xref: /openbmc/linux/lib/bitmap.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/page.h>
20 
21 #include "kstrtox.h"
22 
23 /**
24  * DOC: bitmap introduction
25  *
26  * bitmaps provide an array of bits, implemented using an an
27  * array of unsigned longs.  The number of valid bits in a
28  * given bitmap does _not_ need to be an exact multiple of
29  * BITS_PER_LONG.
30  *
31  * The possible unused bits in the last, partially used word
32  * of a bitmap are 'don't care'.  The implementation makes
33  * no particular effort to keep them zero.  It ensures that
34  * their value will not affect the results of any operation.
35  * The bitmap operations that return Boolean (bitmap_empty,
36  * for example) or scalar (bitmap_weight, for example) results
37  * carefully filter out these unused bits from impacting their
38  * results.
39  *
40  * The byte ordering of bitmaps is more natural on little
41  * endian architectures.  See the big-endian headers
42  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43  * for the best explanations of this ordering.
44  */
45 
46 int __bitmap_equal(const unsigned long *bitmap1,
47 		const unsigned long *bitmap2, unsigned int bits)
48 {
49 	unsigned int k, lim = bits/BITS_PER_LONG;
50 	for (k = 0; k < lim; ++k)
51 		if (bitmap1[k] != bitmap2[k])
52 			return 0;
53 
54 	if (bits % BITS_PER_LONG)
55 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 			return 0;
57 
58 	return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61 
62 bool __bitmap_or_equal(const unsigned long *bitmap1,
63 		       const unsigned long *bitmap2,
64 		       const unsigned long *bitmap3,
65 		       unsigned int bits)
66 {
67 	unsigned int k, lim = bits / BITS_PER_LONG;
68 	unsigned long tmp;
69 
70 	for (k = 0; k < lim; ++k) {
71 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 			return false;
73 	}
74 
75 	if (!(bits % BITS_PER_LONG))
76 		return true;
77 
78 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80 }
81 
82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
83 {
84 	unsigned int k, lim = BITS_TO_LONGS(bits);
85 	for (k = 0; k < lim; ++k)
86 		dst[k] = ~src[k];
87 }
88 EXPORT_SYMBOL(__bitmap_complement);
89 
90 /**
91  * __bitmap_shift_right - logical right shift of the bits in a bitmap
92  *   @dst : destination bitmap
93  *   @src : source bitmap
94  *   @shift : shift by this many bits
95  *   @nbits : bitmap size, in bits
96  *
97  * Shifting right (dividing) means moving bits in the MS -> LS bit
98  * direction.  Zeros are fed into the vacated MS positions and the
99  * LS bits shifted off the bottom are lost.
100  */
101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 			unsigned shift, unsigned nbits)
103 {
104 	unsigned k, lim = BITS_TO_LONGS(nbits);
105 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
107 	for (k = 0; off + k < lim; ++k) {
108 		unsigned long upper, lower;
109 
110 		/*
111 		 * If shift is not word aligned, take lower rem bits of
112 		 * word above and make them the top rem bits of result.
113 		 */
114 		if (!rem || off + k + 1 >= lim)
115 			upper = 0;
116 		else {
117 			upper = src[off + k + 1];
118 			if (off + k + 1 == lim - 1)
119 				upper &= mask;
120 			upper <<= (BITS_PER_LONG - rem);
121 		}
122 		lower = src[off + k];
123 		if (off + k == lim - 1)
124 			lower &= mask;
125 		lower >>= rem;
126 		dst[k] = lower | upper;
127 	}
128 	if (off)
129 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130 }
131 EXPORT_SYMBOL(__bitmap_shift_right);
132 
133 
134 /**
135  * __bitmap_shift_left - logical left shift of the bits in a bitmap
136  *   @dst : destination bitmap
137  *   @src : source bitmap
138  *   @shift : shift by this many bits
139  *   @nbits : bitmap size, in bits
140  *
141  * Shifting left (multiplying) means moving bits in the LS -> MS
142  * direction.  Zeros are fed into the vacated LS bit positions
143  * and those MS bits shifted off the top are lost.
144  */
145 
146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 			unsigned int shift, unsigned int nbits)
148 {
149 	int k;
150 	unsigned int lim = BITS_TO_LONGS(nbits);
151 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
152 	for (k = lim - off - 1; k >= 0; --k) {
153 		unsigned long upper, lower;
154 
155 		/*
156 		 * If shift is not word aligned, take upper rem bits of
157 		 * word below and make them the bottom rem bits of result.
158 		 */
159 		if (rem && k > 0)
160 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
161 		else
162 			lower = 0;
163 		upper = src[k] << rem;
164 		dst[k + off] = lower | upper;
165 	}
166 	if (off)
167 		memset(dst, 0, off*sizeof(unsigned long));
168 }
169 EXPORT_SYMBOL(__bitmap_shift_left);
170 
171 /**
172  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173  * @dst: destination bitmap, might overlap with src
174  * @src: source bitmap
175  * @first: start bit of region to be removed
176  * @cut: number of bits to remove
177  * @nbits: bitmap size, in bits
178  *
179  * Set the n-th bit of @dst iff the n-th bit of @src is set and
180  * n is less than @first, or the m-th bit of @src is set for any
181  * m such that @first <= n < nbits, and m = n + @cut.
182  *
183  * In pictures, example for a big-endian 32-bit architecture:
184  *
185  * @src:
186  * 31                                   63
187  * |                                    |
188  * 10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
189  *                 |  |              |                                    |
190  *                16  14             0                                   32
191  *
192  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:
193  *
194  * 31                                   63
195  * |                                    |
196  * 10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
197  *                    |              |                                    |
198  *                    14 (bit 17     0                                   32
199  *                        from @src)
200  *
201  * Note that @dst and @src might overlap partially or entirely.
202  *
203  * This is implemented in the obvious way, with a shift and carry
204  * step for each moved bit. Optimisation is left as an exercise
205  * for the compiler.
206  */
207 void bitmap_cut(unsigned long *dst, const unsigned long *src,
208 		unsigned int first, unsigned int cut, unsigned int nbits)
209 {
210 	unsigned int len = BITS_TO_LONGS(nbits);
211 	unsigned long keep = 0, carry;
212 	int i;
213 
214 	memmove(dst, src, len * sizeof(*dst));
215 
216 	if (first % BITS_PER_LONG) {
217 		keep = src[first / BITS_PER_LONG] &
218 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
219 	}
220 
221 	while (cut--) {
222 		for (i = first / BITS_PER_LONG; i < len; i++) {
223 			if (i < len - 1)
224 				carry = dst[i + 1] & 1UL;
225 			else
226 				carry = 0;
227 
228 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
229 		}
230 	}
231 
232 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
233 	dst[first / BITS_PER_LONG] |= keep;
234 }
235 EXPORT_SYMBOL(bitmap_cut);
236 
237 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
238 				const unsigned long *bitmap2, unsigned int bits)
239 {
240 	unsigned int k;
241 	unsigned int lim = bits/BITS_PER_LONG;
242 	unsigned long result = 0;
243 
244 	for (k = 0; k < lim; k++)
245 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
246 	if (bits % BITS_PER_LONG)
247 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
248 			   BITMAP_LAST_WORD_MASK(bits));
249 	return result != 0;
250 }
251 EXPORT_SYMBOL(__bitmap_and);
252 
253 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
254 				const unsigned long *bitmap2, unsigned int bits)
255 {
256 	unsigned int k;
257 	unsigned int nr = BITS_TO_LONGS(bits);
258 
259 	for (k = 0; k < nr; k++)
260 		dst[k] = bitmap1[k] | bitmap2[k];
261 }
262 EXPORT_SYMBOL(__bitmap_or);
263 
264 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
265 				const unsigned long *bitmap2, unsigned int bits)
266 {
267 	unsigned int k;
268 	unsigned int nr = BITS_TO_LONGS(bits);
269 
270 	for (k = 0; k < nr; k++)
271 		dst[k] = bitmap1[k] ^ bitmap2[k];
272 }
273 EXPORT_SYMBOL(__bitmap_xor);
274 
275 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
276 				const unsigned long *bitmap2, unsigned int bits)
277 {
278 	unsigned int k;
279 	unsigned int lim = bits/BITS_PER_LONG;
280 	unsigned long result = 0;
281 
282 	for (k = 0; k < lim; k++)
283 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
284 	if (bits % BITS_PER_LONG)
285 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
286 			   BITMAP_LAST_WORD_MASK(bits));
287 	return result != 0;
288 }
289 EXPORT_SYMBOL(__bitmap_andnot);
290 
291 void __bitmap_replace(unsigned long *dst,
292 		      const unsigned long *old, const unsigned long *new,
293 		      const unsigned long *mask, unsigned int nbits)
294 {
295 	unsigned int k;
296 	unsigned int nr = BITS_TO_LONGS(nbits);
297 
298 	for (k = 0; k < nr; k++)
299 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
300 }
301 EXPORT_SYMBOL(__bitmap_replace);
302 
303 int __bitmap_intersects(const unsigned long *bitmap1,
304 			const unsigned long *bitmap2, unsigned int bits)
305 {
306 	unsigned int k, lim = bits/BITS_PER_LONG;
307 	for (k = 0; k < lim; ++k)
308 		if (bitmap1[k] & bitmap2[k])
309 			return 1;
310 
311 	if (bits % BITS_PER_LONG)
312 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
313 			return 1;
314 	return 0;
315 }
316 EXPORT_SYMBOL(__bitmap_intersects);
317 
318 int __bitmap_subset(const unsigned long *bitmap1,
319 		    const unsigned long *bitmap2, unsigned int bits)
320 {
321 	unsigned int k, lim = bits/BITS_PER_LONG;
322 	for (k = 0; k < lim; ++k)
323 		if (bitmap1[k] & ~bitmap2[k])
324 			return 0;
325 
326 	if (bits % BITS_PER_LONG)
327 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
328 			return 0;
329 	return 1;
330 }
331 EXPORT_SYMBOL(__bitmap_subset);
332 
333 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
334 {
335 	unsigned int k, lim = bits/BITS_PER_LONG;
336 	int w = 0;
337 
338 	for (k = 0; k < lim; k++)
339 		w += hweight_long(bitmap[k]);
340 
341 	if (bits % BITS_PER_LONG)
342 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
343 
344 	return w;
345 }
346 EXPORT_SYMBOL(__bitmap_weight);
347 
348 void __bitmap_set(unsigned long *map, unsigned int start, int len)
349 {
350 	unsigned long *p = map + BIT_WORD(start);
351 	const unsigned int size = start + len;
352 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
353 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
354 
355 	while (len - bits_to_set >= 0) {
356 		*p |= mask_to_set;
357 		len -= bits_to_set;
358 		bits_to_set = BITS_PER_LONG;
359 		mask_to_set = ~0UL;
360 		p++;
361 	}
362 	if (len) {
363 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
364 		*p |= mask_to_set;
365 	}
366 }
367 EXPORT_SYMBOL(__bitmap_set);
368 
369 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
370 {
371 	unsigned long *p = map + BIT_WORD(start);
372 	const unsigned int size = start + len;
373 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
374 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
375 
376 	while (len - bits_to_clear >= 0) {
377 		*p &= ~mask_to_clear;
378 		len -= bits_to_clear;
379 		bits_to_clear = BITS_PER_LONG;
380 		mask_to_clear = ~0UL;
381 		p++;
382 	}
383 	if (len) {
384 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
385 		*p &= ~mask_to_clear;
386 	}
387 }
388 EXPORT_SYMBOL(__bitmap_clear);
389 
390 /**
391  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
392  * @map: The address to base the search on
393  * @size: The bitmap size in bits
394  * @start: The bitnumber to start searching at
395  * @nr: The number of zeroed bits we're looking for
396  * @align_mask: Alignment mask for zero area
397  * @align_offset: Alignment offset for zero area.
398  *
399  * The @align_mask should be one less than a power of 2; the effect is that
400  * the bit offset of all zero areas this function finds plus @align_offset
401  * is multiple of that power of 2.
402  */
403 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
404 					     unsigned long size,
405 					     unsigned long start,
406 					     unsigned int nr,
407 					     unsigned long align_mask,
408 					     unsigned long align_offset)
409 {
410 	unsigned long index, end, i;
411 again:
412 	index = find_next_zero_bit(map, size, start);
413 
414 	/* Align allocation */
415 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
416 
417 	end = index + nr;
418 	if (end > size)
419 		return end;
420 	i = find_next_bit(map, end, index);
421 	if (i < end) {
422 		start = i + 1;
423 		goto again;
424 	}
425 	return index;
426 }
427 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
428 
429 /*
430  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
431  * second version by Paul Jackson, third by Joe Korty.
432  */
433 
434 /**
435  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
436  *
437  * @ubuf: pointer to user buffer containing string.
438  * @ulen: buffer size in bytes.  If string is smaller than this
439  *    then it must be terminated with a \0.
440  * @maskp: pointer to bitmap array that will contain result.
441  * @nmaskbits: size of bitmap, in bits.
442  */
443 int bitmap_parse_user(const char __user *ubuf,
444 			unsigned int ulen, unsigned long *maskp,
445 			int nmaskbits)
446 {
447 	char *buf;
448 	int ret;
449 
450 	buf = memdup_user_nul(ubuf, ulen);
451 	if (IS_ERR(buf))
452 		return PTR_ERR(buf);
453 
454 	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
455 
456 	kfree(buf);
457 	return ret;
458 }
459 EXPORT_SYMBOL(bitmap_parse_user);
460 
461 /**
462  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
463  * @list: indicates whether the bitmap must be list
464  * @buf: page aligned buffer into which string is placed
465  * @maskp: pointer to bitmap to convert
466  * @nmaskbits: size of bitmap, in bits
467  *
468  * Output format is a comma-separated list of decimal numbers and
469  * ranges if list is specified or hex digits grouped into comma-separated
470  * sets of 8 digits/set. Returns the number of characters written to buf.
471  *
472  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
473  * area and that sufficient storage remains at @buf to accommodate the
474  * bitmap_print_to_pagebuf() output. Returns the number of characters
475  * actually printed to @buf, excluding terminating '\0'.
476  */
477 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
478 			    int nmaskbits)
479 {
480 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
481 
482 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
483 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
484 }
485 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
486 
487 /*
488  * Region 9-38:4/10 describes the following bitmap structure:
489  * 0	   9  12    18			38
490  * .........****......****......****......
491  *	    ^  ^     ^			 ^
492  *      start  off   group_len	       end
493  */
494 struct region {
495 	unsigned int start;
496 	unsigned int off;
497 	unsigned int group_len;
498 	unsigned int end;
499 };
500 
501 static int bitmap_set_region(const struct region *r,
502 				unsigned long *bitmap, int nbits)
503 {
504 	unsigned int start;
505 
506 	if (r->end >= nbits)
507 		return -ERANGE;
508 
509 	for (start = r->start; start <= r->end; start += r->group_len)
510 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
511 
512 	return 0;
513 }
514 
515 static int bitmap_check_region(const struct region *r)
516 {
517 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
518 		return -EINVAL;
519 
520 	return 0;
521 }
522 
523 static const char *bitmap_getnum(const char *str, unsigned int *num)
524 {
525 	unsigned long long n;
526 	unsigned int len;
527 
528 	len = _parse_integer(str, 10, &n);
529 	if (!len)
530 		return ERR_PTR(-EINVAL);
531 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
532 		return ERR_PTR(-EOVERFLOW);
533 
534 	*num = n;
535 	return str + len;
536 }
537 
538 static inline bool end_of_str(char c)
539 {
540 	return c == '\0' || c == '\n';
541 }
542 
543 static inline bool __end_of_region(char c)
544 {
545 	return isspace(c) || c == ',';
546 }
547 
548 static inline bool end_of_region(char c)
549 {
550 	return __end_of_region(c) || end_of_str(c);
551 }
552 
553 /*
554  * The format allows commas and whitespases at the beginning
555  * of the region.
556  */
557 static const char *bitmap_find_region(const char *str)
558 {
559 	while (__end_of_region(*str))
560 		str++;
561 
562 	return end_of_str(*str) ? NULL : str;
563 }
564 
565 static const char *bitmap_find_region_reverse(const char *start, const char *end)
566 {
567 	while (start <= end && __end_of_region(*end))
568 		end--;
569 
570 	return end;
571 }
572 
573 static const char *bitmap_parse_region(const char *str, struct region *r)
574 {
575 	str = bitmap_getnum(str, &r->start);
576 	if (IS_ERR(str))
577 		return str;
578 
579 	if (end_of_region(*str))
580 		goto no_end;
581 
582 	if (*str != '-')
583 		return ERR_PTR(-EINVAL);
584 
585 	str = bitmap_getnum(str + 1, &r->end);
586 	if (IS_ERR(str))
587 		return str;
588 
589 	if (end_of_region(*str))
590 		goto no_pattern;
591 
592 	if (*str != ':')
593 		return ERR_PTR(-EINVAL);
594 
595 	str = bitmap_getnum(str + 1, &r->off);
596 	if (IS_ERR(str))
597 		return str;
598 
599 	if (*str != '/')
600 		return ERR_PTR(-EINVAL);
601 
602 	return bitmap_getnum(str + 1, &r->group_len);
603 
604 no_end:
605 	r->end = r->start;
606 no_pattern:
607 	r->off = r->end + 1;
608 	r->group_len = r->end + 1;
609 
610 	return end_of_str(*str) ? NULL : str;
611 }
612 
613 /**
614  * bitmap_parselist - convert list format ASCII string to bitmap
615  * @buf: read user string from this buffer; must be terminated
616  *    with a \0 or \n.
617  * @maskp: write resulting mask here
618  * @nmaskbits: number of bits in mask to be written
619  *
620  * Input format is a comma-separated list of decimal numbers and
621  * ranges.  Consecutively set bits are shown as two hyphen-separated
622  * decimal numbers, the smallest and largest bit numbers set in
623  * the range.
624  * Optionally each range can be postfixed to denote that only parts of it
625  * should be set. The range will divided to groups of specific size.
626  * From each group will be used only defined amount of bits.
627  * Syntax: range:used_size/group_size
628  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
629  *
630  * Returns: 0 on success, -errno on invalid input strings. Error values:
631  *
632  *   - ``-EINVAL``: wrong region format
633  *   - ``-EINVAL``: invalid character in string
634  *   - ``-ERANGE``: bit number specified too large for mask
635  *   - ``-EOVERFLOW``: integer overflow in the input parameters
636  */
637 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
638 {
639 	struct region r;
640 	long ret;
641 
642 	bitmap_zero(maskp, nmaskbits);
643 
644 	while (buf) {
645 		buf = bitmap_find_region(buf);
646 		if (buf == NULL)
647 			return 0;
648 
649 		buf = bitmap_parse_region(buf, &r);
650 		if (IS_ERR(buf))
651 			return PTR_ERR(buf);
652 
653 		ret = bitmap_check_region(&r);
654 		if (ret)
655 			return ret;
656 
657 		ret = bitmap_set_region(&r, maskp, nmaskbits);
658 		if (ret)
659 			return ret;
660 	}
661 
662 	return 0;
663 }
664 EXPORT_SYMBOL(bitmap_parselist);
665 
666 
667 /**
668  * bitmap_parselist_user()
669  *
670  * @ubuf: pointer to user buffer containing string.
671  * @ulen: buffer size in bytes.  If string is smaller than this
672  *    then it must be terminated with a \0.
673  * @maskp: pointer to bitmap array that will contain result.
674  * @nmaskbits: size of bitmap, in bits.
675  *
676  * Wrapper for bitmap_parselist(), providing it with user buffer.
677  */
678 int bitmap_parselist_user(const char __user *ubuf,
679 			unsigned int ulen, unsigned long *maskp,
680 			int nmaskbits)
681 {
682 	char *buf;
683 	int ret;
684 
685 	buf = memdup_user_nul(ubuf, ulen);
686 	if (IS_ERR(buf))
687 		return PTR_ERR(buf);
688 
689 	ret = bitmap_parselist(buf, maskp, nmaskbits);
690 
691 	kfree(buf);
692 	return ret;
693 }
694 EXPORT_SYMBOL(bitmap_parselist_user);
695 
696 static const char *bitmap_get_x32_reverse(const char *start,
697 					const char *end, u32 *num)
698 {
699 	u32 ret = 0;
700 	int c, i;
701 
702 	for (i = 0; i < 32; i += 4) {
703 		c = hex_to_bin(*end--);
704 		if (c < 0)
705 			return ERR_PTR(-EINVAL);
706 
707 		ret |= c << i;
708 
709 		if (start > end || __end_of_region(*end))
710 			goto out;
711 	}
712 
713 	if (hex_to_bin(*end--) >= 0)
714 		return ERR_PTR(-EOVERFLOW);
715 out:
716 	*num = ret;
717 	return end;
718 }
719 
720 /**
721  * bitmap_parse - convert an ASCII hex string into a bitmap.
722  * @start: pointer to buffer containing string.
723  * @buflen: buffer size in bytes.  If string is smaller than this
724  *    then it must be terminated with a \0 or \n. In that case,
725  *    UINT_MAX may be provided instead of string length.
726  * @maskp: pointer to bitmap array that will contain result.
727  * @nmaskbits: size of bitmap, in bits.
728  *
729  * Commas group hex digits into chunks.  Each chunk defines exactly 32
730  * bits of the resultant bitmask.  No chunk may specify a value larger
731  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
732  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
733  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
734  * Leading, embedded and trailing whitespace accepted.
735  */
736 int bitmap_parse(const char *start, unsigned int buflen,
737 		unsigned long *maskp, int nmaskbits)
738 {
739 	const char *end = strnchrnul(start, buflen, '\n') - 1;
740 	int chunks = BITS_TO_U32(nmaskbits);
741 	u32 *bitmap = (u32 *)maskp;
742 	int unset_bit;
743 
744 	while (1) {
745 		end = bitmap_find_region_reverse(start, end);
746 		if (start > end)
747 			break;
748 
749 		if (!chunks--)
750 			return -EOVERFLOW;
751 
752 		end = bitmap_get_x32_reverse(start, end, bitmap++);
753 		if (IS_ERR(end))
754 			return PTR_ERR(end);
755 	}
756 
757 	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
758 	if (unset_bit < nmaskbits) {
759 		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
760 		return 0;
761 	}
762 
763 	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
764 		return -EOVERFLOW;
765 
766 	return 0;
767 }
768 EXPORT_SYMBOL(bitmap_parse);
769 
770 
771 #ifdef CONFIG_NUMA
772 /**
773  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
774  *	@buf: pointer to a bitmap
775  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
776  *	@nbits: number of valid bit positions in @buf
777  *
778  * Map the bit at position @pos in @buf (of length @nbits) to the
779  * ordinal of which set bit it is.  If it is not set or if @pos
780  * is not a valid bit position, map to -1.
781  *
782  * If for example, just bits 4 through 7 are set in @buf, then @pos
783  * values 4 through 7 will get mapped to 0 through 3, respectively,
784  * and other @pos values will get mapped to -1.  When @pos value 7
785  * gets mapped to (returns) @ord value 3 in this example, that means
786  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
787  *
788  * The bit positions 0 through @bits are valid positions in @buf.
789  */
790 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
791 {
792 	if (pos >= nbits || !test_bit(pos, buf))
793 		return -1;
794 
795 	return __bitmap_weight(buf, pos);
796 }
797 
798 /**
799  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
800  *	@buf: pointer to bitmap
801  *	@ord: ordinal bit position (n-th set bit, n >= 0)
802  *	@nbits: number of valid bit positions in @buf
803  *
804  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
805  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
806  * >= weight(buf), returns @nbits.
807  *
808  * If for example, just bits 4 through 7 are set in @buf, then @ord
809  * values 0 through 3 will get mapped to 4 through 7, respectively,
810  * and all other @ord values returns @nbits.  When @ord value 3
811  * gets mapped to (returns) @pos value 7 in this example, that means
812  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
813  *
814  * The bit positions 0 through @nbits-1 are valid positions in @buf.
815  */
816 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
817 {
818 	unsigned int pos;
819 
820 	for (pos = find_first_bit(buf, nbits);
821 	     pos < nbits && ord;
822 	     pos = find_next_bit(buf, nbits, pos + 1))
823 		ord--;
824 
825 	return pos;
826 }
827 
828 /**
829  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
830  *	@dst: remapped result
831  *	@src: subset to be remapped
832  *	@old: defines domain of map
833  *	@new: defines range of map
834  *	@nbits: number of bits in each of these bitmaps
835  *
836  * Let @old and @new define a mapping of bit positions, such that
837  * whatever position is held by the n-th set bit in @old is mapped
838  * to the n-th set bit in @new.  In the more general case, allowing
839  * for the possibility that the weight 'w' of @new is less than the
840  * weight of @old, map the position of the n-th set bit in @old to
841  * the position of the m-th set bit in @new, where m == n % w.
842  *
843  * If either of the @old and @new bitmaps are empty, or if @src and
844  * @dst point to the same location, then this routine copies @src
845  * to @dst.
846  *
847  * The positions of unset bits in @old are mapped to themselves
848  * (the identify map).
849  *
850  * Apply the above specified mapping to @src, placing the result in
851  * @dst, clearing any bits previously set in @dst.
852  *
853  * For example, lets say that @old has bits 4 through 7 set, and
854  * @new has bits 12 through 15 set.  This defines the mapping of bit
855  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
856  * bit positions unchanged.  So if say @src comes into this routine
857  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
858  * 13 and 15 set.
859  */
860 void bitmap_remap(unsigned long *dst, const unsigned long *src,
861 		const unsigned long *old, const unsigned long *new,
862 		unsigned int nbits)
863 {
864 	unsigned int oldbit, w;
865 
866 	if (dst == src)		/* following doesn't handle inplace remaps */
867 		return;
868 	bitmap_zero(dst, nbits);
869 
870 	w = bitmap_weight(new, nbits);
871 	for_each_set_bit(oldbit, src, nbits) {
872 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
873 
874 		if (n < 0 || w == 0)
875 			set_bit(oldbit, dst);	/* identity map */
876 		else
877 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
878 	}
879 }
880 
881 /**
882  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
883  *	@oldbit: bit position to be mapped
884  *	@old: defines domain of map
885  *	@new: defines range of map
886  *	@bits: number of bits in each of these bitmaps
887  *
888  * Let @old and @new define a mapping of bit positions, such that
889  * whatever position is held by the n-th set bit in @old is mapped
890  * to the n-th set bit in @new.  In the more general case, allowing
891  * for the possibility that the weight 'w' of @new is less than the
892  * weight of @old, map the position of the n-th set bit in @old to
893  * the position of the m-th set bit in @new, where m == n % w.
894  *
895  * The positions of unset bits in @old are mapped to themselves
896  * (the identify map).
897  *
898  * Apply the above specified mapping to bit position @oldbit, returning
899  * the new bit position.
900  *
901  * For example, lets say that @old has bits 4 through 7 set, and
902  * @new has bits 12 through 15 set.  This defines the mapping of bit
903  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
904  * bit positions unchanged.  So if say @oldbit is 5, then this routine
905  * returns 13.
906  */
907 int bitmap_bitremap(int oldbit, const unsigned long *old,
908 				const unsigned long *new, int bits)
909 {
910 	int w = bitmap_weight(new, bits);
911 	int n = bitmap_pos_to_ord(old, oldbit, bits);
912 	if (n < 0 || w == 0)
913 		return oldbit;
914 	else
915 		return bitmap_ord_to_pos(new, n % w, bits);
916 }
917 
918 /**
919  * bitmap_onto - translate one bitmap relative to another
920  *	@dst: resulting translated bitmap
921  * 	@orig: original untranslated bitmap
922  * 	@relmap: bitmap relative to which translated
923  *	@bits: number of bits in each of these bitmaps
924  *
925  * Set the n-th bit of @dst iff there exists some m such that the
926  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
927  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
928  * (If you understood the previous sentence the first time your
929  * read it, you're overqualified for your current job.)
930  *
931  * In other words, @orig is mapped onto (surjectively) @dst,
932  * using the map { <n, m> | the n-th bit of @relmap is the
933  * m-th set bit of @relmap }.
934  *
935  * Any set bits in @orig above bit number W, where W is the
936  * weight of (number of set bits in) @relmap are mapped nowhere.
937  * In particular, if for all bits m set in @orig, m >= W, then
938  * @dst will end up empty.  In situations where the possibility
939  * of such an empty result is not desired, one way to avoid it is
940  * to use the bitmap_fold() operator, below, to first fold the
941  * @orig bitmap over itself so that all its set bits x are in the
942  * range 0 <= x < W.  The bitmap_fold() operator does this by
943  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
944  *
945  * Example [1] for bitmap_onto():
946  *  Let's say @relmap has bits 30-39 set, and @orig has bits
947  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
948  *  @dst will have bits 31, 33, 35, 37 and 39 set.
949  *
950  *  When bit 0 is set in @orig, it means turn on the bit in
951  *  @dst corresponding to whatever is the first bit (if any)
952  *  that is turned on in @relmap.  Since bit 0 was off in the
953  *  above example, we leave off that bit (bit 30) in @dst.
954  *
955  *  When bit 1 is set in @orig (as in the above example), it
956  *  means turn on the bit in @dst corresponding to whatever
957  *  is the second bit that is turned on in @relmap.  The second
958  *  bit in @relmap that was turned on in the above example was
959  *  bit 31, so we turned on bit 31 in @dst.
960  *
961  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
962  *  because they were the 4th, 6th, 8th and 10th set bits
963  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
964  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
965  *
966  *  When bit 11 is set in @orig, it means turn on the bit in
967  *  @dst corresponding to whatever is the twelfth bit that is
968  *  turned on in @relmap.  In the above example, there were
969  *  only ten bits turned on in @relmap (30..39), so that bit
970  *  11 was set in @orig had no affect on @dst.
971  *
972  * Example [2] for bitmap_fold() + bitmap_onto():
973  *  Let's say @relmap has these ten bits set::
974  *
975  *		40 41 42 43 45 48 53 61 74 95
976  *
977  *  (for the curious, that's 40 plus the first ten terms of the
978  *  Fibonacci sequence.)
979  *
980  *  Further lets say we use the following code, invoking
981  *  bitmap_fold() then bitmap_onto, as suggested above to
982  *  avoid the possibility of an empty @dst result::
983  *
984  *	unsigned long *tmp;	// a temporary bitmap's bits
985  *
986  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
987  *	bitmap_onto(dst, tmp, relmap, bits);
988  *
989  *  Then this table shows what various values of @dst would be, for
990  *  various @orig's.  I list the zero-based positions of each set bit.
991  *  The tmp column shows the intermediate result, as computed by
992  *  using bitmap_fold() to fold the @orig bitmap modulo ten
993  *  (the weight of @relmap):
994  *
995  *      =============== ============== =================
996  *      @orig           tmp            @dst
997  *      0                0             40
998  *      1                1             41
999  *      9                9             95
1000  *      10               0             40 [#f1]_
1001  *      1 3 5 7          1 3 5 7       41 43 48 61
1002  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1003  *      0 9 18 27        0 9 8 7       40 61 74 95
1004  *      0 10 20 30       0             40
1005  *      0 11 22 33       0 1 2 3       40 41 42 43
1006  *      0 12 24 36       0 2 4 6       40 42 45 53
1007  *      78 102 211       1 2 8         41 42 74 [#f1]_
1008  *      =============== ============== =================
1009  *
1010  * .. [#f1]
1011  *
1012  *     For these marked lines, if we hadn't first done bitmap_fold()
1013  *     into tmp, then the @dst result would have been empty.
1014  *
1015  * If either of @orig or @relmap is empty (no set bits), then @dst
1016  * will be returned empty.
1017  *
1018  * If (as explained above) the only set bits in @orig are in positions
1019  * m where m >= W, (where W is the weight of @relmap) then @dst will
1020  * once again be returned empty.
1021  *
1022  * All bits in @dst not set by the above rule are cleared.
1023  */
1024 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1025 			const unsigned long *relmap, unsigned int bits)
1026 {
1027 	unsigned int n, m;	/* same meaning as in above comment */
1028 
1029 	if (dst == orig)	/* following doesn't handle inplace mappings */
1030 		return;
1031 	bitmap_zero(dst, bits);
1032 
1033 	/*
1034 	 * The following code is a more efficient, but less
1035 	 * obvious, equivalent to the loop:
1036 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1037 	 *		n = bitmap_ord_to_pos(orig, m, bits);
1038 	 *		if (test_bit(m, orig))
1039 	 *			set_bit(n, dst);
1040 	 *	}
1041 	 */
1042 
1043 	m = 0;
1044 	for_each_set_bit(n, relmap, bits) {
1045 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1046 		if (test_bit(m, orig))
1047 			set_bit(n, dst);
1048 		m++;
1049 	}
1050 }
1051 
1052 /**
1053  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1054  *	@dst: resulting smaller bitmap
1055  *	@orig: original larger bitmap
1056  *	@sz: specified size
1057  *	@nbits: number of bits in each of these bitmaps
1058  *
1059  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1060  * Clear all other bits in @dst.  See further the comment and
1061  * Example [2] for bitmap_onto() for why and how to use this.
1062  */
1063 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1064 			unsigned int sz, unsigned int nbits)
1065 {
1066 	unsigned int oldbit;
1067 
1068 	if (dst == orig)	/* following doesn't handle inplace mappings */
1069 		return;
1070 	bitmap_zero(dst, nbits);
1071 
1072 	for_each_set_bit(oldbit, orig, nbits)
1073 		set_bit(oldbit % sz, dst);
1074 }
1075 #endif /* CONFIG_NUMA */
1076 
1077 /*
1078  * Common code for bitmap_*_region() routines.
1079  *	bitmap: array of unsigned longs corresponding to the bitmap
1080  *	pos: the beginning of the region
1081  *	order: region size (log base 2 of number of bits)
1082  *	reg_op: operation(s) to perform on that region of bitmap
1083  *
1084  * Can set, verify and/or release a region of bits in a bitmap,
1085  * depending on which combination of REG_OP_* flag bits is set.
1086  *
1087  * A region of a bitmap is a sequence of bits in the bitmap, of
1088  * some size '1 << order' (a power of two), aligned to that same
1089  * '1 << order' power of two.
1090  *
1091  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1092  * Returns 0 in all other cases and reg_ops.
1093  */
1094 
1095 enum {
1096 	REG_OP_ISFREE,		/* true if region is all zero bits */
1097 	REG_OP_ALLOC,		/* set all bits in region */
1098 	REG_OP_RELEASE,		/* clear all bits in region */
1099 };
1100 
1101 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1102 {
1103 	int nbits_reg;		/* number of bits in region */
1104 	int index;		/* index first long of region in bitmap */
1105 	int offset;		/* bit offset region in bitmap[index] */
1106 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1107 	int nbitsinlong;	/* num bits of region in each spanned long */
1108 	unsigned long mask;	/* bitmask for one long of region */
1109 	int i;			/* scans bitmap by longs */
1110 	int ret = 0;		/* return value */
1111 
1112 	/*
1113 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1114 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1115 	 */
1116 	nbits_reg = 1 << order;
1117 	index = pos / BITS_PER_LONG;
1118 	offset = pos - (index * BITS_PER_LONG);
1119 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1120 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1121 
1122 	/*
1123 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1124 	 * overflows if nbitsinlong == BITS_PER_LONG.
1125 	 */
1126 	mask = (1UL << (nbitsinlong - 1));
1127 	mask += mask - 1;
1128 	mask <<= offset;
1129 
1130 	switch (reg_op) {
1131 	case REG_OP_ISFREE:
1132 		for (i = 0; i < nlongs_reg; i++) {
1133 			if (bitmap[index + i] & mask)
1134 				goto done;
1135 		}
1136 		ret = 1;	/* all bits in region free (zero) */
1137 		break;
1138 
1139 	case REG_OP_ALLOC:
1140 		for (i = 0; i < nlongs_reg; i++)
1141 			bitmap[index + i] |= mask;
1142 		break;
1143 
1144 	case REG_OP_RELEASE:
1145 		for (i = 0; i < nlongs_reg; i++)
1146 			bitmap[index + i] &= ~mask;
1147 		break;
1148 	}
1149 done:
1150 	return ret;
1151 }
1152 
1153 /**
1154  * bitmap_find_free_region - find a contiguous aligned mem region
1155  *	@bitmap: array of unsigned longs corresponding to the bitmap
1156  *	@bits: number of bits in the bitmap
1157  *	@order: region size (log base 2 of number of bits) to find
1158  *
1159  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1160  * allocate them (set them to one).  Only consider regions of length
1161  * a power (@order) of two, aligned to that power of two, which
1162  * makes the search algorithm much faster.
1163  *
1164  * Return the bit offset in bitmap of the allocated region,
1165  * or -errno on failure.
1166  */
1167 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1168 {
1169 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1170 
1171 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1172 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1173 			continue;
1174 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1175 		return pos;
1176 	}
1177 	return -ENOMEM;
1178 }
1179 EXPORT_SYMBOL(bitmap_find_free_region);
1180 
1181 /**
1182  * bitmap_release_region - release allocated bitmap region
1183  *	@bitmap: array of unsigned longs corresponding to the bitmap
1184  *	@pos: beginning of bit region to release
1185  *	@order: region size (log base 2 of number of bits) to release
1186  *
1187  * This is the complement to __bitmap_find_free_region() and releases
1188  * the found region (by clearing it in the bitmap).
1189  *
1190  * No return value.
1191  */
1192 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1193 {
1194 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1195 }
1196 EXPORT_SYMBOL(bitmap_release_region);
1197 
1198 /**
1199  * bitmap_allocate_region - allocate bitmap region
1200  *	@bitmap: array of unsigned longs corresponding to the bitmap
1201  *	@pos: beginning of bit region to allocate
1202  *	@order: region size (log base 2 of number of bits) to allocate
1203  *
1204  * Allocate (set bits in) a specified region of a bitmap.
1205  *
1206  * Return 0 on success, or %-EBUSY if specified region wasn't
1207  * free (not all bits were zero).
1208  */
1209 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1210 {
1211 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1212 		return -EBUSY;
1213 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1214 }
1215 EXPORT_SYMBOL(bitmap_allocate_region);
1216 
1217 /**
1218  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1219  * @dst:   destination buffer
1220  * @src:   bitmap to copy
1221  * @nbits: number of bits in the bitmap
1222  *
1223  * Require nbits % BITS_PER_LONG == 0.
1224  */
1225 #ifdef __BIG_ENDIAN
1226 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1227 {
1228 	unsigned int i;
1229 
1230 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1231 		if (BITS_PER_LONG == 64)
1232 			dst[i] = cpu_to_le64(src[i]);
1233 		else
1234 			dst[i] = cpu_to_le32(src[i]);
1235 	}
1236 }
1237 EXPORT_SYMBOL(bitmap_copy_le);
1238 #endif
1239 
1240 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1241 {
1242 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1243 			     flags);
1244 }
1245 EXPORT_SYMBOL(bitmap_alloc);
1246 
1247 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1248 {
1249 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1250 }
1251 EXPORT_SYMBOL(bitmap_zalloc);
1252 
1253 void bitmap_free(const unsigned long *bitmap)
1254 {
1255 	kfree(bitmap);
1256 }
1257 EXPORT_SYMBOL(bitmap_free);
1258 
1259 #if BITS_PER_LONG == 64
1260 /**
1261  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1262  *	@bitmap: array of unsigned longs, the destination bitmap
1263  *	@buf: array of u32 (in host byte order), the source bitmap
1264  *	@nbits: number of bits in @bitmap
1265  */
1266 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1267 {
1268 	unsigned int i, halfwords;
1269 
1270 	halfwords = DIV_ROUND_UP(nbits, 32);
1271 	for (i = 0; i < halfwords; i++) {
1272 		bitmap[i/2] = (unsigned long) buf[i];
1273 		if (++i < halfwords)
1274 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1275 	}
1276 
1277 	/* Clear tail bits in last word beyond nbits. */
1278 	if (nbits % BITS_PER_LONG)
1279 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1280 }
1281 EXPORT_SYMBOL(bitmap_from_arr32);
1282 
1283 /**
1284  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1285  *	@buf: array of u32 (in host byte order), the dest bitmap
1286  *	@bitmap: array of unsigned longs, the source bitmap
1287  *	@nbits: number of bits in @bitmap
1288  */
1289 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1290 {
1291 	unsigned int i, halfwords;
1292 
1293 	halfwords = DIV_ROUND_UP(nbits, 32);
1294 	for (i = 0; i < halfwords; i++) {
1295 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1296 		if (++i < halfwords)
1297 			buf[i] = (u32) (bitmap[i/2] >> 32);
1298 	}
1299 
1300 	/* Clear tail bits in last element of array beyond nbits. */
1301 	if (nbits % BITS_PER_LONG)
1302 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1303 }
1304 EXPORT_SYMBOL(bitmap_to_arr32);
1305 
1306 #endif
1307