xref: /openbmc/linux/lib/bitmap.c (revision d6fc9fcb)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/page.h>
22 
23 #include "kstrtox.h"
24 
25 /**
26  * DOC: bitmap introduction
27  *
28  * bitmaps provide an array of bits, implemented using an an
29  * array of unsigned longs.  The number of valid bits in a
30  * given bitmap does _not_ need to be an exact multiple of
31  * BITS_PER_LONG.
32  *
33  * The possible unused bits in the last, partially used word
34  * of a bitmap are 'don't care'.  The implementation makes
35  * no particular effort to keep them zero.  It ensures that
36  * their value will not affect the results of any operation.
37  * The bitmap operations that return Boolean (bitmap_empty,
38  * for example) or scalar (bitmap_weight, for example) results
39  * carefully filter out these unused bits from impacting their
40  * results.
41  *
42  * The byte ordering of bitmaps is more natural on little
43  * endian architectures.  See the big-endian headers
44  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45  * for the best explanations of this ordering.
46  */
47 
48 int __bitmap_equal(const unsigned long *bitmap1,
49 		const unsigned long *bitmap2, unsigned int bits)
50 {
51 	unsigned int k, lim = bits/BITS_PER_LONG;
52 	for (k = 0; k < lim; ++k)
53 		if (bitmap1[k] != bitmap2[k])
54 			return 0;
55 
56 	if (bits % BITS_PER_LONG)
57 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 			return 0;
59 
60 	return 1;
61 }
62 EXPORT_SYMBOL(__bitmap_equal);
63 
64 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
65 {
66 	unsigned int k, lim = BITS_TO_LONGS(bits);
67 	for (k = 0; k < lim; ++k)
68 		dst[k] = ~src[k];
69 }
70 EXPORT_SYMBOL(__bitmap_complement);
71 
72 /**
73  * __bitmap_shift_right - logical right shift of the bits in a bitmap
74  *   @dst : destination bitmap
75  *   @src : source bitmap
76  *   @shift : shift by this many bits
77  *   @nbits : bitmap size, in bits
78  *
79  * Shifting right (dividing) means moving bits in the MS -> LS bit
80  * direction.  Zeros are fed into the vacated MS positions and the
81  * LS bits shifted off the bottom are lost.
82  */
83 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
84 			unsigned shift, unsigned nbits)
85 {
86 	unsigned k, lim = BITS_TO_LONGS(nbits);
87 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
88 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
89 	for (k = 0; off + k < lim; ++k) {
90 		unsigned long upper, lower;
91 
92 		/*
93 		 * If shift is not word aligned, take lower rem bits of
94 		 * word above and make them the top rem bits of result.
95 		 */
96 		if (!rem || off + k + 1 >= lim)
97 			upper = 0;
98 		else {
99 			upper = src[off + k + 1];
100 			if (off + k + 1 == lim - 1)
101 				upper &= mask;
102 			upper <<= (BITS_PER_LONG - rem);
103 		}
104 		lower = src[off + k];
105 		if (off + k == lim - 1)
106 			lower &= mask;
107 		lower >>= rem;
108 		dst[k] = lower | upper;
109 	}
110 	if (off)
111 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
112 }
113 EXPORT_SYMBOL(__bitmap_shift_right);
114 
115 
116 /**
117  * __bitmap_shift_left - logical left shift of the bits in a bitmap
118  *   @dst : destination bitmap
119  *   @src : source bitmap
120  *   @shift : shift by this many bits
121  *   @nbits : bitmap size, in bits
122  *
123  * Shifting left (multiplying) means moving bits in the LS -> MS
124  * direction.  Zeros are fed into the vacated LS bit positions
125  * and those MS bits shifted off the top are lost.
126  */
127 
128 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
129 			unsigned int shift, unsigned int nbits)
130 {
131 	int k;
132 	unsigned int lim = BITS_TO_LONGS(nbits);
133 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
134 	for (k = lim - off - 1; k >= 0; --k) {
135 		unsigned long upper, lower;
136 
137 		/*
138 		 * If shift is not word aligned, take upper rem bits of
139 		 * word below and make them the bottom rem bits of result.
140 		 */
141 		if (rem && k > 0)
142 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
143 		else
144 			lower = 0;
145 		upper = src[k] << rem;
146 		dst[k + off] = lower | upper;
147 	}
148 	if (off)
149 		memset(dst, 0, off*sizeof(unsigned long));
150 }
151 EXPORT_SYMBOL(__bitmap_shift_left);
152 
153 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
154 				const unsigned long *bitmap2, unsigned int bits)
155 {
156 	unsigned int k;
157 	unsigned int lim = bits/BITS_PER_LONG;
158 	unsigned long result = 0;
159 
160 	for (k = 0; k < lim; k++)
161 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
162 	if (bits % BITS_PER_LONG)
163 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
164 			   BITMAP_LAST_WORD_MASK(bits));
165 	return result != 0;
166 }
167 EXPORT_SYMBOL(__bitmap_and);
168 
169 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
170 				const unsigned long *bitmap2, unsigned int bits)
171 {
172 	unsigned int k;
173 	unsigned int nr = BITS_TO_LONGS(bits);
174 
175 	for (k = 0; k < nr; k++)
176 		dst[k] = bitmap1[k] | bitmap2[k];
177 }
178 EXPORT_SYMBOL(__bitmap_or);
179 
180 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
181 				const unsigned long *bitmap2, unsigned int bits)
182 {
183 	unsigned int k;
184 	unsigned int nr = BITS_TO_LONGS(bits);
185 
186 	for (k = 0; k < nr; k++)
187 		dst[k] = bitmap1[k] ^ bitmap2[k];
188 }
189 EXPORT_SYMBOL(__bitmap_xor);
190 
191 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
192 				const unsigned long *bitmap2, unsigned int bits)
193 {
194 	unsigned int k;
195 	unsigned int lim = bits/BITS_PER_LONG;
196 	unsigned long result = 0;
197 
198 	for (k = 0; k < lim; k++)
199 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
200 	if (bits % BITS_PER_LONG)
201 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
202 			   BITMAP_LAST_WORD_MASK(bits));
203 	return result != 0;
204 }
205 EXPORT_SYMBOL(__bitmap_andnot);
206 
207 int __bitmap_intersects(const unsigned long *bitmap1,
208 			const unsigned long *bitmap2, unsigned int bits)
209 {
210 	unsigned int k, lim = bits/BITS_PER_LONG;
211 	for (k = 0; k < lim; ++k)
212 		if (bitmap1[k] & bitmap2[k])
213 			return 1;
214 
215 	if (bits % BITS_PER_LONG)
216 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
217 			return 1;
218 	return 0;
219 }
220 EXPORT_SYMBOL(__bitmap_intersects);
221 
222 int __bitmap_subset(const unsigned long *bitmap1,
223 		    const unsigned long *bitmap2, unsigned int bits)
224 {
225 	unsigned int k, lim = bits/BITS_PER_LONG;
226 	for (k = 0; k < lim; ++k)
227 		if (bitmap1[k] & ~bitmap2[k])
228 			return 0;
229 
230 	if (bits % BITS_PER_LONG)
231 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
232 			return 0;
233 	return 1;
234 }
235 EXPORT_SYMBOL(__bitmap_subset);
236 
237 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
238 {
239 	unsigned int k, lim = bits/BITS_PER_LONG;
240 	int w = 0;
241 
242 	for (k = 0; k < lim; k++)
243 		w += hweight_long(bitmap[k]);
244 
245 	if (bits % BITS_PER_LONG)
246 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
247 
248 	return w;
249 }
250 EXPORT_SYMBOL(__bitmap_weight);
251 
252 void __bitmap_set(unsigned long *map, unsigned int start, int len)
253 {
254 	unsigned long *p = map + BIT_WORD(start);
255 	const unsigned int size = start + len;
256 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
257 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
258 
259 	while (len - bits_to_set >= 0) {
260 		*p |= mask_to_set;
261 		len -= bits_to_set;
262 		bits_to_set = BITS_PER_LONG;
263 		mask_to_set = ~0UL;
264 		p++;
265 	}
266 	if (len) {
267 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
268 		*p |= mask_to_set;
269 	}
270 }
271 EXPORT_SYMBOL(__bitmap_set);
272 
273 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
274 {
275 	unsigned long *p = map + BIT_WORD(start);
276 	const unsigned int size = start + len;
277 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
278 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
279 
280 	while (len - bits_to_clear >= 0) {
281 		*p &= ~mask_to_clear;
282 		len -= bits_to_clear;
283 		bits_to_clear = BITS_PER_LONG;
284 		mask_to_clear = ~0UL;
285 		p++;
286 	}
287 	if (len) {
288 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
289 		*p &= ~mask_to_clear;
290 	}
291 }
292 EXPORT_SYMBOL(__bitmap_clear);
293 
294 /**
295  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
296  * @map: The address to base the search on
297  * @size: The bitmap size in bits
298  * @start: The bitnumber to start searching at
299  * @nr: The number of zeroed bits we're looking for
300  * @align_mask: Alignment mask for zero area
301  * @align_offset: Alignment offset for zero area.
302  *
303  * The @align_mask should be one less than a power of 2; the effect is that
304  * the bit offset of all zero areas this function finds plus @align_offset
305  * is multiple of that power of 2.
306  */
307 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
308 					     unsigned long size,
309 					     unsigned long start,
310 					     unsigned int nr,
311 					     unsigned long align_mask,
312 					     unsigned long align_offset)
313 {
314 	unsigned long index, end, i;
315 again:
316 	index = find_next_zero_bit(map, size, start);
317 
318 	/* Align allocation */
319 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
320 
321 	end = index + nr;
322 	if (end > size)
323 		return end;
324 	i = find_next_bit(map, end, index);
325 	if (i < end) {
326 		start = i + 1;
327 		goto again;
328 	}
329 	return index;
330 }
331 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
332 
333 /*
334  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
335  * second version by Paul Jackson, third by Joe Korty.
336  */
337 
338 #define CHUNKSZ				32
339 #define nbits_to_hold_value(val)	fls(val)
340 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
341 
342 /**
343  * __bitmap_parse - convert an ASCII hex string into a bitmap.
344  * @buf: pointer to buffer containing string.
345  * @buflen: buffer size in bytes.  If string is smaller than this
346  *    then it must be terminated with a \0.
347  * @is_user: location of buffer, 0 indicates kernel space
348  * @maskp: pointer to bitmap array that will contain result.
349  * @nmaskbits: size of bitmap, in bits.
350  *
351  * Commas group hex digits into chunks.  Each chunk defines exactly 32
352  * bits of the resultant bitmask.  No chunk may specify a value larger
353  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
354  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
355  * characters and for grouping errors such as "1,,5", ",44", "," and "".
356  * Leading and trailing whitespace accepted, but not embedded whitespace.
357  */
358 int __bitmap_parse(const char *buf, unsigned int buflen,
359 		int is_user, unsigned long *maskp,
360 		int nmaskbits)
361 {
362 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
363 	u32 chunk;
364 	const char __user __force *ubuf = (const char __user __force *)buf;
365 
366 	bitmap_zero(maskp, nmaskbits);
367 
368 	nchunks = nbits = totaldigits = c = 0;
369 	do {
370 		chunk = 0;
371 		ndigits = totaldigits;
372 
373 		/* Get the next chunk of the bitmap */
374 		while (buflen) {
375 			old_c = c;
376 			if (is_user) {
377 				if (__get_user(c, ubuf++))
378 					return -EFAULT;
379 			}
380 			else
381 				c = *buf++;
382 			buflen--;
383 			if (isspace(c))
384 				continue;
385 
386 			/*
387 			 * If the last character was a space and the current
388 			 * character isn't '\0', we've got embedded whitespace.
389 			 * This is a no-no, so throw an error.
390 			 */
391 			if (totaldigits && c && isspace(old_c))
392 				return -EINVAL;
393 
394 			/* A '\0' or a ',' signal the end of the chunk */
395 			if (c == '\0' || c == ',')
396 				break;
397 
398 			if (!isxdigit(c))
399 				return -EINVAL;
400 
401 			/*
402 			 * Make sure there are at least 4 free bits in 'chunk'.
403 			 * If not, this hexdigit will overflow 'chunk', so
404 			 * throw an error.
405 			 */
406 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
407 				return -EOVERFLOW;
408 
409 			chunk = (chunk << 4) | hex_to_bin(c);
410 			totaldigits++;
411 		}
412 		if (ndigits == totaldigits)
413 			return -EINVAL;
414 		if (nchunks == 0 && chunk == 0)
415 			continue;
416 
417 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
418 		*maskp |= chunk;
419 		nchunks++;
420 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
421 		if (nbits > nmaskbits)
422 			return -EOVERFLOW;
423 	} while (buflen && c == ',');
424 
425 	return 0;
426 }
427 EXPORT_SYMBOL(__bitmap_parse);
428 
429 /**
430  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
431  *
432  * @ubuf: pointer to user buffer containing string.
433  * @ulen: buffer size in bytes.  If string is smaller than this
434  *    then it must be terminated with a \0.
435  * @maskp: pointer to bitmap array that will contain result.
436  * @nmaskbits: size of bitmap, in bits.
437  *
438  * Wrapper for __bitmap_parse(), providing it with user buffer.
439  *
440  * We cannot have this as an inline function in bitmap.h because it needs
441  * linux/uaccess.h to get the access_ok() declaration and this causes
442  * cyclic dependencies.
443  */
444 int bitmap_parse_user(const char __user *ubuf,
445 			unsigned int ulen, unsigned long *maskp,
446 			int nmaskbits)
447 {
448 	if (!access_ok(ubuf, ulen))
449 		return -EFAULT;
450 	return __bitmap_parse((const char __force *)ubuf,
451 				ulen, 1, maskp, nmaskbits);
452 
453 }
454 EXPORT_SYMBOL(bitmap_parse_user);
455 
456 /**
457  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
458  * @list: indicates whether the bitmap must be list
459  * @buf: page aligned buffer into which string is placed
460  * @maskp: pointer to bitmap to convert
461  * @nmaskbits: size of bitmap, in bits
462  *
463  * Output format is a comma-separated list of decimal numbers and
464  * ranges if list is specified or hex digits grouped into comma-separated
465  * sets of 8 digits/set. Returns the number of characters written to buf.
466  *
467  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
468  * area and that sufficient storage remains at @buf to accommodate the
469  * bitmap_print_to_pagebuf() output. Returns the number of characters
470  * actually printed to @buf, excluding terminating '\0'.
471  */
472 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
473 			    int nmaskbits)
474 {
475 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
476 
477 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
478 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
479 }
480 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
481 
482 /*
483  * Region 9-38:4/10 describes the following bitmap structure:
484  * 0	   9  12    18			38
485  * .........****......****......****......
486  *	    ^  ^     ^			 ^
487  *      start  off   group_len	       end
488  */
489 struct region {
490 	unsigned int start;
491 	unsigned int off;
492 	unsigned int group_len;
493 	unsigned int end;
494 };
495 
496 static int bitmap_set_region(const struct region *r,
497 				unsigned long *bitmap, int nbits)
498 {
499 	unsigned int start;
500 
501 	if (r->end >= nbits)
502 		return -ERANGE;
503 
504 	for (start = r->start; start <= r->end; start += r->group_len)
505 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
506 
507 	return 0;
508 }
509 
510 static int bitmap_check_region(const struct region *r)
511 {
512 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
513 		return -EINVAL;
514 
515 	return 0;
516 }
517 
518 static const char *bitmap_getnum(const char *str, unsigned int *num)
519 {
520 	unsigned long long n;
521 	unsigned int len;
522 
523 	len = _parse_integer(str, 10, &n);
524 	if (!len)
525 		return ERR_PTR(-EINVAL);
526 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
527 		return ERR_PTR(-EOVERFLOW);
528 
529 	*num = n;
530 	return str + len;
531 }
532 
533 static inline bool end_of_str(char c)
534 {
535 	return c == '\0' || c == '\n';
536 }
537 
538 static inline bool __end_of_region(char c)
539 {
540 	return isspace(c) || c == ',';
541 }
542 
543 static inline bool end_of_region(char c)
544 {
545 	return __end_of_region(c) || end_of_str(c);
546 }
547 
548 /*
549  * The format allows commas and whitespases at the beginning
550  * of the region.
551  */
552 static const char *bitmap_find_region(const char *str)
553 {
554 	while (__end_of_region(*str))
555 		str++;
556 
557 	return end_of_str(*str) ? NULL : str;
558 }
559 
560 static const char *bitmap_parse_region(const char *str, struct region *r)
561 {
562 	str = bitmap_getnum(str, &r->start);
563 	if (IS_ERR(str))
564 		return str;
565 
566 	if (end_of_region(*str))
567 		goto no_end;
568 
569 	if (*str != '-')
570 		return ERR_PTR(-EINVAL);
571 
572 	str = bitmap_getnum(str + 1, &r->end);
573 	if (IS_ERR(str))
574 		return str;
575 
576 	if (end_of_region(*str))
577 		goto no_pattern;
578 
579 	if (*str != ':')
580 		return ERR_PTR(-EINVAL);
581 
582 	str = bitmap_getnum(str + 1, &r->off);
583 	if (IS_ERR(str))
584 		return str;
585 
586 	if (*str != '/')
587 		return ERR_PTR(-EINVAL);
588 
589 	return bitmap_getnum(str + 1, &r->group_len);
590 
591 no_end:
592 	r->end = r->start;
593 no_pattern:
594 	r->off = r->end + 1;
595 	r->group_len = r->end + 1;
596 
597 	return end_of_str(*str) ? NULL : str;
598 }
599 
600 /**
601  * bitmap_parselist - convert list format ASCII string to bitmap
602  * @buf: read user string from this buffer; must be terminated
603  *    with a \0 or \n.
604  * @maskp: write resulting mask here
605  * @nmaskbits: number of bits in mask to be written
606  *
607  * Input format is a comma-separated list of decimal numbers and
608  * ranges.  Consecutively set bits are shown as two hyphen-separated
609  * decimal numbers, the smallest and largest bit numbers set in
610  * the range.
611  * Optionally each range can be postfixed to denote that only parts of it
612  * should be set. The range will divided to groups of specific size.
613  * From each group will be used only defined amount of bits.
614  * Syntax: range:used_size/group_size
615  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
616  *
617  * Returns: 0 on success, -errno on invalid input strings. Error values:
618  *
619  *   - ``-EINVAL``: wrong region format
620  *   - ``-EINVAL``: invalid character in string
621  *   - ``-ERANGE``: bit number specified too large for mask
622  *   - ``-EOVERFLOW``: integer overflow in the input parameters
623  */
624 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
625 {
626 	struct region r;
627 	long ret;
628 
629 	bitmap_zero(maskp, nmaskbits);
630 
631 	while (buf) {
632 		buf = bitmap_find_region(buf);
633 		if (buf == NULL)
634 			return 0;
635 
636 		buf = bitmap_parse_region(buf, &r);
637 		if (IS_ERR(buf))
638 			return PTR_ERR(buf);
639 
640 		ret = bitmap_check_region(&r);
641 		if (ret)
642 			return ret;
643 
644 		ret = bitmap_set_region(&r, maskp, nmaskbits);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(bitmap_parselist);
652 
653 
654 /**
655  * bitmap_parselist_user()
656  *
657  * @ubuf: pointer to user buffer containing string.
658  * @ulen: buffer size in bytes.  If string is smaller than this
659  *    then it must be terminated with a \0.
660  * @maskp: pointer to bitmap array that will contain result.
661  * @nmaskbits: size of bitmap, in bits.
662  *
663  * Wrapper for bitmap_parselist(), providing it with user buffer.
664  */
665 int bitmap_parselist_user(const char __user *ubuf,
666 			unsigned int ulen, unsigned long *maskp,
667 			int nmaskbits)
668 {
669 	char *buf;
670 	int ret;
671 
672 	buf = memdup_user_nul(ubuf, ulen);
673 	if (IS_ERR(buf))
674 		return PTR_ERR(buf);
675 
676 	ret = bitmap_parselist(buf, maskp, nmaskbits);
677 
678 	kfree(buf);
679 	return ret;
680 }
681 EXPORT_SYMBOL(bitmap_parselist_user);
682 
683 
684 #ifdef CONFIG_NUMA
685 /**
686  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
687  *	@buf: pointer to a bitmap
688  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
689  *	@nbits: number of valid bit positions in @buf
690  *
691  * Map the bit at position @pos in @buf (of length @nbits) to the
692  * ordinal of which set bit it is.  If it is not set or if @pos
693  * is not a valid bit position, map to -1.
694  *
695  * If for example, just bits 4 through 7 are set in @buf, then @pos
696  * values 4 through 7 will get mapped to 0 through 3, respectively,
697  * and other @pos values will get mapped to -1.  When @pos value 7
698  * gets mapped to (returns) @ord value 3 in this example, that means
699  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
700  *
701  * The bit positions 0 through @bits are valid positions in @buf.
702  */
703 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
704 {
705 	if (pos >= nbits || !test_bit(pos, buf))
706 		return -1;
707 
708 	return __bitmap_weight(buf, pos);
709 }
710 
711 /**
712  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
713  *	@buf: pointer to bitmap
714  *	@ord: ordinal bit position (n-th set bit, n >= 0)
715  *	@nbits: number of valid bit positions in @buf
716  *
717  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
718  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
719  * >= weight(buf), returns @nbits.
720  *
721  * If for example, just bits 4 through 7 are set in @buf, then @ord
722  * values 0 through 3 will get mapped to 4 through 7, respectively,
723  * and all other @ord values returns @nbits.  When @ord value 3
724  * gets mapped to (returns) @pos value 7 in this example, that means
725  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
726  *
727  * The bit positions 0 through @nbits-1 are valid positions in @buf.
728  */
729 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
730 {
731 	unsigned int pos;
732 
733 	for (pos = find_first_bit(buf, nbits);
734 	     pos < nbits && ord;
735 	     pos = find_next_bit(buf, nbits, pos + 1))
736 		ord--;
737 
738 	return pos;
739 }
740 
741 /**
742  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
743  *	@dst: remapped result
744  *	@src: subset to be remapped
745  *	@old: defines domain of map
746  *	@new: defines range of map
747  *	@nbits: number of bits in each of these bitmaps
748  *
749  * Let @old and @new define a mapping of bit positions, such that
750  * whatever position is held by the n-th set bit in @old is mapped
751  * to the n-th set bit in @new.  In the more general case, allowing
752  * for the possibility that the weight 'w' of @new is less than the
753  * weight of @old, map the position of the n-th set bit in @old to
754  * the position of the m-th set bit in @new, where m == n % w.
755  *
756  * If either of the @old and @new bitmaps are empty, or if @src and
757  * @dst point to the same location, then this routine copies @src
758  * to @dst.
759  *
760  * The positions of unset bits in @old are mapped to themselves
761  * (the identify map).
762  *
763  * Apply the above specified mapping to @src, placing the result in
764  * @dst, clearing any bits previously set in @dst.
765  *
766  * For example, lets say that @old has bits 4 through 7 set, and
767  * @new has bits 12 through 15 set.  This defines the mapping of bit
768  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
769  * bit positions unchanged.  So if say @src comes into this routine
770  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
771  * 13 and 15 set.
772  */
773 void bitmap_remap(unsigned long *dst, const unsigned long *src,
774 		const unsigned long *old, const unsigned long *new,
775 		unsigned int nbits)
776 {
777 	unsigned int oldbit, w;
778 
779 	if (dst == src)		/* following doesn't handle inplace remaps */
780 		return;
781 	bitmap_zero(dst, nbits);
782 
783 	w = bitmap_weight(new, nbits);
784 	for_each_set_bit(oldbit, src, nbits) {
785 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
786 
787 		if (n < 0 || w == 0)
788 			set_bit(oldbit, dst);	/* identity map */
789 		else
790 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
791 	}
792 }
793 
794 /**
795  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
796  *	@oldbit: bit position to be mapped
797  *	@old: defines domain of map
798  *	@new: defines range of map
799  *	@bits: number of bits in each of these bitmaps
800  *
801  * Let @old and @new define a mapping of bit positions, such that
802  * whatever position is held by the n-th set bit in @old is mapped
803  * to the n-th set bit in @new.  In the more general case, allowing
804  * for the possibility that the weight 'w' of @new is less than the
805  * weight of @old, map the position of the n-th set bit in @old to
806  * the position of the m-th set bit in @new, where m == n % w.
807  *
808  * The positions of unset bits in @old are mapped to themselves
809  * (the identify map).
810  *
811  * Apply the above specified mapping to bit position @oldbit, returning
812  * the new bit position.
813  *
814  * For example, lets say that @old has bits 4 through 7 set, and
815  * @new has bits 12 through 15 set.  This defines the mapping of bit
816  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
817  * bit positions unchanged.  So if say @oldbit is 5, then this routine
818  * returns 13.
819  */
820 int bitmap_bitremap(int oldbit, const unsigned long *old,
821 				const unsigned long *new, int bits)
822 {
823 	int w = bitmap_weight(new, bits);
824 	int n = bitmap_pos_to_ord(old, oldbit, bits);
825 	if (n < 0 || w == 0)
826 		return oldbit;
827 	else
828 		return bitmap_ord_to_pos(new, n % w, bits);
829 }
830 
831 /**
832  * bitmap_onto - translate one bitmap relative to another
833  *	@dst: resulting translated bitmap
834  * 	@orig: original untranslated bitmap
835  * 	@relmap: bitmap relative to which translated
836  *	@bits: number of bits in each of these bitmaps
837  *
838  * Set the n-th bit of @dst iff there exists some m such that the
839  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
840  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
841  * (If you understood the previous sentence the first time your
842  * read it, you're overqualified for your current job.)
843  *
844  * In other words, @orig is mapped onto (surjectively) @dst,
845  * using the map { <n, m> | the n-th bit of @relmap is the
846  * m-th set bit of @relmap }.
847  *
848  * Any set bits in @orig above bit number W, where W is the
849  * weight of (number of set bits in) @relmap are mapped nowhere.
850  * In particular, if for all bits m set in @orig, m >= W, then
851  * @dst will end up empty.  In situations where the possibility
852  * of such an empty result is not desired, one way to avoid it is
853  * to use the bitmap_fold() operator, below, to first fold the
854  * @orig bitmap over itself so that all its set bits x are in the
855  * range 0 <= x < W.  The bitmap_fold() operator does this by
856  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
857  *
858  * Example [1] for bitmap_onto():
859  *  Let's say @relmap has bits 30-39 set, and @orig has bits
860  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
861  *  @dst will have bits 31, 33, 35, 37 and 39 set.
862  *
863  *  When bit 0 is set in @orig, it means turn on the bit in
864  *  @dst corresponding to whatever is the first bit (if any)
865  *  that is turned on in @relmap.  Since bit 0 was off in the
866  *  above example, we leave off that bit (bit 30) in @dst.
867  *
868  *  When bit 1 is set in @orig (as in the above example), it
869  *  means turn on the bit in @dst corresponding to whatever
870  *  is the second bit that is turned on in @relmap.  The second
871  *  bit in @relmap that was turned on in the above example was
872  *  bit 31, so we turned on bit 31 in @dst.
873  *
874  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
875  *  because they were the 4th, 6th, 8th and 10th set bits
876  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
877  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
878  *
879  *  When bit 11 is set in @orig, it means turn on the bit in
880  *  @dst corresponding to whatever is the twelfth bit that is
881  *  turned on in @relmap.  In the above example, there were
882  *  only ten bits turned on in @relmap (30..39), so that bit
883  *  11 was set in @orig had no affect on @dst.
884  *
885  * Example [2] for bitmap_fold() + bitmap_onto():
886  *  Let's say @relmap has these ten bits set::
887  *
888  *		40 41 42 43 45 48 53 61 74 95
889  *
890  *  (for the curious, that's 40 plus the first ten terms of the
891  *  Fibonacci sequence.)
892  *
893  *  Further lets say we use the following code, invoking
894  *  bitmap_fold() then bitmap_onto, as suggested above to
895  *  avoid the possibility of an empty @dst result::
896  *
897  *	unsigned long *tmp;	// a temporary bitmap's bits
898  *
899  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
900  *	bitmap_onto(dst, tmp, relmap, bits);
901  *
902  *  Then this table shows what various values of @dst would be, for
903  *  various @orig's.  I list the zero-based positions of each set bit.
904  *  The tmp column shows the intermediate result, as computed by
905  *  using bitmap_fold() to fold the @orig bitmap modulo ten
906  *  (the weight of @relmap):
907  *
908  *      =============== ============== =================
909  *      @orig           tmp            @dst
910  *      0                0             40
911  *      1                1             41
912  *      9                9             95
913  *      10               0             40 [#f1]_
914  *      1 3 5 7          1 3 5 7       41 43 48 61
915  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
916  *      0 9 18 27        0 9 8 7       40 61 74 95
917  *      0 10 20 30       0             40
918  *      0 11 22 33       0 1 2 3       40 41 42 43
919  *      0 12 24 36       0 2 4 6       40 42 45 53
920  *      78 102 211       1 2 8         41 42 74 [#f1]_
921  *      =============== ============== =================
922  *
923  * .. [#f1]
924  *
925  *     For these marked lines, if we hadn't first done bitmap_fold()
926  *     into tmp, then the @dst result would have been empty.
927  *
928  * If either of @orig or @relmap is empty (no set bits), then @dst
929  * will be returned empty.
930  *
931  * If (as explained above) the only set bits in @orig are in positions
932  * m where m >= W, (where W is the weight of @relmap) then @dst will
933  * once again be returned empty.
934  *
935  * All bits in @dst not set by the above rule are cleared.
936  */
937 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
938 			const unsigned long *relmap, unsigned int bits)
939 {
940 	unsigned int n, m;	/* same meaning as in above comment */
941 
942 	if (dst == orig)	/* following doesn't handle inplace mappings */
943 		return;
944 	bitmap_zero(dst, bits);
945 
946 	/*
947 	 * The following code is a more efficient, but less
948 	 * obvious, equivalent to the loop:
949 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
950 	 *		n = bitmap_ord_to_pos(orig, m, bits);
951 	 *		if (test_bit(m, orig))
952 	 *			set_bit(n, dst);
953 	 *	}
954 	 */
955 
956 	m = 0;
957 	for_each_set_bit(n, relmap, bits) {
958 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
959 		if (test_bit(m, orig))
960 			set_bit(n, dst);
961 		m++;
962 	}
963 }
964 
965 /**
966  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
967  *	@dst: resulting smaller bitmap
968  *	@orig: original larger bitmap
969  *	@sz: specified size
970  *	@nbits: number of bits in each of these bitmaps
971  *
972  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
973  * Clear all other bits in @dst.  See further the comment and
974  * Example [2] for bitmap_onto() for why and how to use this.
975  */
976 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
977 			unsigned int sz, unsigned int nbits)
978 {
979 	unsigned int oldbit;
980 
981 	if (dst == orig)	/* following doesn't handle inplace mappings */
982 		return;
983 	bitmap_zero(dst, nbits);
984 
985 	for_each_set_bit(oldbit, orig, nbits)
986 		set_bit(oldbit % sz, dst);
987 }
988 #endif /* CONFIG_NUMA */
989 
990 /*
991  * Common code for bitmap_*_region() routines.
992  *	bitmap: array of unsigned longs corresponding to the bitmap
993  *	pos: the beginning of the region
994  *	order: region size (log base 2 of number of bits)
995  *	reg_op: operation(s) to perform on that region of bitmap
996  *
997  * Can set, verify and/or release a region of bits in a bitmap,
998  * depending on which combination of REG_OP_* flag bits is set.
999  *
1000  * A region of a bitmap is a sequence of bits in the bitmap, of
1001  * some size '1 << order' (a power of two), aligned to that same
1002  * '1 << order' power of two.
1003  *
1004  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1005  * Returns 0 in all other cases and reg_ops.
1006  */
1007 
1008 enum {
1009 	REG_OP_ISFREE,		/* true if region is all zero bits */
1010 	REG_OP_ALLOC,		/* set all bits in region */
1011 	REG_OP_RELEASE,		/* clear all bits in region */
1012 };
1013 
1014 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1015 {
1016 	int nbits_reg;		/* number of bits in region */
1017 	int index;		/* index first long of region in bitmap */
1018 	int offset;		/* bit offset region in bitmap[index] */
1019 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1020 	int nbitsinlong;	/* num bits of region in each spanned long */
1021 	unsigned long mask;	/* bitmask for one long of region */
1022 	int i;			/* scans bitmap by longs */
1023 	int ret = 0;		/* return value */
1024 
1025 	/*
1026 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1027 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1028 	 */
1029 	nbits_reg = 1 << order;
1030 	index = pos / BITS_PER_LONG;
1031 	offset = pos - (index * BITS_PER_LONG);
1032 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1033 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1034 
1035 	/*
1036 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1037 	 * overflows if nbitsinlong == BITS_PER_LONG.
1038 	 */
1039 	mask = (1UL << (nbitsinlong - 1));
1040 	mask += mask - 1;
1041 	mask <<= offset;
1042 
1043 	switch (reg_op) {
1044 	case REG_OP_ISFREE:
1045 		for (i = 0; i < nlongs_reg; i++) {
1046 			if (bitmap[index + i] & mask)
1047 				goto done;
1048 		}
1049 		ret = 1;	/* all bits in region free (zero) */
1050 		break;
1051 
1052 	case REG_OP_ALLOC:
1053 		for (i = 0; i < nlongs_reg; i++)
1054 			bitmap[index + i] |= mask;
1055 		break;
1056 
1057 	case REG_OP_RELEASE:
1058 		for (i = 0; i < nlongs_reg; i++)
1059 			bitmap[index + i] &= ~mask;
1060 		break;
1061 	}
1062 done:
1063 	return ret;
1064 }
1065 
1066 /**
1067  * bitmap_find_free_region - find a contiguous aligned mem region
1068  *	@bitmap: array of unsigned longs corresponding to the bitmap
1069  *	@bits: number of bits in the bitmap
1070  *	@order: region size (log base 2 of number of bits) to find
1071  *
1072  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1073  * allocate them (set them to one).  Only consider regions of length
1074  * a power (@order) of two, aligned to that power of two, which
1075  * makes the search algorithm much faster.
1076  *
1077  * Return the bit offset in bitmap of the allocated region,
1078  * or -errno on failure.
1079  */
1080 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1081 {
1082 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1083 
1084 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1085 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1086 			continue;
1087 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1088 		return pos;
1089 	}
1090 	return -ENOMEM;
1091 }
1092 EXPORT_SYMBOL(bitmap_find_free_region);
1093 
1094 /**
1095  * bitmap_release_region - release allocated bitmap region
1096  *	@bitmap: array of unsigned longs corresponding to the bitmap
1097  *	@pos: beginning of bit region to release
1098  *	@order: region size (log base 2 of number of bits) to release
1099  *
1100  * This is the complement to __bitmap_find_free_region() and releases
1101  * the found region (by clearing it in the bitmap).
1102  *
1103  * No return value.
1104  */
1105 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1106 {
1107 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1108 }
1109 EXPORT_SYMBOL(bitmap_release_region);
1110 
1111 /**
1112  * bitmap_allocate_region - allocate bitmap region
1113  *	@bitmap: array of unsigned longs corresponding to the bitmap
1114  *	@pos: beginning of bit region to allocate
1115  *	@order: region size (log base 2 of number of bits) to allocate
1116  *
1117  * Allocate (set bits in) a specified region of a bitmap.
1118  *
1119  * Return 0 on success, or %-EBUSY if specified region wasn't
1120  * free (not all bits were zero).
1121  */
1122 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1123 {
1124 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1125 		return -EBUSY;
1126 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1127 }
1128 EXPORT_SYMBOL(bitmap_allocate_region);
1129 
1130 /**
1131  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1132  * @dst:   destination buffer
1133  * @src:   bitmap to copy
1134  * @nbits: number of bits in the bitmap
1135  *
1136  * Require nbits % BITS_PER_LONG == 0.
1137  */
1138 #ifdef __BIG_ENDIAN
1139 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1140 {
1141 	unsigned int i;
1142 
1143 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1144 		if (BITS_PER_LONG == 64)
1145 			dst[i] = cpu_to_le64(src[i]);
1146 		else
1147 			dst[i] = cpu_to_le32(src[i]);
1148 	}
1149 }
1150 EXPORT_SYMBOL(bitmap_copy_le);
1151 #endif
1152 
1153 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1154 {
1155 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1156 			     flags);
1157 }
1158 EXPORT_SYMBOL(bitmap_alloc);
1159 
1160 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1161 {
1162 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1163 }
1164 EXPORT_SYMBOL(bitmap_zalloc);
1165 
1166 void bitmap_free(const unsigned long *bitmap)
1167 {
1168 	kfree(bitmap);
1169 }
1170 EXPORT_SYMBOL(bitmap_free);
1171 
1172 #if BITS_PER_LONG == 64
1173 /**
1174  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1175  *	@bitmap: array of unsigned longs, the destination bitmap
1176  *	@buf: array of u32 (in host byte order), the source bitmap
1177  *	@nbits: number of bits in @bitmap
1178  */
1179 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1180 {
1181 	unsigned int i, halfwords;
1182 
1183 	halfwords = DIV_ROUND_UP(nbits, 32);
1184 	for (i = 0; i < halfwords; i++) {
1185 		bitmap[i/2] = (unsigned long) buf[i];
1186 		if (++i < halfwords)
1187 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1188 	}
1189 
1190 	/* Clear tail bits in last word beyond nbits. */
1191 	if (nbits % BITS_PER_LONG)
1192 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1193 }
1194 EXPORT_SYMBOL(bitmap_from_arr32);
1195 
1196 /**
1197  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1198  *	@buf: array of u32 (in host byte order), the dest bitmap
1199  *	@bitmap: array of unsigned longs, the source bitmap
1200  *	@nbits: number of bits in @bitmap
1201  */
1202 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1203 {
1204 	unsigned int i, halfwords;
1205 
1206 	halfwords = DIV_ROUND_UP(nbits, 32);
1207 	for (i = 0; i < halfwords; i++) {
1208 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1209 		if (++i < halfwords)
1210 			buf[i] = (u32) (bitmap[i/2] >> 32);
1211 	}
1212 
1213 	/* Clear tail bits in last element of array beyond nbits. */
1214 	if (nbits % BITS_PER_LONG)
1215 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1216 }
1217 EXPORT_SYMBOL(bitmap_to_arr32);
1218 
1219 #endif
1220