits % BITS_PER_LONG) 68 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 69 return 0; 70 71 return 1; 72 } 73 EXPORT_SYMBOL(__bitmap_full); 74 75 int __bitmap_equal(const unsigned long *bitmap1, 76 const unsigned long *bitmap2, unsigned int bits) 77 { 78 unsigned int k, lim = bits/BITS_PER_LONG; 79 for (k = 0; k < lim; ++k) 80 if (bitmap1[k] != bitmap2[k]) 81 return 0; 82 83 if (bits % BITS_PER_LONG) 84 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 85 return 0; 86 87 return 1; 88 } 89 EXPORT_SYMBOL(__bitmap_equal); 90 91 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 92 { 93 unsigned int k, lim = bits/BITS_PER_LONG; 94 for (k = 0; k < lim; ++k) 95 dst[k] = ~src[k]; 96 97 if (bits % BITS_PER_LONG) 98 dst[k] = ~src[k]; 99 } 100 EXPORT_SYMBOL(__bitmap_complement); 101 102 /** 103 * __bitmap_shift_right - logical right shift of the bits in a bitmap 104 * @dst : destination bitmap 105 * @src : source bitmap 106 * @shift : shift by this many bits 107 * @bits : bitmap size, in bits 108 * 109 * Shifting right (dividing) means moving bits in the MS -> LS bit 110 * direction. Zeros are fed into the vacated MS positions and the 111 * LS bits shifted off the bottom are lost. 112 */ 113 void __bitmap_shift_right(unsigned long *dst, 114 const unsigned long *src, int shift, int bits) 115 { 116 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 117 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 118 unsigned long mask = (1UL << left) - 1; 119 for (k = 0; off + k < lim; ++k) { 120 unsigned long upper, lower; 121 122 /* 123 * If shift is not word aligned, take lower rem bits of 124 * word above and make them the top rem bits of result. 125 */ 126 if (!rem || off + k + 1 >= lim) 127 upper = 0; 128 else { 129 upper = src[off + k + 1]; 130 if (off + k + 1 == lim - 1 && left) 131 upper &= mask; 132 } 133 lower = src[off + k]; 134 if (left && off + k == lim - 1) 135 lower &= mask; 136 dst[k] = lower >> rem; 137 if (rem) 138 dst[k] |= upper << (BITS_PER_LONG - rem); 139 if (left && k == lim - 1) 140 dst[k] &= mask; 141 } 142 if (off) 143 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 144 } 145 EXPORT_SYMBOL(__bitmap_shift_right); 146 147 148 /** 149 * __bitmap_shift_left - logical left shift of the bits in a bitmap 150 * @dst : destination bitmap 151 * @src : source bitmap 152 * @shift : shift by this many bits 153 * @bits : bitmap size, in bits 154 * 155 * Shifting left (multiplying) means moving bits in the LS -> MS 156 * direction. Zeros are fed into the vacated LS bit positions 157 * and those MS bits shifted off the top are lost. 158 */ 159 160 void __bitmap_shift_left(unsigned long *dst, 161 const unsigned long *src, int shift, int bits) 162 { 163 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 164 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 165 for (k = lim - off - 1; k >= 0; --k) { 166 unsigned long upper, lower; 167 168 /* 169 * If shift is not word aligned, take upper rem bits of 170 * word below and make them the bottom rem bits of result. 171 */ 172 if (rem && k > 0) 173 lower = src[k - 1]; 174 else 175 lower = 0; 176 upper = src[k]; 177 if (left && k == lim - 1) 178 upper &= (1UL << left) - 1; 179 dst[k + off] = upper << rem; 180 if (rem) 181 dst[k + off] |= lower >> (BITS_PER_LONG - rem); 182 if (left && k + off == lim - 1) 183 dst[k + off] &= (1UL << left) - 1; 184 } 185 if (off) 186 memset(dst, 0, off*sizeof(unsigned long)); 187 } 188 EXPORT_SYMBOL(__bitmap_shift_left); 189 190 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 191 const unsigned long *bitmap2, unsigned int bits) 192 { 193 unsigned int k; 194 unsigned int lim = bits/BITS_PER_LONG; 195 unsigned long result = 0; 196 197 for (k = 0; k < lim; k++) 198 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 199 if (bits % BITS_PER_LONG) 200 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 201 BITMAP_LAST_WORD_MASK(bits)); 202 return result != 0; 203 } 204 EXPORT_SYMBOL(__bitmap_and); 205 206 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 207 const unsigned long *bitmap2, unsigned int bits) 208 { 209 unsigned int k; 210 unsigned int nr = BITS_TO_LONGS(bits); 211 212 for (k = 0; k < nr; k++) 213 dst[k] = bitmap1[k] | bitmap2[k]; 214 } 215 EXPORT_SYMBOL(__bitmap_or); 216 217 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 218 const unsigned long *bitmap2, unsigned int bits) 219 { 220 unsigned int k; 221 unsigned int nr = BITS_TO_LONGS(bits); 222 223 for (k = 0; k < nr; k++) 224 dst[k] = bitmap1[k] ^ bitmap2[k]; 225 } 226 EXPORT_SYMBOL(__bitmap_xor); 227 228 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 229 const unsigned long *bitmap2, unsigned int bits) 230 { 231 unsigned int k; 232 unsigned int lim = bits/BITS_PER_LONG; 233 unsigned long result = 0; 234 235 for (k = 0; k < lim; k++) 236 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 237 if (bits % BITS_PER_LONG) 238 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 239 BITMAP_LAST_WORD_MASK(bits)); 240 return result != 0; 241 } 242 EXPORT_SYMBOL(__bitmap_andnot); 243 244 int __bitmap_intersects(const unsigned long *bitmap1, 245 const unsigned long *bitmap2, unsigned int bits) 246 { 247 unsigned int k, lim = bits/BITS_PER_LONG; 248 for (k = 0; k < lim; ++k) 249 if (bitmap1[k] & bitmap2[k]) 250 return 1; 251 252 if (bits % BITS_PER_LONG) 253 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 254 return 1; 255 return 0; 256 } 257 EXPORT_SYMBOL(__bitmap_intersects); 258 259 int __bitmap_subset(const unsigned long *bitmap1, 260 const unsigned long *bitmap2, unsigned int bits) 261 { 262 unsigned int k, lim = bits/BITS_PER_LONG; 263 for (k = 0; k < lim; ++k) 264 if (bitmap1[k] & ~bitmap2[k]) 265 return 0; 266 267 if (bits % BITS_PER_LONG) 268 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 269 return 0; 270 return 1; 271 } 272 EXPORT_SYMBOL(__bitmap_subset); 273 274 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 275 { 276 unsigned int k, lim = bits/BITS_PER_LONG; 277 int w = 0; 278 279 for (k = 0; k < lim; k++) 280 w += hweight_long(bitmap[k]); 281 282 if (bits % BITS_PER_LONG) 283 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 284 285 return w; 286 } 287 EXPORT_SYMBOL(__bitmap_weight); 288 289 void bitmap_set(unsigned long *map, unsigned int start, int len) 290 { 291 unsigned long *p = map + BIT_WORD(start); 292 const unsigned int size = start + len; 293 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 294 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 295 296 while (len - bits_to_set >= 0) { 297 *p |= mask_to_set; 298 len -= bits_to_set; 299 bits_to_set = BITS_PER_LONG; 300 mask_to_set = ~0UL; 301 p++; 302 } 303 if (len) { 304 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 305 *p |= mask_to_set; 306 } 307 } 308 EXPORT_SYMBOL(bitmap_set); 309 310 void bitmap_clear(unsigned long *map, unsigned int start, int len) 311 { 312 unsigned long *p = map + BIT_WORD(start); 313 const unsigned int size = start + len; 314 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 315 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 316 317 while (len - bits_to_clear >= 0) { 318 *p &= ~mask_to_clear; 319 len -= bits_to_clear; 320 bits_to_clear = BITS_PER_LONG; 321 mask_to_clear = ~0UL; 322 p++; 323 } 324 if (len) { 325 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 326 *p &= ~mask_to_clear; 327 } 328 } 329 EXPORT_SYMBOL(bitmap_clear); 330 331 /** 332 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 333 * @map: The address to base the search on 334 * @size: The bitmap size in bits 335 * @start: The bitnumber to start searching at 336 * @nr: The number of zeroed bits we're looking for 337 * @align_mask: Alignment mask for zero area 338 * @align_offset: Alignment offset for zero area. 339 * 340 * The @align_mask should be one less than a power of 2; the effect is that 341 * the bit offset of all zero areas this function finds plus @align_offset 342 * is multiple of that power of 2. 343 */ 344 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 345 unsigned long size, 346 unsigned long start, 347 unsigned int nr, 348 unsigned long align_mask, 349 unsigned long align_offset) 350 { 351 unsigned long index, end, i; 352 again: 353 index = find_next_zero_bit(map, size, start); 354 355 /* Align allocation */ 356 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 357 358 end = index + nr; 359 if (end > size) 360 return end; 361 i = find_next_bit(map, end, index); 362 if (i < end) { 363 start = i + 1; 364 goto again; 365 } 366 return index; 367 } 368 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 369 370 /* 371 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 372 * second version by Paul Jackson, third by Joe Korty. 373 */ 374 375 #define CHUNKSZ 32 376 #define nbits_to_hold_value(val) fls(val) 377 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 378 379 /** 380 * bitmap_scnprintf - convert bitmap to an ASCII hex string. 381 * @buf: byte buffer into which string is placed 382 * @buflen: reserved size of @buf, in bytes 383 * @maskp: pointer to bitmap to convert 384 * @nmaskbits: size of bitmap, in bits 385 * 386 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into 387 * comma-separated sets of eight digits per set. Returns the number of 388 * characters which were written to *buf, excluding the trailing \0. 389 */ 390 int bitmap_scnprintf(char *buf, unsigned int buflen, 391 const unsigned long *maskp, int nmaskbits) 392 { 393 int i, word, bit, len = 0; 394 unsigned long val; 395 const char *sep = ""; 396 int chunksz; 397 u32 chunkmask; 398 399 chunksz = nmaskbits & (CHUNKSZ - 1); 400 if (chunksz == 0) 401 chunksz = CHUNKSZ; 402 403 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; 404 for (; i >= 0; i -= CHUNKSZ) { 405 chunkmask = ((1ULL << chunksz) - 1); 406 word = i / BITS_PER_LONG; 407 bit = i % BITS_PER_LONG; 408 val = (maskp[word] >> bit) & chunkmask; 409 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, 410 (chunksz+3)/4, val); 411 chunksz = CHUNKSZ; 412 sep = ","; 413 } 414 return len; 415 } 416 EXPORT_SYMBOL(bitmap_scnprintf); 417 418 /** 419 * __bitmap_parse - convert an ASCII hex string into a bitmap. 420 * @buf: pointer to buffer containing string. 421 * @buflen: buffer size in bytes. If string is smaller than this 422 * then it must be terminated with a \0. 423 * @is_user: location of buffer, 0 indicates kernel space 424 * @maskp: pointer to bitmap array that will contain result. 425 * @nmaskbits: size of bitmap, in bits. 426 * 427 * Commas group hex digits into chunks. Each chunk defines exactly 32 428 * bits of the resultant bitmask. No chunk may specify a value larger 429 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 430 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 431 * characters and for grouping errors such as "1,,5", ",44", "," and "". 432 * Leading and trailing whitespace accepted, but not embedded whitespace. 433 */ 434 int __bitmap_parse(const char *buf, unsigned int buflen, 435 int is_user, unsigned long *maskp, 436 int nmaskbits) 437 { 438 int c, old_c, totaldigits, ndigits, nchunks, nbits; 439 u32 chunk; 440 const char __user __force *ubuf = (const char __user __force *)buf; 441 442 bitmap_zero(maskp, nmaskbits); 443 444 nchunks = nbits = totaldigits = c = 0; 445 do { 446 chunk = ndigits = 0; 447 448 /* Get the next chunk of the bitmap */ 449 while (buflen) { 450 old_c = c; 451 if (is_user) { 452 if (__get_user(c, ubuf++)) 453 return -EFAULT; 454 } 455 else 456 c = *buf++; 457 buflen--; 458 if (isspace(c)) 459 continue; 460 461 /* 462 * If the last character was a space and the current 463 * character isn't '\0', we've got embedded whitespace. 464 * This is a no-no, so throw an error. 465 */ 466 if (totaldigits && c && isspace(old_c)) 467 return -EINVAL; 468 469 /* A '\0' or a ',' signal the end of the chunk */ 470 if (c == '\0' || c == ',') 471 break; 472 473 if (!isxdigit(c)) 474 return -EINVAL; 475 476 /* 477 * Make sure there are at least 4 free bits in 'chunk'. 478 * If not, this hexdigit will overflow 'chunk', so 479 * throw an error. 480 */ 481 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 482 return -EOVERFLOW; 483 484 chunk = (chunk << 4) | hex_to_bin(c); 485 ndigits++; totaldigits++; 486 } 487 if (ndigits == 0) 488 return -EINVAL; 489 if (nchunks == 0 && chunk == 0) 490 continue; 491 492 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 493 *maskp |= chunk; 494 nchunks++; 495 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 496 if (nbits > nmaskbits) 497 return -EOVERFLOW; 498 } while (buflen && c == ','); 499 500 return 0; 501 } 502 EXPORT_SYMBOL(__bitmap_parse); 503 504 /** 505 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 506 * 507 * @ubuf: pointer to user buffer containing string. 508 * @ulen: buffer size in bytes. If string is smaller than this 509 * then it must be terminated with a \0. 510 * @maskp: pointer to bitmap array that will contain result. 511 * @nmaskbits: size of bitmap, in bits. 512 * 513 * Wrapper for __bitmap_parse(), providing it with user buffer. 514 * 515 * We cannot have this as an inline function in bitmap.h because it needs 516 * linux/uaccess.h to get the access_ok() declaration and this causes 517 * cyclic dependencies. 518 */ 519 int bitmap_parse_user(const char __user *ubuf, 520 unsigned int ulen, unsigned long *maskp, 521 int nmaskbits) 522 { 523 if (!access_ok(VERIFY_READ, ubuf, ulen)) 524 return -EFAULT; 525 return __bitmap_parse((const char __force *)ubuf, 526 ulen, 1, maskp, nmaskbits); 527 528 } 529 EXPORT_SYMBOL(bitmap_parse_user); 530 531 /* 532 * bscnl_emit(buf, buflen, rbot, rtop, bp) 533 * 534 * Helper routine for bitmap_scnlistprintf(). Write decimal number 535 * or range to buf, suppressing output past buf+buflen, with optional 536 * comma-prefix. Return len of what was written to *buf, excluding the 537 * trailing \0. 538 */ 539 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) 540 { 541 if (len > 0) 542 len += scnprintf(buf + len, buflen - len, ","); 543 if (rbot == rtop) 544 len += scnprintf(buf + len, buflen - len, "%d", rbot); 545 else 546 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); 547 return len; 548 } 549 550 /** 551 * bitmap_scnlistprintf - convert bitmap to list format ASCII string 552 * @buf: byte buffer into which string is placed 553 * @buflen: reserved size of @buf, in bytes 554 * @maskp: pointer to bitmap to convert 555 * @nmaskbits: size of bitmap, in bits 556 * 557 * Output format is a comma-separated list of decimal numbers and 558 * ranges. Consecutively set bits are shown as two hyphen-separated 559 * decimal numbers, the smallest and largest bit numbers set in 560 * the range. Output format is compatible with the format 561 * accepted as input by bitmap_parselist(). 562 * 563 * The return value is the number of characters which were written to *buf 564 * excluding the trailing '\0', as per ISO C99's scnprintf. 565 */ 566 int bitmap_scnlistprintf(char *buf, unsigned int buflen, 567 const unsigned long *maskp, int nmaskbits) 568 { 569 int len = 0; 570 /* current bit is 'cur', most recently seen range is [rbot, rtop] */ 571 int cur, rbot, rtop; 572 573 if (buflen == 0) 574 return 0; 575 buf[0] = 0; 576 577 rbot = cur = find_first_bit(maskp, nmaskbits); 578 while (cur < nmaskbits) { 579 rtop = cur; 580 cur = find_next_bit(maskp, nmaskbits, cur+1); 581 if (cur >= nmaskbits || cur > rtop + 1) { 582 len = bscnl_emit(buf, buflen, rbot, rtop, len); 583 rbot = cur; 584 } 585 } 586 return len; 587 } 588 EXPORT_SYMBOL(bitmap_scnlistprintf); 589 590 /** 591 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 592 * @list: indicates whether the bitmap must be list 593 * @buf: page aligned buffer into which string is placed 594 * @maskp: pointer to bitmap to convert 595 * @nmaskbits: size of bitmap, in bits 596 * 597 * Output format is a comma-separated list of decimal numbers and 598 * ranges if list is specified or hex digits grouped into comma-separated 599 * sets of 8 digits/set. Returns the number of characters written to buf. 600 */ 601 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 602 int nmaskbits) 603 { 604 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf - 2; 605 int n = 0; 606 607 if (len > 1) { 608 n = list ? bitmap_scnlistprintf(buf, len, maskp, nmaskbits) : 609 bitmap_scnprintf(buf, len, maskp, nmaskbits); 610 buf[n++] = '\n'; 611 buf[n] = '\0'; 612 } 613 return n; 614 } 615 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 616 617 /** 618 * __bitmap_parselist - convert list format ASCII string to bitmap 619 * @buf: read nul-terminated user string from this buffer 620 * @buflen: buffer size in bytes. If string is smaller than this 621 * then it must be terminated with a \0. 622 * @is_user: location of buffer, 0 indicates kernel space 623 * @maskp: write resulting mask here 624 * @nmaskbits: number of bits in mask to be written 625 * 626 * Input format is a comma-separated list of decimal numbers and 627 * ranges. Consecutively set bits are shown as two hyphen-separated 628 * decimal numbers, the smallest and largest bit numbers set in 629 * the range. 630 * 631 * Returns 0 on success, -errno on invalid input strings. 632 * Error values: 633 * %-EINVAL: second number in range smaller than first 634 * %-EINVAL: invalid character in string 635 * %-ERANGE: bit number specified too large for mask 636 */ 637 static int __bitmap_parselist(const char *buf, unsigned int buflen, 638 int is_user, unsigned long *maskp, 639 int nmaskbits) 640 { 641 unsigned a, b; 642 int c, old_c, totaldigits; 643 const char __user __force *ubuf = (const char __user __force *)buf; 644 int exp_digit, in_range; 645 646 totaldigits = c = 0; 647 bitmap_zero(maskp, nmaskbits); 648 do { 649 exp_digit = 1; 650 in_range = 0; 651 a = b = 0; 652 653 /* Get the next cpu# or a range of cpu#'s */ 654 while (buflen) { 655 old_c = c; 656 if (is_user) { 657 if (__get_user(c, ubuf++)) 658 return -EFAULT; 659 } else 660 c = *buf++; 661 buflen--; 662 if (isspace(c)) 663 continue; 664 665 /* 666 * If the last character was a space and the current 667 * character isn't '\0', we've got embedded whitespace. 668 * This is a no-no, so throw an error. 669 */ 670 if (totaldigits && c && isspace(old_c)) 671 return -EINVAL; 672 673 /* A '\0' or a ',' signal the end of a cpu# or range */ 674 if (c == '\0' || c == ',') 675 break; 676 677 if (c == '-') { 678 if (exp_digit || in_range) 679 return -EINVAL; 680 b = 0; 681 in_range = 1; 682 exp_digit = 1; 683 continue; 684 } 685 686 if (!isdigit(c)) 687 return -EINVAL; 688 689 b = b * 10 + (c - '0'); 690 if (!in_range) 691 a = b; 692 exp_digit = 0; 693 totaldigits++; 694 } 695 if (!(a <= b)) 696 return -EINVAL; 697 if (b >= nmaskbits) 698 return -ERANGE; 699 while (a <= b) { 700 set_bit(a, maskp); 701 a++; 702 } 703 } while (buflen && c == ','); 704 return 0; 705 } 706 707 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 708 { 709 char *nl = strchrnul(bp, '\n'); 710 int len = nl - bp; 711 712 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 713 } 714 EXPORT_SYMBOL(bitmap_parselist); 715 716 717 /** 718 * bitmap_parselist_user() 719 * 720 * @ubuf: pointer to user buffer containing string. 721 * @ulen: buffer size in bytes. If string is smaller than this 722 * then it must be terminated with a \0. 723 * @maskp: pointer to bitmap array that will contain result. 724 * @nmaskbits: size of bitmap, in bits. 725 * 726 * Wrapper for bitmap_parselist(), providing it with user buffer. 727 * 728 * We cannot have this as an inline function in bitmap.h because it needs 729 * linux/uaccess.h to get the access_ok() declaration and this causes 730 * cyclic dependencies. 731 */ 732 int bitmap_parselist_user(const char __user *ubuf, 733 unsigned int ulen, unsigned long *maskp, 734 int nmaskbits) 735 { 736 if (!access_ok(VERIFY_READ, ubuf, ulen)) 737 return -EFAULT; 738 return __bitmap_parselist((const char __force *)ubuf, 739 ulen, 1, maskp, nmaskbits); 740 } 741 EXPORT_SYMBOL(bitmap_parselist_user); 742 743 744 /** 745 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 746 * @buf: pointer to a bitmap 747 * @pos: a bit position in @buf (0 <= @pos < @bits) 748 * @bits: number of valid bit positions in @buf 749 * 750 * Map the bit at position @pos in @buf (of length @bits) to the 751 * ordinal of which set bit it is. If it is not set or if @pos 752 * is not a valid bit position, map to -1. 753 * 754 * If for example, just bits 4 through 7 are set in @buf, then @pos 755 * values 4 through 7 will get mapped to 0 through 3, respectively, 756 * and other @pos values will get mapped to -1. When @pos value 7 757 * gets mapped to (returns) @ord value 3 in this example, that means 758 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 759 * 760 * The bit positions 0 through @bits are valid positions in @buf. 761 */ 762 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) 763 { 764 int i, ord; 765 766 if (pos < 0 || pos >= bits || !test_bit(pos, buf)) 767 return -1; 768 769 i = find_first_bit(buf, bits); 770 ord = 0; 771 while (i < pos) { 772 i = find_next_bit(buf, bits, i + 1); 773 ord++; 774 } 775 BUG_ON(i != pos); 776 777 return ord; 778 } 779 780 /** 781 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 782 * @buf: pointer to bitmap 783 * @ord: ordinal bit position (n-th set bit, n >= 0) 784 * @bits: number of valid bit positions in @buf 785 * 786 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 787 * Value of @ord should be in range 0 <= @ord < weight(buf), else 788 * results are undefined. 789 * 790 * If for example, just bits 4 through 7 are set in @buf, then @ord 791 * values 0 through 3 will get mapped to 4 through 7, respectively, 792 * and all other @ord values return undefined values. When @ord value 3 793 * gets mapped to (returns) @pos value 7 in this example, that means 794 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 795 * 796 * The bit positions 0 through @bits are valid positions in @buf. 797 */ 798 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) 799 { 800 int pos = 0; 801 802 if (ord >= 0 && ord < bits) { 803 int i; 804 805 for (i = find_first_bit(buf, bits); 806 i < bits && ord > 0; 807 i = find_next_bit(buf, bits, i + 1)) 808 ord--; 809 if (i < bits && ord == 0) 810 pos = i; 811 } 812 813 return pos; 814 } 815 816 /** 817 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 818 * @dst: remapped result 819 * @src: subset to be remapped 820 * @old: defines domain of map 821 * @new: defines range of map 822 * @bits: number of bits in each of these bitmaps 823 * 824 * Let @old and @new define a mapping of bit positions, such that 825 * whatever position is held by the n-th set bit in @old is mapped 826 * to the n-th set bit in @new. In the more general case, allowing 827 * for the possibility that the weight 'w' of @new is less than the 828 * weight of @old, map the position of the n-th set bit in @old to 829 * the position of the m-th set bit in @new, where m == n % w. 830 * 831 * If either of the @old and @new bitmaps are empty, or if @src and 832 * @dst point to the same location, then this routine copies @src 833 * to @dst. 834 * 835 * The positions of unset bits in @old are mapped to themselves 836 * (the identify map). 837 * 838 * Apply the above specified mapping to @src, placing the result in 839 * @dst, clearing any bits previously set in @dst. 840 * 841 * For example, lets say that @old has bits 4 through 7 set, and 842 * @new has bits 12 through 15 set. This defines the mapping of bit 843 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 844 * bit positions unchanged. So if say @src comes into this routine 845 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 846 * 13 and 15 set. 847 */ 848 void bitmap_remap(unsigned long *dst, const unsigned long *src, 849 const unsigned long *old, const unsigned long *new, 850 int bits) 851 { 852 int oldbit, w; 853 854 if (dst == src) /* following doesn't handle inplace remaps */ 855 return; 856 bitmap_zero(dst, bits); 857 858 w = bitmap_weight(new, bits); 859 for_each_set_bit(oldbit, src, bits) { 860 int n = bitmap_pos_to_ord(old, oldbit, bits); 861 862 if (n < 0 || w == 0) 863 set_bit(oldbit, dst); /* identity map */ 864 else 865 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); 866 } 867 } 868 EXPORT_SYMBOL(bitmap_remap); 869 870 /** 871 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 872 * @oldbit: bit position to be mapped 873 * @old: defines domain of map 874 * @new: defines range of map 875 * @bits: number of bits in each of these bitmaps 876 * 877 * Let @old and @new define a mapping of bit positions, such that 878 * whatever position is held by the n-th set bit in @old is mapped 879 * to the n-th set bit in @new. In the more general case, allowing 880 * for the possibility that the weight 'w' of @new is less than the 881 * weight of @old, map the position of the n-th set bit in @old to 882 * the position of the m-th set bit in @new, where m == n % w. 883 * 884 * The positions of unset bits in @old are mapped to themselves 885 * (the identify map). 886 * 887 * Apply the above specified mapping to bit position @oldbit, returning 888 * the new bit position. 889 * 890 * For example, lets say that @old has bits 4 through 7 set, and 891 * @new has bits 12 through 15 set. This defines the mapping of bit 892 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 893 * bit positions unchanged. So if say @oldbit is 5, then this routine 894 * returns 13. 895 */ 896 int bitmap_bitremap(int oldbit, const unsigned long *old, 897 const unsigned long *new, int bits) 898 { 899 int w = bitmap_weight(new, bits); 900 int n = bitmap_pos_to_ord(old, oldbit, bits); 901 if (n < 0 || w == 0) 902 return oldbit; 903 else 904 return bitmap_ord_to_pos(new, n % w, bits); 905 } 906 EXPORT_SYMBOL(bitmap_bitremap); 907 908 /** 909 * bitmap_onto - translate one bitmap relative to another 910 * @dst: resulting translated bitmap 911 * @orig: original untranslated bitmap 912 * @relmap: bitmap relative to which translated 913 * @bits: number of bits in each of these bitmaps 914 * 915 * Set the n-th bit of @dst iff there exists some m such that the 916 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 917 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 918 * (If you understood the previous sentence the first time your 919 * read it, you're overqualified for your current job.) 920 * 921 * In other words, @orig is mapped onto (surjectively) @dst, 922 * using the map { <n, m> | the n-th bit of @relmap is the 923 * m-th set bit of @relmap }. 924 * 925 * Any set bits in @orig above bit number W, where W is the 926 * weight of (number of set bits in) @relmap are mapped nowhere. 927 * In particular, if for all bits m set in @orig, m >= W, then 928 * @dst will end up empty. In situations where the possibility 929 * of such an empty result is not desired, one way to avoid it is 930 * to use the bitmap_fold() operator, below, to first fold the 931 * @orig bitmap over itself so that all its set bits x are in the 932 * range 0 <= x < W. The bitmap_fold() operator does this by 933 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 934 * 935 * Example [1] for bitmap_onto(): 936 * Let's say @relmap has bits 30-39 set, and @orig has bits 937 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 938 * @dst will have bits 31, 33, 35, 37 and 39 set. 939 * 940 * When bit 0 is set in @orig, it means turn on the bit in 941 * @dst corresponding to whatever is the first bit (if any) 942 * that is turned on in @relmap. Since bit 0 was off in the 943 * above example, we leave off that bit (bit 30) in @dst. 944 * 945 * When bit 1 is set in @orig (as in the above example), it 946 * means turn on the bit in @dst corresponding to whatever 947 * is the second bit that is turned on in @relmap. The second 948 * bit in @relmap that was turned on in the above example was 949 * bit 31, so we turned on bit 31 in @dst. 950 * 951 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 952 * because they were the 4th, 6th, 8th and 10th set bits 953 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 954 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 955 * 956 * When bit 11 is set in @orig, it means turn on the bit in 957 * @dst corresponding to whatever is the twelfth bit that is 958 * turned on in @relmap. In the above example, there were 959 * only ten bits turned on in @relmap (30..39), so that bit 960 * 11 was set in @orig had no affect on @dst. 961 * 962 * Example [2] for bitmap_fold() + bitmap_onto(): 963 * Let's say @relmap has these ten bits set: 964 * 40 41 42 43 45 48 53 61 74 95 965 * (for the curious, that's 40 plus the first ten terms of the 966 * Fibonacci sequence.) 967 * 968 * Further lets say we use the following code, invoking 969 * bitmap_fold() then bitmap_onto, as suggested above to 970 * avoid the possibility of an empty @dst result: 971 * 972 * unsigned long *tmp; // a temporary bitmap's bits 973 * 974 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 975 * bitmap_onto(dst, tmp, relmap, bits); 976 * 977 * Then this table shows what various values of @dst would be, for 978 * various @orig's. I list the zero-based positions of each set bit. 979 * The tmp column shows the intermediate result, as computed by 980 * using bitmap_fold() to fold the @orig bitmap modulo ten 981 * (the weight of @relmap). 982 * 983 * @orig tmp @dst 984 * 0 0 40 985 * 1 1 41 986 * 9 9 95 987 * 10 0 40 (*) 988 * 1 3 5 7 1 3 5 7 41 43 48 61 989 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 990 * 0 9 18 27 0 9 8 7 40 61 74 95 991 * 0 10 20 30 0 40 992 * 0 11 22 33 0 1 2 3 40 41 42 43 993 * 0 12 24 36 0 2 4 6 40 42 45 53 994 * 78 102 211 1 2 8 41 42 74 (*) 995 * 996 * (*) For these marked lines, if we hadn't first done bitmap_fold() 997 * into tmp, then the @dst result would have been empty. 998 * 999 * If either of @orig or @relmap is empty (no set bits), then @dst 1000 * will be returned empty. 1001 * 1002 * If (as explained above) the only set bits in @orig are in positions 1003 * m where m >= W, (where W is the weight of @relmap) then @dst will 1004 * once again be returned empty. 1005 * 1006 * All bits in @dst not set by the above rule are cleared. 1007 */ 1008 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 1009 const unsigned long *relmap, int bits) 1010 { 1011 int n, m; /* same meaning as in above comment */ 1012 1013 if (dst == orig) /* following doesn't handle inplace mappings */ 1014 return; 1015 bitmap_zero(dst, bits); 1016 1017 /* 1018 * The following code is a more efficient, but less 1019 * obvious, equivalent to the loop: 1020 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 1021 * n = bitmap_ord_to_pos(orig, m, bits); 1022 * if (test_bit(m, orig)) 1023 * set_bit(n, dst); 1024 * } 1025 */ 1026 1027 m = 0; 1028 for_each_set_bit(n, relmap, bits) { 1029 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1030 if (test_bit(m, orig)) 1031 set_bit(n, dst); 1032 m++; 1033 } 1034 } 1035 EXPORT_SYMBOL(bitmap_onto); 1036 1037 /** 1038 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1039 * @dst: resulting smaller bitmap 1040 * @orig: original larger bitmap 1041 * @sz: specified size 1042 * @bits: number of bits in each of these bitmaps 1043 * 1044 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1045 * Clear all other bits in @dst. See further the comment and 1046 * Example [2] for bitmap_onto() for why and how to use this. 1047 */ 1048 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1049 int sz, int bits) 1050 { 1051 int oldbit; 1052 1053 if (dst == orig) /* following doesn't handle inplace mappings */ 1054 return; 1055 bitmap_zero(dst, bits); 1056 1057 for_each_set_bit(oldbit, orig, bits) 1058 set_bit(oldbit % sz, dst); 1059 } 1060 EXPORT_SYMBOL(bitmap_fold); 1061 1062 /* 1063 * Common code for bitmap_*_region() routines. 1064 * bitmap: array of unsigned longs corresponding to the bitmap 1065 * pos: the beginning of the region 1066 * order: region size (log base 2 of number of bits) 1067 * reg_op: operation(s) to perform on that region of bitmap 1068 * 1069 * Can set, verify and/or release a region of bits in a bitmap, 1070 * depending on which combination of REG_OP_* flag bits is set. 1071 * 1072 * A region of a bitmap is a sequence of bits in the bitmap, of 1073 * some size '1 << order' (a power of two), aligned to that same 1074 * '1 << order' power of two. 1075 * 1076 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1077 * Returns 0 in all other cases and reg_ops. 1078 */ 1079 1080 enum { 1081 REG_OP_ISFREE, /* true if region is all zero bits */ 1082 REG_OP_ALLOC, /* set all bits in region */ 1083 REG_OP_RELEASE, /* clear all bits in region */ 1084 }; 1085 1086 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1087 { 1088 int nbits_reg; /* number of bits in region */ 1089 int index; /* index first long of region in bitmap */ 1090 int offset; /* bit offset region in bitmap[index] */ 1091 int nlongs_reg; /* num longs spanned by region in bitmap */ 1092 int nbitsinlong; /* num bits of region in each spanned long */ 1093 unsigned long mask; /* bitmask for one long of region */ 1094 int i; /* scans bitmap by longs */ 1095 int ret = 0; /* return value */ 1096 1097 /* 1098 * Either nlongs_reg == 1 (for small orders that fit in one long) 1099 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1100 */ 1101 nbits_reg = 1 << order; 1102 index = pos / BITS_PER_LONG; 1103 offset = pos - (index * BITS_PER_LONG); 1104 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1105 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1106 1107 /* 1108 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1109 * overflows if nbitsinlong == BITS_PER_LONG. 1110 */ 1111 mask = (1UL << (nbitsinlong - 1)); 1112 mask += mask - 1; 1113 mask <<= offset; 1114 1115 switch (reg_op) { 1116 case REG_OP_ISFREE: 1117 for (i = 0; i < nlongs_reg; i++) { 1118 if (bitmap[index + i] & mask) 1119 goto done; 1120 } 1121 ret = 1; /* all bits in region free (zero) */ 1122 break; 1123 1124 case REG_OP_ALLOC: 1125 for (i = 0; i < nlongs_reg; i++) 1126 bitmap[index + i] |= mask; 1127 break; 1128 1129 case REG_OP_RELEASE: 1130 for (i = 0; i < nlongs_reg; i++) 1131 bitmap[index + i] &= ~mask; 1132 break; 1133 } 1134 done: 1135 return ret; 1136 } 1137 1138 /** 1139 * bitmap_find_free_region - find a contiguous aligned mem region 1140 * @bitmap: array of unsigned longs corresponding to the bitmap 1141 * @bits: number of bits in the bitmap 1142 * @order: region size (log base 2 of number of bits) to find 1143 * 1144 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1145 * allocate them (set them to one). Only consider regions of length 1146 * a power (@order) of two, aligned to that power of two, which 1147 * makes the search algorithm much faster. 1148 * 1149 * Return the bit offset in bitmap of the allocated region, 1150 * or -errno on failure. 1151 */ 1152 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1153 { 1154 unsigned int pos, end; /* scans bitmap by regions of size order */ 1155 1156 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1157 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1158 continue; 1159 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1160 return pos; 1161 } 1162 return -ENOMEM; 1163 } 1164 EXPORT_SYMBOL(bitmap_find_free_region); 1165 1166 /** 1167 * bitmap_release_region - release allocated bitmap region 1168 * @bitmap: array of unsigned longs corresponding to the bitmap 1169 * @pos: beginning of bit region to release 1170 * @order: region size (log base 2 of number of bits) to release 1171 * 1172 * This is the complement to __bitmap_find_free_region() and releases 1173 * the found region (by clearing it in the bitmap). 1174 * 1175 * No return value. 1176 */ 1177 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1178 { 1179 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1180 } 1181 EXPORT_SYMBOL(bitmap_release_region); 1182 1183 /** 1184 * bitmap_allocate_region - allocate bitmap region 1185 * @bitmap: array of unsigned longs corresponding to the bitmap 1186 * @pos: beginning of bit region to allocate 1187 * @order: region size (log base 2 of number of bits) to allocate 1188 * 1189 * Allocate (set bits in) a specified region of a bitmap. 1190 * 1191 * Return 0 on success, or %-EBUSY if specified region wasn't 1192 * free (not all bits were zero). 1193 */ 1194 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1195 { 1196 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1197 return -EBUSY; 1198 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1199 } 1200 EXPORT_SYMBOL(bitmap_allocate_region); 1201 1202 /** 1203 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1204 * @dst: destination buffer 1205 * @src: bitmap to copy 1206 * @nbits: number of bits in the bitmap 1207 * 1208 * Require nbits % BITS_PER_LONG == 0. 1209 */ 1210 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) 1211 { 1212 unsigned long *d = dst; 1213 int i; 1214 1215 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1216 if (BITS_PER_LONG == 64) 1217 d[i] = cpu_to_le64(src[i]); 1218 else 1219 d[i] = cpu_to_le32(src[i]); 1220 } 1221 } 1222 EXPORT_SYMBOL(bitmap_copy_le); 1223