xref: /openbmc/linux/lib/bitmap.c (revision e1f7c9ee)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <asm/uaccess.h>
16 
17 /*
18  * bitmaps provide an array of bits, implemented using an an
19  * array of unsigned longs.  The number of valid bits in a
20  * given bitmap does _not_ need to be an exact multiple of
21  * BITS_PER_LONG.
22  *
23  * The possible unused bits in the last, partially used word
24  * of a bitmap are 'don't care'.  The implementation makes
25  * no particular effort to keep them zero.  It ensures that
26  * their value will not affect the results of any operation.
27  * The bitmap operations that return Boolean (bitmap_empty,
28  * for example) or scalar (bitmap_weight, for example) results
29  * carefully filter out these unused bits from impacting their
30  * results.
31  *
32  * These operations actually hold to a slightly stronger rule:
33  * if you don't input any bitmaps to these ops that have some
34  * unused bits set, then they won't output any set unused bits
35  * in output bitmaps.
36  *
37  * The byte ordering of bitmaps is more natural on little
38  * endian architectures.  See the big-endian headers
39  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40  * for the best explanations of this ordering.
41  */
42 
43 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
44 {
45 	unsigned int k, lim = bits/BITS_PER_LONG;
46 	for (k = 0; k < lim; ++k)
47 		if (bitmap[k])
48 			return 0;
49 
50 	if (bits % BITS_PER_LONG)
51 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 			return 0;
53 
54 	return 1;
55 }
56 EXPORT_SYMBOL(__bitmap_empty);
57 
58 int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
59 {
60 	unsigned int k, lim = bits/BITS_PER_LONG;
61 	for (k = 0; k < lim; ++k)
62 		if (~bitmap[k])
63 			return 0;
64 
65 	if (bits % BITS_PER_LONG)
66 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 			return 0;
68 
69 	return 1;
70 }
71 EXPORT_SYMBOL(__bitmap_full);
72 
73 int __bitmap_equal(const unsigned long *bitmap1,
74 		const unsigned long *bitmap2, unsigned int bits)
75 {
76 	unsigned int k, lim = bits/BITS_PER_LONG;
77 	for (k = 0; k < lim; ++k)
78 		if (bitmap1[k] != bitmap2[k])
79 			return 0;
80 
81 	if (bits % BITS_PER_LONG)
82 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 			return 0;
84 
85 	return 1;
86 }
87 EXPORT_SYMBOL(__bitmap_equal);
88 
89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
90 {
91 	unsigned int k, lim = bits/BITS_PER_LONG;
92 	for (k = 0; k < lim; ++k)
93 		dst[k] = ~src[k];
94 
95 	if (bits % BITS_PER_LONG)
96 		dst[k] = ~src[k];
97 }
98 EXPORT_SYMBOL(__bitmap_complement);
99 
100 /**
101  * __bitmap_shift_right - logical right shift of the bits in a bitmap
102  *   @dst : destination bitmap
103  *   @src : source bitmap
104  *   @shift : shift by this many bits
105  *   @bits : bitmap size, in bits
106  *
107  * Shifting right (dividing) means moving bits in the MS -> LS bit
108  * direction.  Zeros are fed into the vacated MS positions and the
109  * LS bits shifted off the bottom are lost.
110  */
111 void __bitmap_shift_right(unsigned long *dst,
112 			const unsigned long *src, int shift, int bits)
113 {
114 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 	unsigned long mask = (1UL << left) - 1;
117 	for (k = 0; off + k < lim; ++k) {
118 		unsigned long upper, lower;
119 
120 		/*
121 		 * If shift is not word aligned, take lower rem bits of
122 		 * word above and make them the top rem bits of result.
123 		 */
124 		if (!rem || off + k + 1 >= lim)
125 			upper = 0;
126 		else {
127 			upper = src[off + k + 1];
128 			if (off + k + 1 == lim - 1 && left)
129 				upper &= mask;
130 		}
131 		lower = src[off + k];
132 		if (left && off + k == lim - 1)
133 			lower &= mask;
134 		dst[k] = lower >> rem;
135 		if (rem)
136 			dst[k] |= upper << (BITS_PER_LONG - rem);
137 		if (left && k == lim - 1)
138 			dst[k] &= mask;
139 	}
140 	if (off)
141 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142 }
143 EXPORT_SYMBOL(__bitmap_shift_right);
144 
145 
146 /**
147  * __bitmap_shift_left - logical left shift of the bits in a bitmap
148  *   @dst : destination bitmap
149  *   @src : source bitmap
150  *   @shift : shift by this many bits
151  *   @bits : bitmap size, in bits
152  *
153  * Shifting left (multiplying) means moving bits in the LS -> MS
154  * direction.  Zeros are fed into the vacated LS bit positions
155  * and those MS bits shifted off the top are lost.
156  */
157 
158 void __bitmap_shift_left(unsigned long *dst,
159 			const unsigned long *src, int shift, int bits)
160 {
161 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
162 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
163 	for (k = lim - off - 1; k >= 0; --k) {
164 		unsigned long upper, lower;
165 
166 		/*
167 		 * If shift is not word aligned, take upper rem bits of
168 		 * word below and make them the bottom rem bits of result.
169 		 */
170 		if (rem && k > 0)
171 			lower = src[k - 1];
172 		else
173 			lower = 0;
174 		upper = src[k];
175 		if (left && k == lim - 1)
176 			upper &= (1UL << left) - 1;
177 		dst[k + off] = upper << rem;
178 		if (rem)
179 			dst[k + off] |= lower >> (BITS_PER_LONG - rem);
180 		if (left && k + off == lim - 1)
181 			dst[k + off] &= (1UL << left) - 1;
182 	}
183 	if (off)
184 		memset(dst, 0, off*sizeof(unsigned long));
185 }
186 EXPORT_SYMBOL(__bitmap_shift_left);
187 
188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
189 				const unsigned long *bitmap2, unsigned int bits)
190 {
191 	unsigned int k;
192 	unsigned int lim = bits/BITS_PER_LONG;
193 	unsigned long result = 0;
194 
195 	for (k = 0; k < lim; k++)
196 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
197 	if (bits % BITS_PER_LONG)
198 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
199 			   BITMAP_LAST_WORD_MASK(bits));
200 	return result != 0;
201 }
202 EXPORT_SYMBOL(__bitmap_and);
203 
204 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
205 				const unsigned long *bitmap2, unsigned int bits)
206 {
207 	unsigned int k;
208 	unsigned int nr = BITS_TO_LONGS(bits);
209 
210 	for (k = 0; k < nr; k++)
211 		dst[k] = bitmap1[k] | bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_or);
214 
215 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
216 				const unsigned long *bitmap2, unsigned int bits)
217 {
218 	unsigned int k;
219 	unsigned int nr = BITS_TO_LONGS(bits);
220 
221 	for (k = 0; k < nr; k++)
222 		dst[k] = bitmap1[k] ^ bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_xor);
225 
226 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
227 				const unsigned long *bitmap2, unsigned int bits)
228 {
229 	unsigned int k;
230 	unsigned int lim = bits/BITS_PER_LONG;
231 	unsigned long result = 0;
232 
233 	for (k = 0; k < lim; k++)
234 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
235 	if (bits % BITS_PER_LONG)
236 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
237 			   BITMAP_LAST_WORD_MASK(bits));
238 	return result != 0;
239 }
240 EXPORT_SYMBOL(__bitmap_andnot);
241 
242 int __bitmap_intersects(const unsigned long *bitmap1,
243 			const unsigned long *bitmap2, unsigned int bits)
244 {
245 	unsigned int k, lim = bits/BITS_PER_LONG;
246 	for (k = 0; k < lim; ++k)
247 		if (bitmap1[k] & bitmap2[k])
248 			return 1;
249 
250 	if (bits % BITS_PER_LONG)
251 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
252 			return 1;
253 	return 0;
254 }
255 EXPORT_SYMBOL(__bitmap_intersects);
256 
257 int __bitmap_subset(const unsigned long *bitmap1,
258 		    const unsigned long *bitmap2, unsigned int bits)
259 {
260 	unsigned int k, lim = bits/BITS_PER_LONG;
261 	for (k = 0; k < lim; ++k)
262 		if (bitmap1[k] & ~bitmap2[k])
263 			return 0;
264 
265 	if (bits % BITS_PER_LONG)
266 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
267 			return 0;
268 	return 1;
269 }
270 EXPORT_SYMBOL(__bitmap_subset);
271 
272 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
273 {
274 	unsigned int k, lim = bits/BITS_PER_LONG;
275 	int w = 0;
276 
277 	for (k = 0; k < lim; k++)
278 		w += hweight_long(bitmap[k]);
279 
280 	if (bits % BITS_PER_LONG)
281 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
282 
283 	return w;
284 }
285 EXPORT_SYMBOL(__bitmap_weight);
286 
287 void bitmap_set(unsigned long *map, unsigned int start, int len)
288 {
289 	unsigned long *p = map + BIT_WORD(start);
290 	const unsigned int size = start + len;
291 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
292 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
293 
294 	while (len - bits_to_set >= 0) {
295 		*p |= mask_to_set;
296 		len -= bits_to_set;
297 		bits_to_set = BITS_PER_LONG;
298 		mask_to_set = ~0UL;
299 		p++;
300 	}
301 	if (len) {
302 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
303 		*p |= mask_to_set;
304 	}
305 }
306 EXPORT_SYMBOL(bitmap_set);
307 
308 void bitmap_clear(unsigned long *map, unsigned int start, int len)
309 {
310 	unsigned long *p = map + BIT_WORD(start);
311 	const unsigned int size = start + len;
312 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
313 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
314 
315 	while (len - bits_to_clear >= 0) {
316 		*p &= ~mask_to_clear;
317 		len -= bits_to_clear;
318 		bits_to_clear = BITS_PER_LONG;
319 		mask_to_clear = ~0UL;
320 		p++;
321 	}
322 	if (len) {
323 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
324 		*p &= ~mask_to_clear;
325 	}
326 }
327 EXPORT_SYMBOL(bitmap_clear);
328 
329 /*
330  * bitmap_find_next_zero_area - find a contiguous aligned zero area
331  * @map: The address to base the search on
332  * @size: The bitmap size in bits
333  * @start: The bitnumber to start searching at
334  * @nr: The number of zeroed bits we're looking for
335  * @align_mask: Alignment mask for zero area
336  *
337  * The @align_mask should be one less than a power of 2; the effect is that
338  * the bit offset of all zero areas this function finds is multiples of that
339  * power of 2. A @align_mask of 0 means no alignment is required.
340  */
341 unsigned long bitmap_find_next_zero_area(unsigned long *map,
342 					 unsigned long size,
343 					 unsigned long start,
344 					 unsigned int nr,
345 					 unsigned long align_mask)
346 {
347 	unsigned long index, end, i;
348 again:
349 	index = find_next_zero_bit(map, size, start);
350 
351 	/* Align allocation */
352 	index = __ALIGN_MASK(index, align_mask);
353 
354 	end = index + nr;
355 	if (end > size)
356 		return end;
357 	i = find_next_bit(map, end, index);
358 	if (i < end) {
359 		start = i + 1;
360 		goto again;
361 	}
362 	return index;
363 }
364 EXPORT_SYMBOL(bitmap_find_next_zero_area);
365 
366 /*
367  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
368  * second version by Paul Jackson, third by Joe Korty.
369  */
370 
371 #define CHUNKSZ				32
372 #define nbits_to_hold_value(val)	fls(val)
373 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
374 
375 /**
376  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
377  * @buf: byte buffer into which string is placed
378  * @buflen: reserved size of @buf, in bytes
379  * @maskp: pointer to bitmap to convert
380  * @nmaskbits: size of bitmap, in bits
381  *
382  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
383  * comma-separated sets of eight digits per set.  Returns the number of
384  * characters which were written to *buf, excluding the trailing \0.
385  */
386 int bitmap_scnprintf(char *buf, unsigned int buflen,
387 	const unsigned long *maskp, int nmaskbits)
388 {
389 	int i, word, bit, len = 0;
390 	unsigned long val;
391 	const char *sep = "";
392 	int chunksz;
393 	u32 chunkmask;
394 
395 	chunksz = nmaskbits & (CHUNKSZ - 1);
396 	if (chunksz == 0)
397 		chunksz = CHUNKSZ;
398 
399 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
400 	for (; i >= 0; i -= CHUNKSZ) {
401 		chunkmask = ((1ULL << chunksz) - 1);
402 		word = i / BITS_PER_LONG;
403 		bit = i % BITS_PER_LONG;
404 		val = (maskp[word] >> bit) & chunkmask;
405 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
406 			(chunksz+3)/4, val);
407 		chunksz = CHUNKSZ;
408 		sep = ",";
409 	}
410 	return len;
411 }
412 EXPORT_SYMBOL(bitmap_scnprintf);
413 
414 /**
415  * __bitmap_parse - convert an ASCII hex string into a bitmap.
416  * @buf: pointer to buffer containing string.
417  * @buflen: buffer size in bytes.  If string is smaller than this
418  *    then it must be terminated with a \0.
419  * @is_user: location of buffer, 0 indicates kernel space
420  * @maskp: pointer to bitmap array that will contain result.
421  * @nmaskbits: size of bitmap, in bits.
422  *
423  * Commas group hex digits into chunks.  Each chunk defines exactly 32
424  * bits of the resultant bitmask.  No chunk may specify a value larger
425  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
426  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
427  * characters and for grouping errors such as "1,,5", ",44", "," and "".
428  * Leading and trailing whitespace accepted, but not embedded whitespace.
429  */
430 int __bitmap_parse(const char *buf, unsigned int buflen,
431 		int is_user, unsigned long *maskp,
432 		int nmaskbits)
433 {
434 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
435 	u32 chunk;
436 	const char __user __force *ubuf = (const char __user __force *)buf;
437 
438 	bitmap_zero(maskp, nmaskbits);
439 
440 	nchunks = nbits = totaldigits = c = 0;
441 	do {
442 		chunk = ndigits = 0;
443 
444 		/* Get the next chunk of the bitmap */
445 		while (buflen) {
446 			old_c = c;
447 			if (is_user) {
448 				if (__get_user(c, ubuf++))
449 					return -EFAULT;
450 			}
451 			else
452 				c = *buf++;
453 			buflen--;
454 			if (isspace(c))
455 				continue;
456 
457 			/*
458 			 * If the last character was a space and the current
459 			 * character isn't '\0', we've got embedded whitespace.
460 			 * This is a no-no, so throw an error.
461 			 */
462 			if (totaldigits && c && isspace(old_c))
463 				return -EINVAL;
464 
465 			/* A '\0' or a ',' signal the end of the chunk */
466 			if (c == '\0' || c == ',')
467 				break;
468 
469 			if (!isxdigit(c))
470 				return -EINVAL;
471 
472 			/*
473 			 * Make sure there are at least 4 free bits in 'chunk'.
474 			 * If not, this hexdigit will overflow 'chunk', so
475 			 * throw an error.
476 			 */
477 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
478 				return -EOVERFLOW;
479 
480 			chunk = (chunk << 4) | hex_to_bin(c);
481 			ndigits++; totaldigits++;
482 		}
483 		if (ndigits == 0)
484 			return -EINVAL;
485 		if (nchunks == 0 && chunk == 0)
486 			continue;
487 
488 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
489 		*maskp |= chunk;
490 		nchunks++;
491 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
492 		if (nbits > nmaskbits)
493 			return -EOVERFLOW;
494 	} while (buflen && c == ',');
495 
496 	return 0;
497 }
498 EXPORT_SYMBOL(__bitmap_parse);
499 
500 /**
501  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
502  *
503  * @ubuf: pointer to user buffer containing string.
504  * @ulen: buffer size in bytes.  If string is smaller than this
505  *    then it must be terminated with a \0.
506  * @maskp: pointer to bitmap array that will contain result.
507  * @nmaskbits: size of bitmap, in bits.
508  *
509  * Wrapper for __bitmap_parse(), providing it with user buffer.
510  *
511  * We cannot have this as an inline function in bitmap.h because it needs
512  * linux/uaccess.h to get the access_ok() declaration and this causes
513  * cyclic dependencies.
514  */
515 int bitmap_parse_user(const char __user *ubuf,
516 			unsigned int ulen, unsigned long *maskp,
517 			int nmaskbits)
518 {
519 	if (!access_ok(VERIFY_READ, ubuf, ulen))
520 		return -EFAULT;
521 	return __bitmap_parse((const char __force *)ubuf,
522 				ulen, 1, maskp, nmaskbits);
523 
524 }
525 EXPORT_SYMBOL(bitmap_parse_user);
526 
527 /*
528  * bscnl_emit(buf, buflen, rbot, rtop, bp)
529  *
530  * Helper routine for bitmap_scnlistprintf().  Write decimal number
531  * or range to buf, suppressing output past buf+buflen, with optional
532  * comma-prefix.  Return len of what was written to *buf, excluding the
533  * trailing \0.
534  */
535 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
536 {
537 	if (len > 0)
538 		len += scnprintf(buf + len, buflen - len, ",");
539 	if (rbot == rtop)
540 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
541 	else
542 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
543 	return len;
544 }
545 
546 /**
547  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
548  * @buf: byte buffer into which string is placed
549  * @buflen: reserved size of @buf, in bytes
550  * @maskp: pointer to bitmap to convert
551  * @nmaskbits: size of bitmap, in bits
552  *
553  * Output format is a comma-separated list of decimal numbers and
554  * ranges.  Consecutively set bits are shown as two hyphen-separated
555  * decimal numbers, the smallest and largest bit numbers set in
556  * the range.  Output format is compatible with the format
557  * accepted as input by bitmap_parselist().
558  *
559  * The return value is the number of characters which were written to *buf
560  * excluding the trailing '\0', as per ISO C99's scnprintf.
561  */
562 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
563 	const unsigned long *maskp, int nmaskbits)
564 {
565 	int len = 0;
566 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
567 	int cur, rbot, rtop;
568 
569 	if (buflen == 0)
570 		return 0;
571 	buf[0] = 0;
572 
573 	rbot = cur = find_first_bit(maskp, nmaskbits);
574 	while (cur < nmaskbits) {
575 		rtop = cur;
576 		cur = find_next_bit(maskp, nmaskbits, cur+1);
577 		if (cur >= nmaskbits || cur > rtop + 1) {
578 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
579 			rbot = cur;
580 		}
581 	}
582 	return len;
583 }
584 EXPORT_SYMBOL(bitmap_scnlistprintf);
585 
586 /**
587  * __bitmap_parselist - convert list format ASCII string to bitmap
588  * @buf: read nul-terminated user string from this buffer
589  * @buflen: buffer size in bytes.  If string is smaller than this
590  *    then it must be terminated with a \0.
591  * @is_user: location of buffer, 0 indicates kernel space
592  * @maskp: write resulting mask here
593  * @nmaskbits: number of bits in mask to be written
594  *
595  * Input format is a comma-separated list of decimal numbers and
596  * ranges.  Consecutively set bits are shown as two hyphen-separated
597  * decimal numbers, the smallest and largest bit numbers set in
598  * the range.
599  *
600  * Returns 0 on success, -errno on invalid input strings.
601  * Error values:
602  *    %-EINVAL: second number in range smaller than first
603  *    %-EINVAL: invalid character in string
604  *    %-ERANGE: bit number specified too large for mask
605  */
606 static int __bitmap_parselist(const char *buf, unsigned int buflen,
607 		int is_user, unsigned long *maskp,
608 		int nmaskbits)
609 {
610 	unsigned a, b;
611 	int c, old_c, totaldigits;
612 	const char __user __force *ubuf = (const char __user __force *)buf;
613 	int exp_digit, in_range;
614 
615 	totaldigits = c = 0;
616 	bitmap_zero(maskp, nmaskbits);
617 	do {
618 		exp_digit = 1;
619 		in_range = 0;
620 		a = b = 0;
621 
622 		/* Get the next cpu# or a range of cpu#'s */
623 		while (buflen) {
624 			old_c = c;
625 			if (is_user) {
626 				if (__get_user(c, ubuf++))
627 					return -EFAULT;
628 			} else
629 				c = *buf++;
630 			buflen--;
631 			if (isspace(c))
632 				continue;
633 
634 			/*
635 			 * If the last character was a space and the current
636 			 * character isn't '\0', we've got embedded whitespace.
637 			 * This is a no-no, so throw an error.
638 			 */
639 			if (totaldigits && c && isspace(old_c))
640 				return -EINVAL;
641 
642 			/* A '\0' or a ',' signal the end of a cpu# or range */
643 			if (c == '\0' || c == ',')
644 				break;
645 
646 			if (c == '-') {
647 				if (exp_digit || in_range)
648 					return -EINVAL;
649 				b = 0;
650 				in_range = 1;
651 				exp_digit = 1;
652 				continue;
653 			}
654 
655 			if (!isdigit(c))
656 				return -EINVAL;
657 
658 			b = b * 10 + (c - '0');
659 			if (!in_range)
660 				a = b;
661 			exp_digit = 0;
662 			totaldigits++;
663 		}
664 		if (!(a <= b))
665 			return -EINVAL;
666 		if (b >= nmaskbits)
667 			return -ERANGE;
668 		while (a <= b) {
669 			set_bit(a, maskp);
670 			a++;
671 		}
672 	} while (buflen && c == ',');
673 	return 0;
674 }
675 
676 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
677 {
678 	char *nl  = strchrnul(bp, '\n');
679 	int len = nl - bp;
680 
681 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
682 }
683 EXPORT_SYMBOL(bitmap_parselist);
684 
685 
686 /**
687  * bitmap_parselist_user()
688  *
689  * @ubuf: pointer to user buffer containing string.
690  * @ulen: buffer size in bytes.  If string is smaller than this
691  *    then it must be terminated with a \0.
692  * @maskp: pointer to bitmap array that will contain result.
693  * @nmaskbits: size of bitmap, in bits.
694  *
695  * Wrapper for bitmap_parselist(), providing it with user buffer.
696  *
697  * We cannot have this as an inline function in bitmap.h because it needs
698  * linux/uaccess.h to get the access_ok() declaration and this causes
699  * cyclic dependencies.
700  */
701 int bitmap_parselist_user(const char __user *ubuf,
702 			unsigned int ulen, unsigned long *maskp,
703 			int nmaskbits)
704 {
705 	if (!access_ok(VERIFY_READ, ubuf, ulen))
706 		return -EFAULT;
707 	return __bitmap_parselist((const char __force *)ubuf,
708 					ulen, 1, maskp, nmaskbits);
709 }
710 EXPORT_SYMBOL(bitmap_parselist_user);
711 
712 
713 /**
714  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
715  *	@buf: pointer to a bitmap
716  *	@pos: a bit position in @buf (0 <= @pos < @bits)
717  *	@bits: number of valid bit positions in @buf
718  *
719  * Map the bit at position @pos in @buf (of length @bits) to the
720  * ordinal of which set bit it is.  If it is not set or if @pos
721  * is not a valid bit position, map to -1.
722  *
723  * If for example, just bits 4 through 7 are set in @buf, then @pos
724  * values 4 through 7 will get mapped to 0 through 3, respectively,
725  * and other @pos values will get mapped to -1.  When @pos value 7
726  * gets mapped to (returns) @ord value 3 in this example, that means
727  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
728  *
729  * The bit positions 0 through @bits are valid positions in @buf.
730  */
731 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
732 {
733 	int i, ord;
734 
735 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
736 		return -1;
737 
738 	i = find_first_bit(buf, bits);
739 	ord = 0;
740 	while (i < pos) {
741 		i = find_next_bit(buf, bits, i + 1);
742 	     	ord++;
743 	}
744 	BUG_ON(i != pos);
745 
746 	return ord;
747 }
748 
749 /**
750  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
751  *	@buf: pointer to bitmap
752  *	@ord: ordinal bit position (n-th set bit, n >= 0)
753  *	@bits: number of valid bit positions in @buf
754  *
755  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
756  * Value of @ord should be in range 0 <= @ord < weight(buf), else
757  * results are undefined.
758  *
759  * If for example, just bits 4 through 7 are set in @buf, then @ord
760  * values 0 through 3 will get mapped to 4 through 7, respectively,
761  * and all other @ord values return undefined values.  When @ord value 3
762  * gets mapped to (returns) @pos value 7 in this example, that means
763  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
764  *
765  * The bit positions 0 through @bits are valid positions in @buf.
766  */
767 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
768 {
769 	int pos = 0;
770 
771 	if (ord >= 0 && ord < bits) {
772 		int i;
773 
774 		for (i = find_first_bit(buf, bits);
775 		     i < bits && ord > 0;
776 		     i = find_next_bit(buf, bits, i + 1))
777 	     		ord--;
778 		if (i < bits && ord == 0)
779 			pos = i;
780 	}
781 
782 	return pos;
783 }
784 
785 /**
786  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
787  *	@dst: remapped result
788  *	@src: subset to be remapped
789  *	@old: defines domain of map
790  *	@new: defines range of map
791  *	@bits: number of bits in each of these bitmaps
792  *
793  * Let @old and @new define a mapping of bit positions, such that
794  * whatever position is held by the n-th set bit in @old is mapped
795  * to the n-th set bit in @new.  In the more general case, allowing
796  * for the possibility that the weight 'w' of @new is less than the
797  * weight of @old, map the position of the n-th set bit in @old to
798  * the position of the m-th set bit in @new, where m == n % w.
799  *
800  * If either of the @old and @new bitmaps are empty, or if @src and
801  * @dst point to the same location, then this routine copies @src
802  * to @dst.
803  *
804  * The positions of unset bits in @old are mapped to themselves
805  * (the identify map).
806  *
807  * Apply the above specified mapping to @src, placing the result in
808  * @dst, clearing any bits previously set in @dst.
809  *
810  * For example, lets say that @old has bits 4 through 7 set, and
811  * @new has bits 12 through 15 set.  This defines the mapping of bit
812  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
813  * bit positions unchanged.  So if say @src comes into this routine
814  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
815  * 13 and 15 set.
816  */
817 void bitmap_remap(unsigned long *dst, const unsigned long *src,
818 		const unsigned long *old, const unsigned long *new,
819 		int bits)
820 {
821 	int oldbit, w;
822 
823 	if (dst == src)		/* following doesn't handle inplace remaps */
824 		return;
825 	bitmap_zero(dst, bits);
826 
827 	w = bitmap_weight(new, bits);
828 	for_each_set_bit(oldbit, src, bits) {
829 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
830 
831 		if (n < 0 || w == 0)
832 			set_bit(oldbit, dst);	/* identity map */
833 		else
834 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
835 	}
836 }
837 EXPORT_SYMBOL(bitmap_remap);
838 
839 /**
840  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
841  *	@oldbit: bit position to be mapped
842  *	@old: defines domain of map
843  *	@new: defines range of map
844  *	@bits: number of bits in each of these bitmaps
845  *
846  * Let @old and @new define a mapping of bit positions, such that
847  * whatever position is held by the n-th set bit in @old is mapped
848  * to the n-th set bit in @new.  In the more general case, allowing
849  * for the possibility that the weight 'w' of @new is less than the
850  * weight of @old, map the position of the n-th set bit in @old to
851  * the position of the m-th set bit in @new, where m == n % w.
852  *
853  * The positions of unset bits in @old are mapped to themselves
854  * (the identify map).
855  *
856  * Apply the above specified mapping to bit position @oldbit, returning
857  * the new bit position.
858  *
859  * For example, lets say that @old has bits 4 through 7 set, and
860  * @new has bits 12 through 15 set.  This defines the mapping of bit
861  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
862  * bit positions unchanged.  So if say @oldbit is 5, then this routine
863  * returns 13.
864  */
865 int bitmap_bitremap(int oldbit, const unsigned long *old,
866 				const unsigned long *new, int bits)
867 {
868 	int w = bitmap_weight(new, bits);
869 	int n = bitmap_pos_to_ord(old, oldbit, bits);
870 	if (n < 0 || w == 0)
871 		return oldbit;
872 	else
873 		return bitmap_ord_to_pos(new, n % w, bits);
874 }
875 EXPORT_SYMBOL(bitmap_bitremap);
876 
877 /**
878  * bitmap_onto - translate one bitmap relative to another
879  *	@dst: resulting translated bitmap
880  * 	@orig: original untranslated bitmap
881  * 	@relmap: bitmap relative to which translated
882  *	@bits: number of bits in each of these bitmaps
883  *
884  * Set the n-th bit of @dst iff there exists some m such that the
885  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
886  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
887  * (If you understood the previous sentence the first time your
888  * read it, you're overqualified for your current job.)
889  *
890  * In other words, @orig is mapped onto (surjectively) @dst,
891  * using the map { <n, m> | the n-th bit of @relmap is the
892  * m-th set bit of @relmap }.
893  *
894  * Any set bits in @orig above bit number W, where W is the
895  * weight of (number of set bits in) @relmap are mapped nowhere.
896  * In particular, if for all bits m set in @orig, m >= W, then
897  * @dst will end up empty.  In situations where the possibility
898  * of such an empty result is not desired, one way to avoid it is
899  * to use the bitmap_fold() operator, below, to first fold the
900  * @orig bitmap over itself so that all its set bits x are in the
901  * range 0 <= x < W.  The bitmap_fold() operator does this by
902  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
903  *
904  * Example [1] for bitmap_onto():
905  *  Let's say @relmap has bits 30-39 set, and @orig has bits
906  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
907  *  @dst will have bits 31, 33, 35, 37 and 39 set.
908  *
909  *  When bit 0 is set in @orig, it means turn on the bit in
910  *  @dst corresponding to whatever is the first bit (if any)
911  *  that is turned on in @relmap.  Since bit 0 was off in the
912  *  above example, we leave off that bit (bit 30) in @dst.
913  *
914  *  When bit 1 is set in @orig (as in the above example), it
915  *  means turn on the bit in @dst corresponding to whatever
916  *  is the second bit that is turned on in @relmap.  The second
917  *  bit in @relmap that was turned on in the above example was
918  *  bit 31, so we turned on bit 31 in @dst.
919  *
920  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
921  *  because they were the 4th, 6th, 8th and 10th set bits
922  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
923  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
924  *
925  *  When bit 11 is set in @orig, it means turn on the bit in
926  *  @dst corresponding to whatever is the twelfth bit that is
927  *  turned on in @relmap.  In the above example, there were
928  *  only ten bits turned on in @relmap (30..39), so that bit
929  *  11 was set in @orig had no affect on @dst.
930  *
931  * Example [2] for bitmap_fold() + bitmap_onto():
932  *  Let's say @relmap has these ten bits set:
933  *		40 41 42 43 45 48 53 61 74 95
934  *  (for the curious, that's 40 plus the first ten terms of the
935  *  Fibonacci sequence.)
936  *
937  *  Further lets say we use the following code, invoking
938  *  bitmap_fold() then bitmap_onto, as suggested above to
939  *  avoid the possibility of an empty @dst result:
940  *
941  *	unsigned long *tmp;	// a temporary bitmap's bits
942  *
943  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
944  *	bitmap_onto(dst, tmp, relmap, bits);
945  *
946  *  Then this table shows what various values of @dst would be, for
947  *  various @orig's.  I list the zero-based positions of each set bit.
948  *  The tmp column shows the intermediate result, as computed by
949  *  using bitmap_fold() to fold the @orig bitmap modulo ten
950  *  (the weight of @relmap).
951  *
952  *      @orig           tmp            @dst
953  *      0                0             40
954  *      1                1             41
955  *      9                9             95
956  *      10               0             40 (*)
957  *      1 3 5 7          1 3 5 7       41 43 48 61
958  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
959  *      0 9 18 27        0 9 8 7       40 61 74 95
960  *      0 10 20 30       0             40
961  *      0 11 22 33       0 1 2 3       40 41 42 43
962  *      0 12 24 36       0 2 4 6       40 42 45 53
963  *      78 102 211       1 2 8         41 42 74 (*)
964  *
965  * (*) For these marked lines, if we hadn't first done bitmap_fold()
966  *     into tmp, then the @dst result would have been empty.
967  *
968  * If either of @orig or @relmap is empty (no set bits), then @dst
969  * will be returned empty.
970  *
971  * If (as explained above) the only set bits in @orig are in positions
972  * m where m >= W, (where W is the weight of @relmap) then @dst will
973  * once again be returned empty.
974  *
975  * All bits in @dst not set by the above rule are cleared.
976  */
977 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
978 			const unsigned long *relmap, int bits)
979 {
980 	int n, m;       	/* same meaning as in above comment */
981 
982 	if (dst == orig)	/* following doesn't handle inplace mappings */
983 		return;
984 	bitmap_zero(dst, bits);
985 
986 	/*
987 	 * The following code is a more efficient, but less
988 	 * obvious, equivalent to the loop:
989 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
990 	 *		n = bitmap_ord_to_pos(orig, m, bits);
991 	 *		if (test_bit(m, orig))
992 	 *			set_bit(n, dst);
993 	 *	}
994 	 */
995 
996 	m = 0;
997 	for_each_set_bit(n, relmap, bits) {
998 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
999 		if (test_bit(m, orig))
1000 			set_bit(n, dst);
1001 		m++;
1002 	}
1003 }
1004 EXPORT_SYMBOL(bitmap_onto);
1005 
1006 /**
1007  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1008  *	@dst: resulting smaller bitmap
1009  *	@orig: original larger bitmap
1010  *	@sz: specified size
1011  *	@bits: number of bits in each of these bitmaps
1012  *
1013  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1014  * Clear all other bits in @dst.  See further the comment and
1015  * Example [2] for bitmap_onto() for why and how to use this.
1016  */
1017 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1018 			int sz, int bits)
1019 {
1020 	int oldbit;
1021 
1022 	if (dst == orig)	/* following doesn't handle inplace mappings */
1023 		return;
1024 	bitmap_zero(dst, bits);
1025 
1026 	for_each_set_bit(oldbit, orig, bits)
1027 		set_bit(oldbit % sz, dst);
1028 }
1029 EXPORT_SYMBOL(bitmap_fold);
1030 
1031 /*
1032  * Common code for bitmap_*_region() routines.
1033  *	bitmap: array of unsigned longs corresponding to the bitmap
1034  *	pos: the beginning of the region
1035  *	order: region size (log base 2 of number of bits)
1036  *	reg_op: operation(s) to perform on that region of bitmap
1037  *
1038  * Can set, verify and/or release a region of bits in a bitmap,
1039  * depending on which combination of REG_OP_* flag bits is set.
1040  *
1041  * A region of a bitmap is a sequence of bits in the bitmap, of
1042  * some size '1 << order' (a power of two), aligned to that same
1043  * '1 << order' power of two.
1044  *
1045  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1046  * Returns 0 in all other cases and reg_ops.
1047  */
1048 
1049 enum {
1050 	REG_OP_ISFREE,		/* true if region is all zero bits */
1051 	REG_OP_ALLOC,		/* set all bits in region */
1052 	REG_OP_RELEASE,		/* clear all bits in region */
1053 };
1054 
1055 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1056 {
1057 	int nbits_reg;		/* number of bits in region */
1058 	int index;		/* index first long of region in bitmap */
1059 	int offset;		/* bit offset region in bitmap[index] */
1060 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1061 	int nbitsinlong;	/* num bits of region in each spanned long */
1062 	unsigned long mask;	/* bitmask for one long of region */
1063 	int i;			/* scans bitmap by longs */
1064 	int ret = 0;		/* return value */
1065 
1066 	/*
1067 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1068 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1069 	 */
1070 	nbits_reg = 1 << order;
1071 	index = pos / BITS_PER_LONG;
1072 	offset = pos - (index * BITS_PER_LONG);
1073 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1074 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1075 
1076 	/*
1077 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1078 	 * overflows if nbitsinlong == BITS_PER_LONG.
1079 	 */
1080 	mask = (1UL << (nbitsinlong - 1));
1081 	mask += mask - 1;
1082 	mask <<= offset;
1083 
1084 	switch (reg_op) {
1085 	case REG_OP_ISFREE:
1086 		for (i = 0; i < nlongs_reg; i++) {
1087 			if (bitmap[index + i] & mask)
1088 				goto done;
1089 		}
1090 		ret = 1;	/* all bits in region free (zero) */
1091 		break;
1092 
1093 	case REG_OP_ALLOC:
1094 		for (i = 0; i < nlongs_reg; i++)
1095 			bitmap[index + i] |= mask;
1096 		break;
1097 
1098 	case REG_OP_RELEASE:
1099 		for (i = 0; i < nlongs_reg; i++)
1100 			bitmap[index + i] &= ~mask;
1101 		break;
1102 	}
1103 done:
1104 	return ret;
1105 }
1106 
1107 /**
1108  * bitmap_find_free_region - find a contiguous aligned mem region
1109  *	@bitmap: array of unsigned longs corresponding to the bitmap
1110  *	@bits: number of bits in the bitmap
1111  *	@order: region size (log base 2 of number of bits) to find
1112  *
1113  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1114  * allocate them (set them to one).  Only consider regions of length
1115  * a power (@order) of two, aligned to that power of two, which
1116  * makes the search algorithm much faster.
1117  *
1118  * Return the bit offset in bitmap of the allocated region,
1119  * or -errno on failure.
1120  */
1121 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1122 {
1123 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1124 
1125 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1126 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1127 			continue;
1128 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1129 		return pos;
1130 	}
1131 	return -ENOMEM;
1132 }
1133 EXPORT_SYMBOL(bitmap_find_free_region);
1134 
1135 /**
1136  * bitmap_release_region - release allocated bitmap region
1137  *	@bitmap: array of unsigned longs corresponding to the bitmap
1138  *	@pos: beginning of bit region to release
1139  *	@order: region size (log base 2 of number of bits) to release
1140  *
1141  * This is the complement to __bitmap_find_free_region() and releases
1142  * the found region (by clearing it in the bitmap).
1143  *
1144  * No return value.
1145  */
1146 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1147 {
1148 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1149 }
1150 EXPORT_SYMBOL(bitmap_release_region);
1151 
1152 /**
1153  * bitmap_allocate_region - allocate bitmap region
1154  *	@bitmap: array of unsigned longs corresponding to the bitmap
1155  *	@pos: beginning of bit region to allocate
1156  *	@order: region size (log base 2 of number of bits) to allocate
1157  *
1158  * Allocate (set bits in) a specified region of a bitmap.
1159  *
1160  * Return 0 on success, or %-EBUSY if specified region wasn't
1161  * free (not all bits were zero).
1162  */
1163 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1164 {
1165 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1166 		return -EBUSY;
1167 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1168 }
1169 EXPORT_SYMBOL(bitmap_allocate_region);
1170 
1171 /**
1172  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1173  * @dst:   destination buffer
1174  * @src:   bitmap to copy
1175  * @nbits: number of bits in the bitmap
1176  *
1177  * Require nbits % BITS_PER_LONG == 0.
1178  */
1179 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1180 {
1181 	unsigned long *d = dst;
1182 	int i;
1183 
1184 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1185 		if (BITS_PER_LONG == 64)
1186 			d[i] = cpu_to_le64(src[i]);
1187 		else
1188 			d[i] = cpu_to_le32(src[i]);
1189 	}
1190 }
1191 EXPORT_SYMBOL(bitmap_copy_le);
1192