xref: /openbmc/linux/lib/bitmap.c (revision c0e297dc)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 
16 #include <asm/page.h>
17 #include <asm/uaccess.h>
18 
19 /*
20  * bitmaps provide an array of bits, implemented using an an
21  * array of unsigned longs.  The number of valid bits in a
22  * given bitmap does _not_ need to be an exact multiple of
23  * BITS_PER_LONG.
24  *
25  * The possible unused bits in the last, partially used word
26  * of a bitmap are 'don't care'.  The implementation makes
27  * no particular effort to keep them zero.  It ensures that
28  * their value will not affect the results of any operation.
29  * The bitmap operations that return Boolean (bitmap_empty,
30  * for example) or scalar (bitmap_weight, for example) results
31  * carefully filter out these unused bits from impacting their
32  * results.
33  *
34  * These operations actually hold to a slightly stronger rule:
35  * if you don't input any bitmaps to these ops that have some
36  * unused bits set, then they won't output any set unused bits
37  * in output bitmaps.
38  *
39  * The byte ordering of bitmaps is more natural on little
40  * endian architectures.  See the big-endian headers
41  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
42  * for the best explanations of this ordering.
43  */
44 
45 int __bitmap_equal(const unsigned long *bitmap1,
46 		const unsigned long *bitmap2, unsigned int bits)
47 {
48 	unsigned int k, lim = bits/BITS_PER_LONG;
49 	for (k = 0; k < lim; ++k)
50 		if (bitmap1[k] != bitmap2[k])
51 			return 0;
52 
53 	if (bits % BITS_PER_LONG)
54 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
55 			return 0;
56 
57 	return 1;
58 }
59 EXPORT_SYMBOL(__bitmap_equal);
60 
61 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
62 {
63 	unsigned int k, lim = bits/BITS_PER_LONG;
64 	for (k = 0; k < lim; ++k)
65 		dst[k] = ~src[k];
66 
67 	if (bits % BITS_PER_LONG)
68 		dst[k] = ~src[k];
69 }
70 EXPORT_SYMBOL(__bitmap_complement);
71 
72 /**
73  * __bitmap_shift_right - logical right shift of the bits in a bitmap
74  *   @dst : destination bitmap
75  *   @src : source bitmap
76  *   @shift : shift by this many bits
77  *   @nbits : bitmap size, in bits
78  *
79  * Shifting right (dividing) means moving bits in the MS -> LS bit
80  * direction.  Zeros are fed into the vacated MS positions and the
81  * LS bits shifted off the bottom are lost.
82  */
83 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
84 			unsigned shift, unsigned nbits)
85 {
86 	unsigned k, lim = BITS_TO_LONGS(nbits);
87 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
88 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
89 	for (k = 0; off + k < lim; ++k) {
90 		unsigned long upper, lower;
91 
92 		/*
93 		 * If shift is not word aligned, take lower rem bits of
94 		 * word above and make them the top rem bits of result.
95 		 */
96 		if (!rem || off + k + 1 >= lim)
97 			upper = 0;
98 		else {
99 			upper = src[off + k + 1];
100 			if (off + k + 1 == lim - 1)
101 				upper &= mask;
102 			upper <<= (BITS_PER_LONG - rem);
103 		}
104 		lower = src[off + k];
105 		if (off + k == lim - 1)
106 			lower &= mask;
107 		lower >>= rem;
108 		dst[k] = lower | upper;
109 	}
110 	if (off)
111 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
112 }
113 EXPORT_SYMBOL(__bitmap_shift_right);
114 
115 
116 /**
117  * __bitmap_shift_left - logical left shift of the bits in a bitmap
118  *   @dst : destination bitmap
119  *   @src : source bitmap
120  *   @shift : shift by this many bits
121  *   @nbits : bitmap size, in bits
122  *
123  * Shifting left (multiplying) means moving bits in the LS -> MS
124  * direction.  Zeros are fed into the vacated LS bit positions
125  * and those MS bits shifted off the top are lost.
126  */
127 
128 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
129 			unsigned int shift, unsigned int nbits)
130 {
131 	int k;
132 	unsigned int lim = BITS_TO_LONGS(nbits);
133 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
134 	for (k = lim - off - 1; k >= 0; --k) {
135 		unsigned long upper, lower;
136 
137 		/*
138 		 * If shift is not word aligned, take upper rem bits of
139 		 * word below and make them the bottom rem bits of result.
140 		 */
141 		if (rem && k > 0)
142 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
143 		else
144 			lower = 0;
145 		upper = src[k] << rem;
146 		dst[k + off] = lower | upper;
147 	}
148 	if (off)
149 		memset(dst, 0, off*sizeof(unsigned long));
150 }
151 EXPORT_SYMBOL(__bitmap_shift_left);
152 
153 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
154 				const unsigned long *bitmap2, unsigned int bits)
155 {
156 	unsigned int k;
157 	unsigned int lim = bits/BITS_PER_LONG;
158 	unsigned long result = 0;
159 
160 	for (k = 0; k < lim; k++)
161 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
162 	if (bits % BITS_PER_LONG)
163 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
164 			   BITMAP_LAST_WORD_MASK(bits));
165 	return result != 0;
166 }
167 EXPORT_SYMBOL(__bitmap_and);
168 
169 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
170 				const unsigned long *bitmap2, unsigned int bits)
171 {
172 	unsigned int k;
173 	unsigned int nr = BITS_TO_LONGS(bits);
174 
175 	for (k = 0; k < nr; k++)
176 		dst[k] = bitmap1[k] | bitmap2[k];
177 }
178 EXPORT_SYMBOL(__bitmap_or);
179 
180 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
181 				const unsigned long *bitmap2, unsigned int bits)
182 {
183 	unsigned int k;
184 	unsigned int nr = BITS_TO_LONGS(bits);
185 
186 	for (k = 0; k < nr; k++)
187 		dst[k] = bitmap1[k] ^ bitmap2[k];
188 }
189 EXPORT_SYMBOL(__bitmap_xor);
190 
191 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
192 				const unsigned long *bitmap2, unsigned int bits)
193 {
194 	unsigned int k;
195 	unsigned int lim = bits/BITS_PER_LONG;
196 	unsigned long result = 0;
197 
198 	for (k = 0; k < lim; k++)
199 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
200 	if (bits % BITS_PER_LONG)
201 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
202 			   BITMAP_LAST_WORD_MASK(bits));
203 	return result != 0;
204 }
205 EXPORT_SYMBOL(__bitmap_andnot);
206 
207 int __bitmap_intersects(const unsigned long *bitmap1,
208 			const unsigned long *bitmap2, unsigned int bits)
209 {
210 	unsigned int k, lim = bits/BITS_PER_LONG;
211 	for (k = 0; k < lim; ++k)
212 		if (bitmap1[k] & bitmap2[k])
213 			return 1;
214 
215 	if (bits % BITS_PER_LONG)
216 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
217 			return 1;
218 	return 0;
219 }
220 EXPORT_SYMBOL(__bitmap_intersects);
221 
222 int __bitmap_subset(const unsigned long *bitmap1,
223 		    const unsigned long *bitmap2, unsigned int bits)
224 {
225 	unsigned int k, lim = bits/BITS_PER_LONG;
226 	for (k = 0; k < lim; ++k)
227 		if (bitmap1[k] & ~bitmap2[k])
228 			return 0;
229 
230 	if (bits % BITS_PER_LONG)
231 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
232 			return 0;
233 	return 1;
234 }
235 EXPORT_SYMBOL(__bitmap_subset);
236 
237 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
238 {
239 	unsigned int k, lim = bits/BITS_PER_LONG;
240 	int w = 0;
241 
242 	for (k = 0; k < lim; k++)
243 		w += hweight_long(bitmap[k]);
244 
245 	if (bits % BITS_PER_LONG)
246 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
247 
248 	return w;
249 }
250 EXPORT_SYMBOL(__bitmap_weight);
251 
252 void bitmap_set(unsigned long *map, unsigned int start, int len)
253 {
254 	unsigned long *p = map + BIT_WORD(start);
255 	const unsigned int size = start + len;
256 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
257 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
258 
259 	while (len - bits_to_set >= 0) {
260 		*p |= mask_to_set;
261 		len -= bits_to_set;
262 		bits_to_set = BITS_PER_LONG;
263 		mask_to_set = ~0UL;
264 		p++;
265 	}
266 	if (len) {
267 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
268 		*p |= mask_to_set;
269 	}
270 }
271 EXPORT_SYMBOL(bitmap_set);
272 
273 void bitmap_clear(unsigned long *map, unsigned int start, int len)
274 {
275 	unsigned long *p = map + BIT_WORD(start);
276 	const unsigned int size = start + len;
277 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
278 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
279 
280 	while (len - bits_to_clear >= 0) {
281 		*p &= ~mask_to_clear;
282 		len -= bits_to_clear;
283 		bits_to_clear = BITS_PER_LONG;
284 		mask_to_clear = ~0UL;
285 		p++;
286 	}
287 	if (len) {
288 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
289 		*p &= ~mask_to_clear;
290 	}
291 }
292 EXPORT_SYMBOL(bitmap_clear);
293 
294 /**
295  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
296  * @map: The address to base the search on
297  * @size: The bitmap size in bits
298  * @start: The bitnumber to start searching at
299  * @nr: The number of zeroed bits we're looking for
300  * @align_mask: Alignment mask for zero area
301  * @align_offset: Alignment offset for zero area.
302  *
303  * The @align_mask should be one less than a power of 2; the effect is that
304  * the bit offset of all zero areas this function finds plus @align_offset
305  * is multiple of that power of 2.
306  */
307 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
308 					     unsigned long size,
309 					     unsigned long start,
310 					     unsigned int nr,
311 					     unsigned long align_mask,
312 					     unsigned long align_offset)
313 {
314 	unsigned long index, end, i;
315 again:
316 	index = find_next_zero_bit(map, size, start);
317 
318 	/* Align allocation */
319 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
320 
321 	end = index + nr;
322 	if (end > size)
323 		return end;
324 	i = find_next_bit(map, end, index);
325 	if (i < end) {
326 		start = i + 1;
327 		goto again;
328 	}
329 	return index;
330 }
331 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
332 
333 /*
334  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
335  * second version by Paul Jackson, third by Joe Korty.
336  */
337 
338 #define CHUNKSZ				32
339 #define nbits_to_hold_value(val)	fls(val)
340 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
341 
342 /**
343  * __bitmap_parse - convert an ASCII hex string into a bitmap.
344  * @buf: pointer to buffer containing string.
345  * @buflen: buffer size in bytes.  If string is smaller than this
346  *    then it must be terminated with a \0.
347  * @is_user: location of buffer, 0 indicates kernel space
348  * @maskp: pointer to bitmap array that will contain result.
349  * @nmaskbits: size of bitmap, in bits.
350  *
351  * Commas group hex digits into chunks.  Each chunk defines exactly 32
352  * bits of the resultant bitmask.  No chunk may specify a value larger
353  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
354  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
355  * characters and for grouping errors such as "1,,5", ",44", "," and "".
356  * Leading and trailing whitespace accepted, but not embedded whitespace.
357  */
358 int __bitmap_parse(const char *buf, unsigned int buflen,
359 		int is_user, unsigned long *maskp,
360 		int nmaskbits)
361 {
362 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
363 	u32 chunk;
364 	const char __user __force *ubuf = (const char __user __force *)buf;
365 
366 	bitmap_zero(maskp, nmaskbits);
367 
368 	nchunks = nbits = totaldigits = c = 0;
369 	do {
370 		chunk = ndigits = 0;
371 
372 		/* Get the next chunk of the bitmap */
373 		while (buflen) {
374 			old_c = c;
375 			if (is_user) {
376 				if (__get_user(c, ubuf++))
377 					return -EFAULT;
378 			}
379 			else
380 				c = *buf++;
381 			buflen--;
382 			if (isspace(c))
383 				continue;
384 
385 			/*
386 			 * If the last character was a space and the current
387 			 * character isn't '\0', we've got embedded whitespace.
388 			 * This is a no-no, so throw an error.
389 			 */
390 			if (totaldigits && c && isspace(old_c))
391 				return -EINVAL;
392 
393 			/* A '\0' or a ',' signal the end of the chunk */
394 			if (c == '\0' || c == ',')
395 				break;
396 
397 			if (!isxdigit(c))
398 				return -EINVAL;
399 
400 			/*
401 			 * Make sure there are at least 4 free bits in 'chunk'.
402 			 * If not, this hexdigit will overflow 'chunk', so
403 			 * throw an error.
404 			 */
405 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
406 				return -EOVERFLOW;
407 
408 			chunk = (chunk << 4) | hex_to_bin(c);
409 			ndigits++; totaldigits++;
410 		}
411 		if (ndigits == 0)
412 			return -EINVAL;
413 		if (nchunks == 0 && chunk == 0)
414 			continue;
415 
416 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
417 		*maskp |= chunk;
418 		nchunks++;
419 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
420 		if (nbits > nmaskbits)
421 			return -EOVERFLOW;
422 	} while (buflen && c == ',');
423 
424 	return 0;
425 }
426 EXPORT_SYMBOL(__bitmap_parse);
427 
428 /**
429  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
430  *
431  * @ubuf: pointer to user buffer containing string.
432  * @ulen: buffer size in bytes.  If string is smaller than this
433  *    then it must be terminated with a \0.
434  * @maskp: pointer to bitmap array that will contain result.
435  * @nmaskbits: size of bitmap, in bits.
436  *
437  * Wrapper for __bitmap_parse(), providing it with user buffer.
438  *
439  * We cannot have this as an inline function in bitmap.h because it needs
440  * linux/uaccess.h to get the access_ok() declaration and this causes
441  * cyclic dependencies.
442  */
443 int bitmap_parse_user(const char __user *ubuf,
444 			unsigned int ulen, unsigned long *maskp,
445 			int nmaskbits)
446 {
447 	if (!access_ok(VERIFY_READ, ubuf, ulen))
448 		return -EFAULT;
449 	return __bitmap_parse((const char __force *)ubuf,
450 				ulen, 1, maskp, nmaskbits);
451 
452 }
453 EXPORT_SYMBOL(bitmap_parse_user);
454 
455 /**
456  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
457  * @list: indicates whether the bitmap must be list
458  * @buf: page aligned buffer into which string is placed
459  * @maskp: pointer to bitmap to convert
460  * @nmaskbits: size of bitmap, in bits
461  *
462  * Output format is a comma-separated list of decimal numbers and
463  * ranges if list is specified or hex digits grouped into comma-separated
464  * sets of 8 digits/set. Returns the number of characters written to buf.
465  *
466  * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
467  * sufficient storage remains at @buf to accommodate the
468  * bitmap_print_to_pagebuf() output.
469  */
470 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
471 			    int nmaskbits)
472 {
473 	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
474 	int n = 0;
475 
476 	if (len > 1)
477 		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
478 			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
479 	return n;
480 }
481 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
482 
483 /**
484  * __bitmap_parselist - convert list format ASCII string to bitmap
485  * @buf: read nul-terminated user string from this buffer
486  * @buflen: buffer size in bytes.  If string is smaller than this
487  *    then it must be terminated with a \0.
488  * @is_user: location of buffer, 0 indicates kernel space
489  * @maskp: write resulting mask here
490  * @nmaskbits: number of bits in mask to be written
491  *
492  * Input format is a comma-separated list of decimal numbers and
493  * ranges.  Consecutively set bits are shown as two hyphen-separated
494  * decimal numbers, the smallest and largest bit numbers set in
495  * the range.
496  *
497  * Returns 0 on success, -errno on invalid input strings.
498  * Error values:
499  *    %-EINVAL: second number in range smaller than first
500  *    %-EINVAL: invalid character in string
501  *    %-ERANGE: bit number specified too large for mask
502  */
503 static int __bitmap_parselist(const char *buf, unsigned int buflen,
504 		int is_user, unsigned long *maskp,
505 		int nmaskbits)
506 {
507 	unsigned a, b;
508 	int c, old_c, totaldigits;
509 	const char __user __force *ubuf = (const char __user __force *)buf;
510 	int at_start, in_range;
511 
512 	totaldigits = c = 0;
513 	bitmap_zero(maskp, nmaskbits);
514 	do {
515 		at_start = 1;
516 		in_range = 0;
517 		a = b = 0;
518 
519 		/* Get the next cpu# or a range of cpu#'s */
520 		while (buflen) {
521 			old_c = c;
522 			if (is_user) {
523 				if (__get_user(c, ubuf++))
524 					return -EFAULT;
525 			} else
526 				c = *buf++;
527 			buflen--;
528 			if (isspace(c))
529 				continue;
530 
531 			/*
532 			 * If the last character was a space and the current
533 			 * character isn't '\0', we've got embedded whitespace.
534 			 * This is a no-no, so throw an error.
535 			 */
536 			if (totaldigits && c && isspace(old_c))
537 				return -EINVAL;
538 
539 			/* A '\0' or a ',' signal the end of a cpu# or range */
540 			if (c == '\0' || c == ',')
541 				break;
542 
543 			if (c == '-') {
544 				if (at_start || in_range)
545 					return -EINVAL;
546 				b = 0;
547 				in_range = 1;
548 				continue;
549 			}
550 
551 			if (!isdigit(c))
552 				return -EINVAL;
553 
554 			b = b * 10 + (c - '0');
555 			if (!in_range)
556 				a = b;
557 			at_start = 0;
558 			totaldigits++;
559 		}
560 		if (!(a <= b))
561 			return -EINVAL;
562 		if (b >= nmaskbits)
563 			return -ERANGE;
564 		if (!at_start) {
565 			while (a <= b) {
566 				set_bit(a, maskp);
567 				a++;
568 			}
569 		}
570 	} while (buflen && c == ',');
571 	return 0;
572 }
573 
574 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
575 {
576 	char *nl  = strchrnul(bp, '\n');
577 	int len = nl - bp;
578 
579 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
580 }
581 EXPORT_SYMBOL(bitmap_parselist);
582 
583 
584 /**
585  * bitmap_parselist_user()
586  *
587  * @ubuf: pointer to user buffer containing string.
588  * @ulen: buffer size in bytes.  If string is smaller than this
589  *    then it must be terminated with a \0.
590  * @maskp: pointer to bitmap array that will contain result.
591  * @nmaskbits: size of bitmap, in bits.
592  *
593  * Wrapper for bitmap_parselist(), providing it with user buffer.
594  *
595  * We cannot have this as an inline function in bitmap.h because it needs
596  * linux/uaccess.h to get the access_ok() declaration and this causes
597  * cyclic dependencies.
598  */
599 int bitmap_parselist_user(const char __user *ubuf,
600 			unsigned int ulen, unsigned long *maskp,
601 			int nmaskbits)
602 {
603 	if (!access_ok(VERIFY_READ, ubuf, ulen))
604 		return -EFAULT;
605 	return __bitmap_parselist((const char __force *)ubuf,
606 					ulen, 1, maskp, nmaskbits);
607 }
608 EXPORT_SYMBOL(bitmap_parselist_user);
609 
610 
611 /**
612  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
613  *	@buf: pointer to a bitmap
614  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
615  *	@nbits: number of valid bit positions in @buf
616  *
617  * Map the bit at position @pos in @buf (of length @nbits) to the
618  * ordinal of which set bit it is.  If it is not set or if @pos
619  * is not a valid bit position, map to -1.
620  *
621  * If for example, just bits 4 through 7 are set in @buf, then @pos
622  * values 4 through 7 will get mapped to 0 through 3, respectively,
623  * and other @pos values will get mapped to -1.  When @pos value 7
624  * gets mapped to (returns) @ord value 3 in this example, that means
625  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
626  *
627  * The bit positions 0 through @bits are valid positions in @buf.
628  */
629 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
630 {
631 	if (pos >= nbits || !test_bit(pos, buf))
632 		return -1;
633 
634 	return __bitmap_weight(buf, pos);
635 }
636 
637 /**
638  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
639  *	@buf: pointer to bitmap
640  *	@ord: ordinal bit position (n-th set bit, n >= 0)
641  *	@nbits: number of valid bit positions in @buf
642  *
643  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
644  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
645  * >= weight(buf), returns @nbits.
646  *
647  * If for example, just bits 4 through 7 are set in @buf, then @ord
648  * values 0 through 3 will get mapped to 4 through 7, respectively,
649  * and all other @ord values returns @nbits.  When @ord value 3
650  * gets mapped to (returns) @pos value 7 in this example, that means
651  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
652  *
653  * The bit positions 0 through @nbits-1 are valid positions in @buf.
654  */
655 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
656 {
657 	unsigned int pos;
658 
659 	for (pos = find_first_bit(buf, nbits);
660 	     pos < nbits && ord;
661 	     pos = find_next_bit(buf, nbits, pos + 1))
662 		ord--;
663 
664 	return pos;
665 }
666 
667 /**
668  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
669  *	@dst: remapped result
670  *	@src: subset to be remapped
671  *	@old: defines domain of map
672  *	@new: defines range of map
673  *	@nbits: number of bits in each of these bitmaps
674  *
675  * Let @old and @new define a mapping of bit positions, such that
676  * whatever position is held by the n-th set bit in @old is mapped
677  * to the n-th set bit in @new.  In the more general case, allowing
678  * for the possibility that the weight 'w' of @new is less than the
679  * weight of @old, map the position of the n-th set bit in @old to
680  * the position of the m-th set bit in @new, where m == n % w.
681  *
682  * If either of the @old and @new bitmaps are empty, or if @src and
683  * @dst point to the same location, then this routine copies @src
684  * to @dst.
685  *
686  * The positions of unset bits in @old are mapped to themselves
687  * (the identify map).
688  *
689  * Apply the above specified mapping to @src, placing the result in
690  * @dst, clearing any bits previously set in @dst.
691  *
692  * For example, lets say that @old has bits 4 through 7 set, and
693  * @new has bits 12 through 15 set.  This defines the mapping of bit
694  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
695  * bit positions unchanged.  So if say @src comes into this routine
696  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
697  * 13 and 15 set.
698  */
699 void bitmap_remap(unsigned long *dst, const unsigned long *src,
700 		const unsigned long *old, const unsigned long *new,
701 		unsigned int nbits)
702 {
703 	unsigned int oldbit, w;
704 
705 	if (dst == src)		/* following doesn't handle inplace remaps */
706 		return;
707 	bitmap_zero(dst, nbits);
708 
709 	w = bitmap_weight(new, nbits);
710 	for_each_set_bit(oldbit, src, nbits) {
711 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
712 
713 		if (n < 0 || w == 0)
714 			set_bit(oldbit, dst);	/* identity map */
715 		else
716 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
717 	}
718 }
719 EXPORT_SYMBOL(bitmap_remap);
720 
721 /**
722  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
723  *	@oldbit: bit position to be mapped
724  *	@old: defines domain of map
725  *	@new: defines range of map
726  *	@bits: number of bits in each of these bitmaps
727  *
728  * Let @old and @new define a mapping of bit positions, such that
729  * whatever position is held by the n-th set bit in @old is mapped
730  * to the n-th set bit in @new.  In the more general case, allowing
731  * for the possibility that the weight 'w' of @new is less than the
732  * weight of @old, map the position of the n-th set bit in @old to
733  * the position of the m-th set bit in @new, where m == n % w.
734  *
735  * The positions of unset bits in @old are mapped to themselves
736  * (the identify map).
737  *
738  * Apply the above specified mapping to bit position @oldbit, returning
739  * the new bit position.
740  *
741  * For example, lets say that @old has bits 4 through 7 set, and
742  * @new has bits 12 through 15 set.  This defines the mapping of bit
743  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
744  * bit positions unchanged.  So if say @oldbit is 5, then this routine
745  * returns 13.
746  */
747 int bitmap_bitremap(int oldbit, const unsigned long *old,
748 				const unsigned long *new, int bits)
749 {
750 	int w = bitmap_weight(new, bits);
751 	int n = bitmap_pos_to_ord(old, oldbit, bits);
752 	if (n < 0 || w == 0)
753 		return oldbit;
754 	else
755 		return bitmap_ord_to_pos(new, n % w, bits);
756 }
757 EXPORT_SYMBOL(bitmap_bitremap);
758 
759 /**
760  * bitmap_onto - translate one bitmap relative to another
761  *	@dst: resulting translated bitmap
762  * 	@orig: original untranslated bitmap
763  * 	@relmap: bitmap relative to which translated
764  *	@bits: number of bits in each of these bitmaps
765  *
766  * Set the n-th bit of @dst iff there exists some m such that the
767  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
768  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
769  * (If you understood the previous sentence the first time your
770  * read it, you're overqualified for your current job.)
771  *
772  * In other words, @orig is mapped onto (surjectively) @dst,
773  * using the map { <n, m> | the n-th bit of @relmap is the
774  * m-th set bit of @relmap }.
775  *
776  * Any set bits in @orig above bit number W, where W is the
777  * weight of (number of set bits in) @relmap are mapped nowhere.
778  * In particular, if for all bits m set in @orig, m >= W, then
779  * @dst will end up empty.  In situations where the possibility
780  * of such an empty result is not desired, one way to avoid it is
781  * to use the bitmap_fold() operator, below, to first fold the
782  * @orig bitmap over itself so that all its set bits x are in the
783  * range 0 <= x < W.  The bitmap_fold() operator does this by
784  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
785  *
786  * Example [1] for bitmap_onto():
787  *  Let's say @relmap has bits 30-39 set, and @orig has bits
788  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
789  *  @dst will have bits 31, 33, 35, 37 and 39 set.
790  *
791  *  When bit 0 is set in @orig, it means turn on the bit in
792  *  @dst corresponding to whatever is the first bit (if any)
793  *  that is turned on in @relmap.  Since bit 0 was off in the
794  *  above example, we leave off that bit (bit 30) in @dst.
795  *
796  *  When bit 1 is set in @orig (as in the above example), it
797  *  means turn on the bit in @dst corresponding to whatever
798  *  is the second bit that is turned on in @relmap.  The second
799  *  bit in @relmap that was turned on in the above example was
800  *  bit 31, so we turned on bit 31 in @dst.
801  *
802  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
803  *  because they were the 4th, 6th, 8th and 10th set bits
804  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
805  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
806  *
807  *  When bit 11 is set in @orig, it means turn on the bit in
808  *  @dst corresponding to whatever is the twelfth bit that is
809  *  turned on in @relmap.  In the above example, there were
810  *  only ten bits turned on in @relmap (30..39), so that bit
811  *  11 was set in @orig had no affect on @dst.
812  *
813  * Example [2] for bitmap_fold() + bitmap_onto():
814  *  Let's say @relmap has these ten bits set:
815  *		40 41 42 43 45 48 53 61 74 95
816  *  (for the curious, that's 40 plus the first ten terms of the
817  *  Fibonacci sequence.)
818  *
819  *  Further lets say we use the following code, invoking
820  *  bitmap_fold() then bitmap_onto, as suggested above to
821  *  avoid the possibility of an empty @dst result:
822  *
823  *	unsigned long *tmp;	// a temporary bitmap's bits
824  *
825  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
826  *	bitmap_onto(dst, tmp, relmap, bits);
827  *
828  *  Then this table shows what various values of @dst would be, for
829  *  various @orig's.  I list the zero-based positions of each set bit.
830  *  The tmp column shows the intermediate result, as computed by
831  *  using bitmap_fold() to fold the @orig bitmap modulo ten
832  *  (the weight of @relmap).
833  *
834  *      @orig           tmp            @dst
835  *      0                0             40
836  *      1                1             41
837  *      9                9             95
838  *      10               0             40 (*)
839  *      1 3 5 7          1 3 5 7       41 43 48 61
840  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
841  *      0 9 18 27        0 9 8 7       40 61 74 95
842  *      0 10 20 30       0             40
843  *      0 11 22 33       0 1 2 3       40 41 42 43
844  *      0 12 24 36       0 2 4 6       40 42 45 53
845  *      78 102 211       1 2 8         41 42 74 (*)
846  *
847  * (*) For these marked lines, if we hadn't first done bitmap_fold()
848  *     into tmp, then the @dst result would have been empty.
849  *
850  * If either of @orig or @relmap is empty (no set bits), then @dst
851  * will be returned empty.
852  *
853  * If (as explained above) the only set bits in @orig are in positions
854  * m where m >= W, (where W is the weight of @relmap) then @dst will
855  * once again be returned empty.
856  *
857  * All bits in @dst not set by the above rule are cleared.
858  */
859 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
860 			const unsigned long *relmap, unsigned int bits)
861 {
862 	unsigned int n, m;	/* same meaning as in above comment */
863 
864 	if (dst == orig)	/* following doesn't handle inplace mappings */
865 		return;
866 	bitmap_zero(dst, bits);
867 
868 	/*
869 	 * The following code is a more efficient, but less
870 	 * obvious, equivalent to the loop:
871 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
872 	 *		n = bitmap_ord_to_pos(orig, m, bits);
873 	 *		if (test_bit(m, orig))
874 	 *			set_bit(n, dst);
875 	 *	}
876 	 */
877 
878 	m = 0;
879 	for_each_set_bit(n, relmap, bits) {
880 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
881 		if (test_bit(m, orig))
882 			set_bit(n, dst);
883 		m++;
884 	}
885 }
886 EXPORT_SYMBOL(bitmap_onto);
887 
888 /**
889  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
890  *	@dst: resulting smaller bitmap
891  *	@orig: original larger bitmap
892  *	@sz: specified size
893  *	@nbits: number of bits in each of these bitmaps
894  *
895  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
896  * Clear all other bits in @dst.  See further the comment and
897  * Example [2] for bitmap_onto() for why and how to use this.
898  */
899 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
900 			unsigned int sz, unsigned int nbits)
901 {
902 	unsigned int oldbit;
903 
904 	if (dst == orig)	/* following doesn't handle inplace mappings */
905 		return;
906 	bitmap_zero(dst, nbits);
907 
908 	for_each_set_bit(oldbit, orig, nbits)
909 		set_bit(oldbit % sz, dst);
910 }
911 EXPORT_SYMBOL(bitmap_fold);
912 
913 /*
914  * Common code for bitmap_*_region() routines.
915  *	bitmap: array of unsigned longs corresponding to the bitmap
916  *	pos: the beginning of the region
917  *	order: region size (log base 2 of number of bits)
918  *	reg_op: operation(s) to perform on that region of bitmap
919  *
920  * Can set, verify and/or release a region of bits in a bitmap,
921  * depending on which combination of REG_OP_* flag bits is set.
922  *
923  * A region of a bitmap is a sequence of bits in the bitmap, of
924  * some size '1 << order' (a power of two), aligned to that same
925  * '1 << order' power of two.
926  *
927  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
928  * Returns 0 in all other cases and reg_ops.
929  */
930 
931 enum {
932 	REG_OP_ISFREE,		/* true if region is all zero bits */
933 	REG_OP_ALLOC,		/* set all bits in region */
934 	REG_OP_RELEASE,		/* clear all bits in region */
935 };
936 
937 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
938 {
939 	int nbits_reg;		/* number of bits in region */
940 	int index;		/* index first long of region in bitmap */
941 	int offset;		/* bit offset region in bitmap[index] */
942 	int nlongs_reg;		/* num longs spanned by region in bitmap */
943 	int nbitsinlong;	/* num bits of region in each spanned long */
944 	unsigned long mask;	/* bitmask for one long of region */
945 	int i;			/* scans bitmap by longs */
946 	int ret = 0;		/* return value */
947 
948 	/*
949 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
950 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
951 	 */
952 	nbits_reg = 1 << order;
953 	index = pos / BITS_PER_LONG;
954 	offset = pos - (index * BITS_PER_LONG);
955 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
956 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
957 
958 	/*
959 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
960 	 * overflows if nbitsinlong == BITS_PER_LONG.
961 	 */
962 	mask = (1UL << (nbitsinlong - 1));
963 	mask += mask - 1;
964 	mask <<= offset;
965 
966 	switch (reg_op) {
967 	case REG_OP_ISFREE:
968 		for (i = 0; i < nlongs_reg; i++) {
969 			if (bitmap[index + i] & mask)
970 				goto done;
971 		}
972 		ret = 1;	/* all bits in region free (zero) */
973 		break;
974 
975 	case REG_OP_ALLOC:
976 		for (i = 0; i < nlongs_reg; i++)
977 			bitmap[index + i] |= mask;
978 		break;
979 
980 	case REG_OP_RELEASE:
981 		for (i = 0; i < nlongs_reg; i++)
982 			bitmap[index + i] &= ~mask;
983 		break;
984 	}
985 done:
986 	return ret;
987 }
988 
989 /**
990  * bitmap_find_free_region - find a contiguous aligned mem region
991  *	@bitmap: array of unsigned longs corresponding to the bitmap
992  *	@bits: number of bits in the bitmap
993  *	@order: region size (log base 2 of number of bits) to find
994  *
995  * Find a region of free (zero) bits in a @bitmap of @bits bits and
996  * allocate them (set them to one).  Only consider regions of length
997  * a power (@order) of two, aligned to that power of two, which
998  * makes the search algorithm much faster.
999  *
1000  * Return the bit offset in bitmap of the allocated region,
1001  * or -errno on failure.
1002  */
1003 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1004 {
1005 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1006 
1007 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1008 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1009 			continue;
1010 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1011 		return pos;
1012 	}
1013 	return -ENOMEM;
1014 }
1015 EXPORT_SYMBOL(bitmap_find_free_region);
1016 
1017 /**
1018  * bitmap_release_region - release allocated bitmap region
1019  *	@bitmap: array of unsigned longs corresponding to the bitmap
1020  *	@pos: beginning of bit region to release
1021  *	@order: region size (log base 2 of number of bits) to release
1022  *
1023  * This is the complement to __bitmap_find_free_region() and releases
1024  * the found region (by clearing it in the bitmap).
1025  *
1026  * No return value.
1027  */
1028 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1029 {
1030 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1031 }
1032 EXPORT_SYMBOL(bitmap_release_region);
1033 
1034 /**
1035  * bitmap_allocate_region - allocate bitmap region
1036  *	@bitmap: array of unsigned longs corresponding to the bitmap
1037  *	@pos: beginning of bit region to allocate
1038  *	@order: region size (log base 2 of number of bits) to allocate
1039  *
1040  * Allocate (set bits in) a specified region of a bitmap.
1041  *
1042  * Return 0 on success, or %-EBUSY if specified region wasn't
1043  * free (not all bits were zero).
1044  */
1045 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1046 {
1047 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1048 		return -EBUSY;
1049 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1050 }
1051 EXPORT_SYMBOL(bitmap_allocate_region);
1052 
1053 /**
1054  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1055  * @dst:   destination buffer
1056  * @src:   bitmap to copy
1057  * @nbits: number of bits in the bitmap
1058  *
1059  * Require nbits % BITS_PER_LONG == 0.
1060  */
1061 #ifdef __BIG_ENDIAN
1062 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1063 {
1064 	unsigned int i;
1065 
1066 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1067 		if (BITS_PER_LONG == 64)
1068 			dst[i] = cpu_to_le64(src[i]);
1069 		else
1070 			dst[i] = cpu_to_le32(src[i]);
1071 	}
1072 }
1073 EXPORT_SYMBOL(bitmap_copy_le);
1074 #endif
1075