xref: /openbmc/linux/lib/bitmap.c (revision d6e0cbb1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/page.h>
20 
21 #include "kstrtox.h"
22 
23 /**
24  * DOC: bitmap introduction
25  *
26  * bitmaps provide an array of bits, implemented using an an
27  * array of unsigned longs.  The number of valid bits in a
28  * given bitmap does _not_ need to be an exact multiple of
29  * BITS_PER_LONG.
30  *
31  * The possible unused bits in the last, partially used word
32  * of a bitmap are 'don't care'.  The implementation makes
33  * no particular effort to keep them zero.  It ensures that
34  * their value will not affect the results of any operation.
35  * The bitmap operations that return Boolean (bitmap_empty,
36  * for example) or scalar (bitmap_weight, for example) results
37  * carefully filter out these unused bits from impacting their
38  * results.
39  *
40  * The byte ordering of bitmaps is more natural on little
41  * endian architectures.  See the big-endian headers
42  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43  * for the best explanations of this ordering.
44  */
45 
46 int __bitmap_equal(const unsigned long *bitmap1,
47 		const unsigned long *bitmap2, unsigned int bits)
48 {
49 	unsigned int k, lim = bits/BITS_PER_LONG;
50 	for (k = 0; k < lim; ++k)
51 		if (bitmap1[k] != bitmap2[k])
52 			return 0;
53 
54 	if (bits % BITS_PER_LONG)
55 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 			return 0;
57 
58 	return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61 
62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
63 {
64 	unsigned int k, lim = BITS_TO_LONGS(bits);
65 	for (k = 0; k < lim; ++k)
66 		dst[k] = ~src[k];
67 }
68 EXPORT_SYMBOL(__bitmap_complement);
69 
70 /**
71  * __bitmap_shift_right - logical right shift of the bits in a bitmap
72  *   @dst : destination bitmap
73  *   @src : source bitmap
74  *   @shift : shift by this many bits
75  *   @nbits : bitmap size, in bits
76  *
77  * Shifting right (dividing) means moving bits in the MS -> LS bit
78  * direction.  Zeros are fed into the vacated MS positions and the
79  * LS bits shifted off the bottom are lost.
80  */
81 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
82 			unsigned shift, unsigned nbits)
83 {
84 	unsigned k, lim = BITS_TO_LONGS(nbits);
85 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
86 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
87 	for (k = 0; off + k < lim; ++k) {
88 		unsigned long upper, lower;
89 
90 		/*
91 		 * If shift is not word aligned, take lower rem bits of
92 		 * word above and make them the top rem bits of result.
93 		 */
94 		if (!rem || off + k + 1 >= lim)
95 			upper = 0;
96 		else {
97 			upper = src[off + k + 1];
98 			if (off + k + 1 == lim - 1)
99 				upper &= mask;
100 			upper <<= (BITS_PER_LONG - rem);
101 		}
102 		lower = src[off + k];
103 		if (off + k == lim - 1)
104 			lower &= mask;
105 		lower >>= rem;
106 		dst[k] = lower | upper;
107 	}
108 	if (off)
109 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
110 }
111 EXPORT_SYMBOL(__bitmap_shift_right);
112 
113 
114 /**
115  * __bitmap_shift_left - logical left shift of the bits in a bitmap
116  *   @dst : destination bitmap
117  *   @src : source bitmap
118  *   @shift : shift by this many bits
119  *   @nbits : bitmap size, in bits
120  *
121  * Shifting left (multiplying) means moving bits in the LS -> MS
122  * direction.  Zeros are fed into the vacated LS bit positions
123  * and those MS bits shifted off the top are lost.
124  */
125 
126 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
127 			unsigned int shift, unsigned int nbits)
128 {
129 	int k;
130 	unsigned int lim = BITS_TO_LONGS(nbits);
131 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
132 	for (k = lim - off - 1; k >= 0; --k) {
133 		unsigned long upper, lower;
134 
135 		/*
136 		 * If shift is not word aligned, take upper rem bits of
137 		 * word below and make them the bottom rem bits of result.
138 		 */
139 		if (rem && k > 0)
140 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
141 		else
142 			lower = 0;
143 		upper = src[k] << rem;
144 		dst[k + off] = lower | upper;
145 	}
146 	if (off)
147 		memset(dst, 0, off*sizeof(unsigned long));
148 }
149 EXPORT_SYMBOL(__bitmap_shift_left);
150 
151 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
152 				const unsigned long *bitmap2, unsigned int bits)
153 {
154 	unsigned int k;
155 	unsigned int lim = bits/BITS_PER_LONG;
156 	unsigned long result = 0;
157 
158 	for (k = 0; k < lim; k++)
159 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
160 	if (bits % BITS_PER_LONG)
161 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
162 			   BITMAP_LAST_WORD_MASK(bits));
163 	return result != 0;
164 }
165 EXPORT_SYMBOL(__bitmap_and);
166 
167 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
168 				const unsigned long *bitmap2, unsigned int bits)
169 {
170 	unsigned int k;
171 	unsigned int nr = BITS_TO_LONGS(bits);
172 
173 	for (k = 0; k < nr; k++)
174 		dst[k] = bitmap1[k] | bitmap2[k];
175 }
176 EXPORT_SYMBOL(__bitmap_or);
177 
178 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
179 				const unsigned long *bitmap2, unsigned int bits)
180 {
181 	unsigned int k;
182 	unsigned int nr = BITS_TO_LONGS(bits);
183 
184 	for (k = 0; k < nr; k++)
185 		dst[k] = bitmap1[k] ^ bitmap2[k];
186 }
187 EXPORT_SYMBOL(__bitmap_xor);
188 
189 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
190 				const unsigned long *bitmap2, unsigned int bits)
191 {
192 	unsigned int k;
193 	unsigned int lim = bits/BITS_PER_LONG;
194 	unsigned long result = 0;
195 
196 	for (k = 0; k < lim; k++)
197 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
198 	if (bits % BITS_PER_LONG)
199 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
200 			   BITMAP_LAST_WORD_MASK(bits));
201 	return result != 0;
202 }
203 EXPORT_SYMBOL(__bitmap_andnot);
204 
205 int __bitmap_intersects(const unsigned long *bitmap1,
206 			const unsigned long *bitmap2, unsigned int bits)
207 {
208 	unsigned int k, lim = bits/BITS_PER_LONG;
209 	for (k = 0; k < lim; ++k)
210 		if (bitmap1[k] & bitmap2[k])
211 			return 1;
212 
213 	if (bits % BITS_PER_LONG)
214 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
215 			return 1;
216 	return 0;
217 }
218 EXPORT_SYMBOL(__bitmap_intersects);
219 
220 int __bitmap_subset(const unsigned long *bitmap1,
221 		    const unsigned long *bitmap2, unsigned int bits)
222 {
223 	unsigned int k, lim = bits/BITS_PER_LONG;
224 	for (k = 0; k < lim; ++k)
225 		if (bitmap1[k] & ~bitmap2[k])
226 			return 0;
227 
228 	if (bits % BITS_PER_LONG)
229 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
230 			return 0;
231 	return 1;
232 }
233 EXPORT_SYMBOL(__bitmap_subset);
234 
235 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
236 {
237 	unsigned int k, lim = bits/BITS_PER_LONG;
238 	int w = 0;
239 
240 	for (k = 0; k < lim; k++)
241 		w += hweight_long(bitmap[k]);
242 
243 	if (bits % BITS_PER_LONG)
244 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
245 
246 	return w;
247 }
248 EXPORT_SYMBOL(__bitmap_weight);
249 
250 void __bitmap_set(unsigned long *map, unsigned int start, int len)
251 {
252 	unsigned long *p = map + BIT_WORD(start);
253 	const unsigned int size = start + len;
254 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
255 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
256 
257 	while (len - bits_to_set >= 0) {
258 		*p |= mask_to_set;
259 		len -= bits_to_set;
260 		bits_to_set = BITS_PER_LONG;
261 		mask_to_set = ~0UL;
262 		p++;
263 	}
264 	if (len) {
265 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
266 		*p |= mask_to_set;
267 	}
268 }
269 EXPORT_SYMBOL(__bitmap_set);
270 
271 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
272 {
273 	unsigned long *p = map + BIT_WORD(start);
274 	const unsigned int size = start + len;
275 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
276 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
277 
278 	while (len - bits_to_clear >= 0) {
279 		*p &= ~mask_to_clear;
280 		len -= bits_to_clear;
281 		bits_to_clear = BITS_PER_LONG;
282 		mask_to_clear = ~0UL;
283 		p++;
284 	}
285 	if (len) {
286 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
287 		*p &= ~mask_to_clear;
288 	}
289 }
290 EXPORT_SYMBOL(__bitmap_clear);
291 
292 /**
293  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
294  * @map: The address to base the search on
295  * @size: The bitmap size in bits
296  * @start: The bitnumber to start searching at
297  * @nr: The number of zeroed bits we're looking for
298  * @align_mask: Alignment mask for zero area
299  * @align_offset: Alignment offset for zero area.
300  *
301  * The @align_mask should be one less than a power of 2; the effect is that
302  * the bit offset of all zero areas this function finds plus @align_offset
303  * is multiple of that power of 2.
304  */
305 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
306 					     unsigned long size,
307 					     unsigned long start,
308 					     unsigned int nr,
309 					     unsigned long align_mask,
310 					     unsigned long align_offset)
311 {
312 	unsigned long index, end, i;
313 again:
314 	index = find_next_zero_bit(map, size, start);
315 
316 	/* Align allocation */
317 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
318 
319 	end = index + nr;
320 	if (end > size)
321 		return end;
322 	i = find_next_bit(map, end, index);
323 	if (i < end) {
324 		start = i + 1;
325 		goto again;
326 	}
327 	return index;
328 }
329 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
330 
331 /*
332  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
333  * second version by Paul Jackson, third by Joe Korty.
334  */
335 
336 #define CHUNKSZ				32
337 #define nbits_to_hold_value(val)	fls(val)
338 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
339 
340 /**
341  * __bitmap_parse - convert an ASCII hex string into a bitmap.
342  * @buf: pointer to buffer containing string.
343  * @buflen: buffer size in bytes.  If string is smaller than this
344  *    then it must be terminated with a \0.
345  * @is_user: location of buffer, 0 indicates kernel space
346  * @maskp: pointer to bitmap array that will contain result.
347  * @nmaskbits: size of bitmap, in bits.
348  *
349  * Commas group hex digits into chunks.  Each chunk defines exactly 32
350  * bits of the resultant bitmask.  No chunk may specify a value larger
351  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
352  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
353  * characters and for grouping errors such as "1,,5", ",44", "," and "".
354  * Leading and trailing whitespace accepted, but not embedded whitespace.
355  */
356 int __bitmap_parse(const char *buf, unsigned int buflen,
357 		int is_user, unsigned long *maskp,
358 		int nmaskbits)
359 {
360 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
361 	u32 chunk;
362 	const char __user __force *ubuf = (const char __user __force *)buf;
363 
364 	bitmap_zero(maskp, nmaskbits);
365 
366 	nchunks = nbits = totaldigits = c = 0;
367 	do {
368 		chunk = 0;
369 		ndigits = totaldigits;
370 
371 		/* Get the next chunk of the bitmap */
372 		while (buflen) {
373 			old_c = c;
374 			if (is_user) {
375 				if (__get_user(c, ubuf++))
376 					return -EFAULT;
377 			}
378 			else
379 				c = *buf++;
380 			buflen--;
381 			if (isspace(c))
382 				continue;
383 
384 			/*
385 			 * If the last character was a space and the current
386 			 * character isn't '\0', we've got embedded whitespace.
387 			 * This is a no-no, so throw an error.
388 			 */
389 			if (totaldigits && c && isspace(old_c))
390 				return -EINVAL;
391 
392 			/* A '\0' or a ',' signal the end of the chunk */
393 			if (c == '\0' || c == ',')
394 				break;
395 
396 			if (!isxdigit(c))
397 				return -EINVAL;
398 
399 			/*
400 			 * Make sure there are at least 4 free bits in 'chunk'.
401 			 * If not, this hexdigit will overflow 'chunk', so
402 			 * throw an error.
403 			 */
404 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
405 				return -EOVERFLOW;
406 
407 			chunk = (chunk << 4) | hex_to_bin(c);
408 			totaldigits++;
409 		}
410 		if (ndigits == totaldigits)
411 			return -EINVAL;
412 		if (nchunks == 0 && chunk == 0)
413 			continue;
414 
415 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
416 		*maskp |= chunk;
417 		nchunks++;
418 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
419 		if (nbits > nmaskbits)
420 			return -EOVERFLOW;
421 	} while (buflen && c == ',');
422 
423 	return 0;
424 }
425 EXPORT_SYMBOL(__bitmap_parse);
426 
427 /**
428  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
429  *
430  * @ubuf: pointer to user buffer containing string.
431  * @ulen: buffer size in bytes.  If string is smaller than this
432  *    then it must be terminated with a \0.
433  * @maskp: pointer to bitmap array that will contain result.
434  * @nmaskbits: size of bitmap, in bits.
435  *
436  * Wrapper for __bitmap_parse(), providing it with user buffer.
437  *
438  * We cannot have this as an inline function in bitmap.h because it needs
439  * linux/uaccess.h to get the access_ok() declaration and this causes
440  * cyclic dependencies.
441  */
442 int bitmap_parse_user(const char __user *ubuf,
443 			unsigned int ulen, unsigned long *maskp,
444 			int nmaskbits)
445 {
446 	if (!access_ok(ubuf, ulen))
447 		return -EFAULT;
448 	return __bitmap_parse((const char __force *)ubuf,
449 				ulen, 1, maskp, nmaskbits);
450 
451 }
452 EXPORT_SYMBOL(bitmap_parse_user);
453 
454 /**
455  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
456  * @list: indicates whether the bitmap must be list
457  * @buf: page aligned buffer into which string is placed
458  * @maskp: pointer to bitmap to convert
459  * @nmaskbits: size of bitmap, in bits
460  *
461  * Output format is a comma-separated list of decimal numbers and
462  * ranges if list is specified or hex digits grouped into comma-separated
463  * sets of 8 digits/set. Returns the number of characters written to buf.
464  *
465  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
466  * area and that sufficient storage remains at @buf to accommodate the
467  * bitmap_print_to_pagebuf() output. Returns the number of characters
468  * actually printed to @buf, excluding terminating '\0'.
469  */
470 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
471 			    int nmaskbits)
472 {
473 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
474 
475 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
476 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
477 }
478 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
479 
480 /*
481  * Region 9-38:4/10 describes the following bitmap structure:
482  * 0	   9  12    18			38
483  * .........****......****......****......
484  *	    ^  ^     ^			 ^
485  *      start  off   group_len	       end
486  */
487 struct region {
488 	unsigned int start;
489 	unsigned int off;
490 	unsigned int group_len;
491 	unsigned int end;
492 };
493 
494 static int bitmap_set_region(const struct region *r,
495 				unsigned long *bitmap, int nbits)
496 {
497 	unsigned int start;
498 
499 	if (r->end >= nbits)
500 		return -ERANGE;
501 
502 	for (start = r->start; start <= r->end; start += r->group_len)
503 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
504 
505 	return 0;
506 }
507 
508 static int bitmap_check_region(const struct region *r)
509 {
510 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
511 		return -EINVAL;
512 
513 	return 0;
514 }
515 
516 static const char *bitmap_getnum(const char *str, unsigned int *num)
517 {
518 	unsigned long long n;
519 	unsigned int len;
520 
521 	len = _parse_integer(str, 10, &n);
522 	if (!len)
523 		return ERR_PTR(-EINVAL);
524 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
525 		return ERR_PTR(-EOVERFLOW);
526 
527 	*num = n;
528 	return str + len;
529 }
530 
531 static inline bool end_of_str(char c)
532 {
533 	return c == '\0' || c == '\n';
534 }
535 
536 static inline bool __end_of_region(char c)
537 {
538 	return isspace(c) || c == ',';
539 }
540 
541 static inline bool end_of_region(char c)
542 {
543 	return __end_of_region(c) || end_of_str(c);
544 }
545 
546 /*
547  * The format allows commas and whitespases at the beginning
548  * of the region.
549  */
550 static const char *bitmap_find_region(const char *str)
551 {
552 	while (__end_of_region(*str))
553 		str++;
554 
555 	return end_of_str(*str) ? NULL : str;
556 }
557 
558 static const char *bitmap_parse_region(const char *str, struct region *r)
559 {
560 	str = bitmap_getnum(str, &r->start);
561 	if (IS_ERR(str))
562 		return str;
563 
564 	if (end_of_region(*str))
565 		goto no_end;
566 
567 	if (*str != '-')
568 		return ERR_PTR(-EINVAL);
569 
570 	str = bitmap_getnum(str + 1, &r->end);
571 	if (IS_ERR(str))
572 		return str;
573 
574 	if (end_of_region(*str))
575 		goto no_pattern;
576 
577 	if (*str != ':')
578 		return ERR_PTR(-EINVAL);
579 
580 	str = bitmap_getnum(str + 1, &r->off);
581 	if (IS_ERR(str))
582 		return str;
583 
584 	if (*str != '/')
585 		return ERR_PTR(-EINVAL);
586 
587 	return bitmap_getnum(str + 1, &r->group_len);
588 
589 no_end:
590 	r->end = r->start;
591 no_pattern:
592 	r->off = r->end + 1;
593 	r->group_len = r->end + 1;
594 
595 	return end_of_str(*str) ? NULL : str;
596 }
597 
598 /**
599  * bitmap_parselist - convert list format ASCII string to bitmap
600  * @buf: read user string from this buffer; must be terminated
601  *    with a \0 or \n.
602  * @maskp: write resulting mask here
603  * @nmaskbits: number of bits in mask to be written
604  *
605  * Input format is a comma-separated list of decimal numbers and
606  * ranges.  Consecutively set bits are shown as two hyphen-separated
607  * decimal numbers, the smallest and largest bit numbers set in
608  * the range.
609  * Optionally each range can be postfixed to denote that only parts of it
610  * should be set. The range will divided to groups of specific size.
611  * From each group will be used only defined amount of bits.
612  * Syntax: range:used_size/group_size
613  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
614  *
615  * Returns: 0 on success, -errno on invalid input strings. Error values:
616  *
617  *   - ``-EINVAL``: wrong region format
618  *   - ``-EINVAL``: invalid character in string
619  *   - ``-ERANGE``: bit number specified too large for mask
620  *   - ``-EOVERFLOW``: integer overflow in the input parameters
621  */
622 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
623 {
624 	struct region r;
625 	long ret;
626 
627 	bitmap_zero(maskp, nmaskbits);
628 
629 	while (buf) {
630 		buf = bitmap_find_region(buf);
631 		if (buf == NULL)
632 			return 0;
633 
634 		buf = bitmap_parse_region(buf, &r);
635 		if (IS_ERR(buf))
636 			return PTR_ERR(buf);
637 
638 		ret = bitmap_check_region(&r);
639 		if (ret)
640 			return ret;
641 
642 		ret = bitmap_set_region(&r, maskp, nmaskbits);
643 		if (ret)
644 			return ret;
645 	}
646 
647 	return 0;
648 }
649 EXPORT_SYMBOL(bitmap_parselist);
650 
651 
652 /**
653  * bitmap_parselist_user()
654  *
655  * @ubuf: pointer to user buffer containing string.
656  * @ulen: buffer size in bytes.  If string is smaller than this
657  *    then it must be terminated with a \0.
658  * @maskp: pointer to bitmap array that will contain result.
659  * @nmaskbits: size of bitmap, in bits.
660  *
661  * Wrapper for bitmap_parselist(), providing it with user buffer.
662  */
663 int bitmap_parselist_user(const char __user *ubuf,
664 			unsigned int ulen, unsigned long *maskp,
665 			int nmaskbits)
666 {
667 	char *buf;
668 	int ret;
669 
670 	buf = memdup_user_nul(ubuf, ulen);
671 	if (IS_ERR(buf))
672 		return PTR_ERR(buf);
673 
674 	ret = bitmap_parselist(buf, maskp, nmaskbits);
675 
676 	kfree(buf);
677 	return ret;
678 }
679 EXPORT_SYMBOL(bitmap_parselist_user);
680 
681 
682 #ifdef CONFIG_NUMA
683 /**
684  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
685  *	@buf: pointer to a bitmap
686  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
687  *	@nbits: number of valid bit positions in @buf
688  *
689  * Map the bit at position @pos in @buf (of length @nbits) to the
690  * ordinal of which set bit it is.  If it is not set or if @pos
691  * is not a valid bit position, map to -1.
692  *
693  * If for example, just bits 4 through 7 are set in @buf, then @pos
694  * values 4 through 7 will get mapped to 0 through 3, respectively,
695  * and other @pos values will get mapped to -1.  When @pos value 7
696  * gets mapped to (returns) @ord value 3 in this example, that means
697  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
698  *
699  * The bit positions 0 through @bits are valid positions in @buf.
700  */
701 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
702 {
703 	if (pos >= nbits || !test_bit(pos, buf))
704 		return -1;
705 
706 	return __bitmap_weight(buf, pos);
707 }
708 
709 /**
710  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
711  *	@buf: pointer to bitmap
712  *	@ord: ordinal bit position (n-th set bit, n >= 0)
713  *	@nbits: number of valid bit positions in @buf
714  *
715  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
716  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
717  * >= weight(buf), returns @nbits.
718  *
719  * If for example, just bits 4 through 7 are set in @buf, then @ord
720  * values 0 through 3 will get mapped to 4 through 7, respectively,
721  * and all other @ord values returns @nbits.  When @ord value 3
722  * gets mapped to (returns) @pos value 7 in this example, that means
723  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
724  *
725  * The bit positions 0 through @nbits-1 are valid positions in @buf.
726  */
727 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
728 {
729 	unsigned int pos;
730 
731 	for (pos = find_first_bit(buf, nbits);
732 	     pos < nbits && ord;
733 	     pos = find_next_bit(buf, nbits, pos + 1))
734 		ord--;
735 
736 	return pos;
737 }
738 
739 /**
740  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
741  *	@dst: remapped result
742  *	@src: subset to be remapped
743  *	@old: defines domain of map
744  *	@new: defines range of map
745  *	@nbits: number of bits in each of these bitmaps
746  *
747  * Let @old and @new define a mapping of bit positions, such that
748  * whatever position is held by the n-th set bit in @old is mapped
749  * to the n-th set bit in @new.  In the more general case, allowing
750  * for the possibility that the weight 'w' of @new is less than the
751  * weight of @old, map the position of the n-th set bit in @old to
752  * the position of the m-th set bit in @new, where m == n % w.
753  *
754  * If either of the @old and @new bitmaps are empty, or if @src and
755  * @dst point to the same location, then this routine copies @src
756  * to @dst.
757  *
758  * The positions of unset bits in @old are mapped to themselves
759  * (the identify map).
760  *
761  * Apply the above specified mapping to @src, placing the result in
762  * @dst, clearing any bits previously set in @dst.
763  *
764  * For example, lets say that @old has bits 4 through 7 set, and
765  * @new has bits 12 through 15 set.  This defines the mapping of bit
766  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
767  * bit positions unchanged.  So if say @src comes into this routine
768  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
769  * 13 and 15 set.
770  */
771 void bitmap_remap(unsigned long *dst, const unsigned long *src,
772 		const unsigned long *old, const unsigned long *new,
773 		unsigned int nbits)
774 {
775 	unsigned int oldbit, w;
776 
777 	if (dst == src)		/* following doesn't handle inplace remaps */
778 		return;
779 	bitmap_zero(dst, nbits);
780 
781 	w = bitmap_weight(new, nbits);
782 	for_each_set_bit(oldbit, src, nbits) {
783 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
784 
785 		if (n < 0 || w == 0)
786 			set_bit(oldbit, dst);	/* identity map */
787 		else
788 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
789 	}
790 }
791 
792 /**
793  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
794  *	@oldbit: bit position to be mapped
795  *	@old: defines domain of map
796  *	@new: defines range of map
797  *	@bits: number of bits in each of these bitmaps
798  *
799  * Let @old and @new define a mapping of bit positions, such that
800  * whatever position is held by the n-th set bit in @old is mapped
801  * to the n-th set bit in @new.  In the more general case, allowing
802  * for the possibility that the weight 'w' of @new is less than the
803  * weight of @old, map the position of the n-th set bit in @old to
804  * the position of the m-th set bit in @new, where m == n % w.
805  *
806  * The positions of unset bits in @old are mapped to themselves
807  * (the identify map).
808  *
809  * Apply the above specified mapping to bit position @oldbit, returning
810  * the new bit position.
811  *
812  * For example, lets say that @old has bits 4 through 7 set, and
813  * @new has bits 12 through 15 set.  This defines the mapping of bit
814  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
815  * bit positions unchanged.  So if say @oldbit is 5, then this routine
816  * returns 13.
817  */
818 int bitmap_bitremap(int oldbit, const unsigned long *old,
819 				const unsigned long *new, int bits)
820 {
821 	int w = bitmap_weight(new, bits);
822 	int n = bitmap_pos_to_ord(old, oldbit, bits);
823 	if (n < 0 || w == 0)
824 		return oldbit;
825 	else
826 		return bitmap_ord_to_pos(new, n % w, bits);
827 }
828 
829 /**
830  * bitmap_onto - translate one bitmap relative to another
831  *	@dst: resulting translated bitmap
832  * 	@orig: original untranslated bitmap
833  * 	@relmap: bitmap relative to which translated
834  *	@bits: number of bits in each of these bitmaps
835  *
836  * Set the n-th bit of @dst iff there exists some m such that the
837  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
838  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
839  * (If you understood the previous sentence the first time your
840  * read it, you're overqualified for your current job.)
841  *
842  * In other words, @orig is mapped onto (surjectively) @dst,
843  * using the map { <n, m> | the n-th bit of @relmap is the
844  * m-th set bit of @relmap }.
845  *
846  * Any set bits in @orig above bit number W, where W is the
847  * weight of (number of set bits in) @relmap are mapped nowhere.
848  * In particular, if for all bits m set in @orig, m >= W, then
849  * @dst will end up empty.  In situations where the possibility
850  * of such an empty result is not desired, one way to avoid it is
851  * to use the bitmap_fold() operator, below, to first fold the
852  * @orig bitmap over itself so that all its set bits x are in the
853  * range 0 <= x < W.  The bitmap_fold() operator does this by
854  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
855  *
856  * Example [1] for bitmap_onto():
857  *  Let's say @relmap has bits 30-39 set, and @orig has bits
858  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
859  *  @dst will have bits 31, 33, 35, 37 and 39 set.
860  *
861  *  When bit 0 is set in @orig, it means turn on the bit in
862  *  @dst corresponding to whatever is the first bit (if any)
863  *  that is turned on in @relmap.  Since bit 0 was off in the
864  *  above example, we leave off that bit (bit 30) in @dst.
865  *
866  *  When bit 1 is set in @orig (as in the above example), it
867  *  means turn on the bit in @dst corresponding to whatever
868  *  is the second bit that is turned on in @relmap.  The second
869  *  bit in @relmap that was turned on in the above example was
870  *  bit 31, so we turned on bit 31 in @dst.
871  *
872  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
873  *  because they were the 4th, 6th, 8th and 10th set bits
874  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
875  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
876  *
877  *  When bit 11 is set in @orig, it means turn on the bit in
878  *  @dst corresponding to whatever is the twelfth bit that is
879  *  turned on in @relmap.  In the above example, there were
880  *  only ten bits turned on in @relmap (30..39), so that bit
881  *  11 was set in @orig had no affect on @dst.
882  *
883  * Example [2] for bitmap_fold() + bitmap_onto():
884  *  Let's say @relmap has these ten bits set::
885  *
886  *		40 41 42 43 45 48 53 61 74 95
887  *
888  *  (for the curious, that's 40 plus the first ten terms of the
889  *  Fibonacci sequence.)
890  *
891  *  Further lets say we use the following code, invoking
892  *  bitmap_fold() then bitmap_onto, as suggested above to
893  *  avoid the possibility of an empty @dst result::
894  *
895  *	unsigned long *tmp;	// a temporary bitmap's bits
896  *
897  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
898  *	bitmap_onto(dst, tmp, relmap, bits);
899  *
900  *  Then this table shows what various values of @dst would be, for
901  *  various @orig's.  I list the zero-based positions of each set bit.
902  *  The tmp column shows the intermediate result, as computed by
903  *  using bitmap_fold() to fold the @orig bitmap modulo ten
904  *  (the weight of @relmap):
905  *
906  *      =============== ============== =================
907  *      @orig           tmp            @dst
908  *      0                0             40
909  *      1                1             41
910  *      9                9             95
911  *      10               0             40 [#f1]_
912  *      1 3 5 7          1 3 5 7       41 43 48 61
913  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
914  *      0 9 18 27        0 9 8 7       40 61 74 95
915  *      0 10 20 30       0             40
916  *      0 11 22 33       0 1 2 3       40 41 42 43
917  *      0 12 24 36       0 2 4 6       40 42 45 53
918  *      78 102 211       1 2 8         41 42 74 [#f1]_
919  *      =============== ============== =================
920  *
921  * .. [#f1]
922  *
923  *     For these marked lines, if we hadn't first done bitmap_fold()
924  *     into tmp, then the @dst result would have been empty.
925  *
926  * If either of @orig or @relmap is empty (no set bits), then @dst
927  * will be returned empty.
928  *
929  * If (as explained above) the only set bits in @orig are in positions
930  * m where m >= W, (where W is the weight of @relmap) then @dst will
931  * once again be returned empty.
932  *
933  * All bits in @dst not set by the above rule are cleared.
934  */
935 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
936 			const unsigned long *relmap, unsigned int bits)
937 {
938 	unsigned int n, m;	/* same meaning as in above comment */
939 
940 	if (dst == orig)	/* following doesn't handle inplace mappings */
941 		return;
942 	bitmap_zero(dst, bits);
943 
944 	/*
945 	 * The following code is a more efficient, but less
946 	 * obvious, equivalent to the loop:
947 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
948 	 *		n = bitmap_ord_to_pos(orig, m, bits);
949 	 *		if (test_bit(m, orig))
950 	 *			set_bit(n, dst);
951 	 *	}
952 	 */
953 
954 	m = 0;
955 	for_each_set_bit(n, relmap, bits) {
956 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
957 		if (test_bit(m, orig))
958 			set_bit(n, dst);
959 		m++;
960 	}
961 }
962 
963 /**
964  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
965  *	@dst: resulting smaller bitmap
966  *	@orig: original larger bitmap
967  *	@sz: specified size
968  *	@nbits: number of bits in each of these bitmaps
969  *
970  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
971  * Clear all other bits in @dst.  See further the comment and
972  * Example [2] for bitmap_onto() for why and how to use this.
973  */
974 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
975 			unsigned int sz, unsigned int nbits)
976 {
977 	unsigned int oldbit;
978 
979 	if (dst == orig)	/* following doesn't handle inplace mappings */
980 		return;
981 	bitmap_zero(dst, nbits);
982 
983 	for_each_set_bit(oldbit, orig, nbits)
984 		set_bit(oldbit % sz, dst);
985 }
986 #endif /* CONFIG_NUMA */
987 
988 /*
989  * Common code for bitmap_*_region() routines.
990  *	bitmap: array of unsigned longs corresponding to the bitmap
991  *	pos: the beginning of the region
992  *	order: region size (log base 2 of number of bits)
993  *	reg_op: operation(s) to perform on that region of bitmap
994  *
995  * Can set, verify and/or release a region of bits in a bitmap,
996  * depending on which combination of REG_OP_* flag bits is set.
997  *
998  * A region of a bitmap is a sequence of bits in the bitmap, of
999  * some size '1 << order' (a power of two), aligned to that same
1000  * '1 << order' power of two.
1001  *
1002  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1003  * Returns 0 in all other cases and reg_ops.
1004  */
1005 
1006 enum {
1007 	REG_OP_ISFREE,		/* true if region is all zero bits */
1008 	REG_OP_ALLOC,		/* set all bits in region */
1009 	REG_OP_RELEASE,		/* clear all bits in region */
1010 };
1011 
1012 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1013 {
1014 	int nbits_reg;		/* number of bits in region */
1015 	int index;		/* index first long of region in bitmap */
1016 	int offset;		/* bit offset region in bitmap[index] */
1017 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1018 	int nbitsinlong;	/* num bits of region in each spanned long */
1019 	unsigned long mask;	/* bitmask for one long of region */
1020 	int i;			/* scans bitmap by longs */
1021 	int ret = 0;		/* return value */
1022 
1023 	/*
1024 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1025 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1026 	 */
1027 	nbits_reg = 1 << order;
1028 	index = pos / BITS_PER_LONG;
1029 	offset = pos - (index * BITS_PER_LONG);
1030 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1031 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1032 
1033 	/*
1034 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1035 	 * overflows if nbitsinlong == BITS_PER_LONG.
1036 	 */
1037 	mask = (1UL << (nbitsinlong - 1));
1038 	mask += mask - 1;
1039 	mask <<= offset;
1040 
1041 	switch (reg_op) {
1042 	case REG_OP_ISFREE:
1043 		for (i = 0; i < nlongs_reg; i++) {
1044 			if (bitmap[index + i] & mask)
1045 				goto done;
1046 		}
1047 		ret = 1;	/* all bits in region free (zero) */
1048 		break;
1049 
1050 	case REG_OP_ALLOC:
1051 		for (i = 0; i < nlongs_reg; i++)
1052 			bitmap[index + i] |= mask;
1053 		break;
1054 
1055 	case REG_OP_RELEASE:
1056 		for (i = 0; i < nlongs_reg; i++)
1057 			bitmap[index + i] &= ~mask;
1058 		break;
1059 	}
1060 done:
1061 	return ret;
1062 }
1063 
1064 /**
1065  * bitmap_find_free_region - find a contiguous aligned mem region
1066  *	@bitmap: array of unsigned longs corresponding to the bitmap
1067  *	@bits: number of bits in the bitmap
1068  *	@order: region size (log base 2 of number of bits) to find
1069  *
1070  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1071  * allocate them (set them to one).  Only consider regions of length
1072  * a power (@order) of two, aligned to that power of two, which
1073  * makes the search algorithm much faster.
1074  *
1075  * Return the bit offset in bitmap of the allocated region,
1076  * or -errno on failure.
1077  */
1078 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1079 {
1080 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1081 
1082 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1083 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1084 			continue;
1085 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1086 		return pos;
1087 	}
1088 	return -ENOMEM;
1089 }
1090 EXPORT_SYMBOL(bitmap_find_free_region);
1091 
1092 /**
1093  * bitmap_release_region - release allocated bitmap region
1094  *	@bitmap: array of unsigned longs corresponding to the bitmap
1095  *	@pos: beginning of bit region to release
1096  *	@order: region size (log base 2 of number of bits) to release
1097  *
1098  * This is the complement to __bitmap_find_free_region() and releases
1099  * the found region (by clearing it in the bitmap).
1100  *
1101  * No return value.
1102  */
1103 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1104 {
1105 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1106 }
1107 EXPORT_SYMBOL(bitmap_release_region);
1108 
1109 /**
1110  * bitmap_allocate_region - allocate bitmap region
1111  *	@bitmap: array of unsigned longs corresponding to the bitmap
1112  *	@pos: beginning of bit region to allocate
1113  *	@order: region size (log base 2 of number of bits) to allocate
1114  *
1115  * Allocate (set bits in) a specified region of a bitmap.
1116  *
1117  * Return 0 on success, or %-EBUSY if specified region wasn't
1118  * free (not all bits were zero).
1119  */
1120 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1121 {
1122 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1123 		return -EBUSY;
1124 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1125 }
1126 EXPORT_SYMBOL(bitmap_allocate_region);
1127 
1128 /**
1129  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1130  * @dst:   destination buffer
1131  * @src:   bitmap to copy
1132  * @nbits: number of bits in the bitmap
1133  *
1134  * Require nbits % BITS_PER_LONG == 0.
1135  */
1136 #ifdef __BIG_ENDIAN
1137 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1138 {
1139 	unsigned int i;
1140 
1141 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1142 		if (BITS_PER_LONG == 64)
1143 			dst[i] = cpu_to_le64(src[i]);
1144 		else
1145 			dst[i] = cpu_to_le32(src[i]);
1146 	}
1147 }
1148 EXPORT_SYMBOL(bitmap_copy_le);
1149 #endif
1150 
1151 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1152 {
1153 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1154 			     flags);
1155 }
1156 EXPORT_SYMBOL(bitmap_alloc);
1157 
1158 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1159 {
1160 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1161 }
1162 EXPORT_SYMBOL(bitmap_zalloc);
1163 
1164 void bitmap_free(const unsigned long *bitmap)
1165 {
1166 	kfree(bitmap);
1167 }
1168 EXPORT_SYMBOL(bitmap_free);
1169 
1170 #if BITS_PER_LONG == 64
1171 /**
1172  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1173  *	@bitmap: array of unsigned longs, the destination bitmap
1174  *	@buf: array of u32 (in host byte order), the source bitmap
1175  *	@nbits: number of bits in @bitmap
1176  */
1177 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1178 {
1179 	unsigned int i, halfwords;
1180 
1181 	halfwords = DIV_ROUND_UP(nbits, 32);
1182 	for (i = 0; i < halfwords; i++) {
1183 		bitmap[i/2] = (unsigned long) buf[i];
1184 		if (++i < halfwords)
1185 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1186 	}
1187 
1188 	/* Clear tail bits in last word beyond nbits. */
1189 	if (nbits % BITS_PER_LONG)
1190 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1191 }
1192 EXPORT_SYMBOL(bitmap_from_arr32);
1193 
1194 /**
1195  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1196  *	@buf: array of u32 (in host byte order), the dest bitmap
1197  *	@bitmap: array of unsigned longs, the source bitmap
1198  *	@nbits: number of bits in @bitmap
1199  */
1200 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1201 {
1202 	unsigned int i, halfwords;
1203 
1204 	halfwords = DIV_ROUND_UP(nbits, 32);
1205 	for (i = 0; i < halfwords; i++) {
1206 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1207 		if (++i < halfwords)
1208 			buf[i] = (u32) (bitmap[i/2] >> 32);
1209 	}
1210 
1211 	/* Clear tail bits in last element of array beyond nbits. */
1212 	if (nbits % BITS_PER_LONG)
1213 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1214 }
1215 EXPORT_SYMBOL(bitmap_to_arr32);
1216 
1217 #endif
1218