1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/page.h> 22 23 #include "kstrtox.h" 24 25 /** 26 * DOC: bitmap introduction 27 * 28 * bitmaps provide an array of bits, implemented using an an 29 * array of unsigned longs. The number of valid bits in a 30 * given bitmap does _not_ need to be an exact multiple of 31 * BITS_PER_LONG. 32 * 33 * The possible unused bits in the last, partially used word 34 * of a bitmap are 'don't care'. The implementation makes 35 * no particular effort to keep them zero. It ensures that 36 * their value will not affect the results of any operation. 37 * The bitmap operations that return Boolean (bitmap_empty, 38 * for example) or scalar (bitmap_weight, for example) results 39 * carefully filter out these unused bits from impacting their 40 * results. 41 * 42 * The byte ordering of bitmaps is more natural on little 43 * endian architectures. See the big-endian headers 44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 45 * for the best explanations of this ordering. 46 */ 47 48 int __bitmap_equal(const unsigned long *bitmap1, 49 const unsigned long *bitmap2, unsigned int bits) 50 { 51 unsigned int k, lim = bits/BITS_PER_LONG; 52 for (k = 0; k < lim; ++k) 53 if (bitmap1[k] != bitmap2[k]) 54 return 0; 55 56 if (bits % BITS_PER_LONG) 57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 58 return 0; 59 60 return 1; 61 } 62 EXPORT_SYMBOL(__bitmap_equal); 63 64 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 65 { 66 unsigned int k, lim = BITS_TO_LONGS(bits); 67 for (k = 0; k < lim; ++k) 68 dst[k] = ~src[k]; 69 } 70 EXPORT_SYMBOL(__bitmap_complement); 71 72 /** 73 * __bitmap_shift_right - logical right shift of the bits in a bitmap 74 * @dst : destination bitmap 75 * @src : source bitmap 76 * @shift : shift by this many bits 77 * @nbits : bitmap size, in bits 78 * 79 * Shifting right (dividing) means moving bits in the MS -> LS bit 80 * direction. Zeros are fed into the vacated MS positions and the 81 * LS bits shifted off the bottom are lost. 82 */ 83 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 84 unsigned shift, unsigned nbits) 85 { 86 unsigned k, lim = BITS_TO_LONGS(nbits); 87 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 88 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 89 for (k = 0; off + k < lim; ++k) { 90 unsigned long upper, lower; 91 92 /* 93 * If shift is not word aligned, take lower rem bits of 94 * word above and make them the top rem bits of result. 95 */ 96 if (!rem || off + k + 1 >= lim) 97 upper = 0; 98 else { 99 upper = src[off + k + 1]; 100 if (off + k + 1 == lim - 1) 101 upper &= mask; 102 upper <<= (BITS_PER_LONG - rem); 103 } 104 lower = src[off + k]; 105 if (off + k == lim - 1) 106 lower &= mask; 107 lower >>= rem; 108 dst[k] = lower | upper; 109 } 110 if (off) 111 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 112 } 113 EXPORT_SYMBOL(__bitmap_shift_right); 114 115 116 /** 117 * __bitmap_shift_left - logical left shift of the bits in a bitmap 118 * @dst : destination bitmap 119 * @src : source bitmap 120 * @shift : shift by this many bits 121 * @nbits : bitmap size, in bits 122 * 123 * Shifting left (multiplying) means moving bits in the LS -> MS 124 * direction. Zeros are fed into the vacated LS bit positions 125 * and those MS bits shifted off the top are lost. 126 */ 127 128 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 129 unsigned int shift, unsigned int nbits) 130 { 131 int k; 132 unsigned int lim = BITS_TO_LONGS(nbits); 133 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 134 for (k = lim - off - 1; k >= 0; --k) { 135 unsigned long upper, lower; 136 137 /* 138 * If shift is not word aligned, take upper rem bits of 139 * word below and make them the bottom rem bits of result. 140 */ 141 if (rem && k > 0) 142 lower = src[k - 1] >> (BITS_PER_LONG - rem); 143 else 144 lower = 0; 145 upper = src[k] << rem; 146 dst[k + off] = lower | upper; 147 } 148 if (off) 149 memset(dst, 0, off*sizeof(unsigned long)); 150 } 151 EXPORT_SYMBOL(__bitmap_shift_left); 152 153 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 154 const unsigned long *bitmap2, unsigned int bits) 155 { 156 unsigned int k; 157 unsigned int lim = bits/BITS_PER_LONG; 158 unsigned long result = 0; 159 160 for (k = 0; k < lim; k++) 161 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 162 if (bits % BITS_PER_LONG) 163 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 164 BITMAP_LAST_WORD_MASK(bits)); 165 return result != 0; 166 } 167 EXPORT_SYMBOL(__bitmap_and); 168 169 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 170 const unsigned long *bitmap2, unsigned int bits) 171 { 172 unsigned int k; 173 unsigned int nr = BITS_TO_LONGS(bits); 174 175 for (k = 0; k < nr; k++) 176 dst[k] = bitmap1[k] | bitmap2[k]; 177 } 178 EXPORT_SYMBOL(__bitmap_or); 179 180 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 181 const unsigned long *bitmap2, unsigned int bits) 182 { 183 unsigned int k; 184 unsigned int nr = BITS_TO_LONGS(bits); 185 186 for (k = 0; k < nr; k++) 187 dst[k] = bitmap1[k] ^ bitmap2[k]; 188 } 189 EXPORT_SYMBOL(__bitmap_xor); 190 191 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 192 const unsigned long *bitmap2, unsigned int bits) 193 { 194 unsigned int k; 195 unsigned int lim = bits/BITS_PER_LONG; 196 unsigned long result = 0; 197 198 for (k = 0; k < lim; k++) 199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 200 if (bits % BITS_PER_LONG) 201 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 202 BITMAP_LAST_WORD_MASK(bits)); 203 return result != 0; 204 } 205 EXPORT_SYMBOL(__bitmap_andnot); 206 207 int __bitmap_intersects(const unsigned long *bitmap1, 208 const unsigned long *bitmap2, unsigned int bits) 209 { 210 unsigned int k, lim = bits/BITS_PER_LONG; 211 for (k = 0; k < lim; ++k) 212 if (bitmap1[k] & bitmap2[k]) 213 return 1; 214 215 if (bits % BITS_PER_LONG) 216 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 217 return 1; 218 return 0; 219 } 220 EXPORT_SYMBOL(__bitmap_intersects); 221 222 int __bitmap_subset(const unsigned long *bitmap1, 223 const unsigned long *bitmap2, unsigned int bits) 224 { 225 unsigned int k, lim = bits/BITS_PER_LONG; 226 for (k = 0; k < lim; ++k) 227 if (bitmap1[k] & ~bitmap2[k]) 228 return 0; 229 230 if (bits % BITS_PER_LONG) 231 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 232 return 0; 233 return 1; 234 } 235 EXPORT_SYMBOL(__bitmap_subset); 236 237 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 238 { 239 unsigned int k, lim = bits/BITS_PER_LONG; 240 int w = 0; 241 242 for (k = 0; k < lim; k++) 243 w += hweight_long(bitmap[k]); 244 245 if (bits % BITS_PER_LONG) 246 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 247 248 return w; 249 } 250 EXPORT_SYMBOL(__bitmap_weight); 251 252 void __bitmap_set(unsigned long *map, unsigned int start, int len) 253 { 254 unsigned long *p = map + BIT_WORD(start); 255 const unsigned int size = start + len; 256 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 257 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 258 259 while (len - bits_to_set >= 0) { 260 *p |= mask_to_set; 261 len -= bits_to_set; 262 bits_to_set = BITS_PER_LONG; 263 mask_to_set = ~0UL; 264 p++; 265 } 266 if (len) { 267 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 268 *p |= mask_to_set; 269 } 270 } 271 EXPORT_SYMBOL(__bitmap_set); 272 273 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 274 { 275 unsigned long *p = map + BIT_WORD(start); 276 const unsigned int size = start + len; 277 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 278 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 279 280 while (len - bits_to_clear >= 0) { 281 *p &= ~mask_to_clear; 282 len -= bits_to_clear; 283 bits_to_clear = BITS_PER_LONG; 284 mask_to_clear = ~0UL; 285 p++; 286 } 287 if (len) { 288 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 289 *p &= ~mask_to_clear; 290 } 291 } 292 EXPORT_SYMBOL(__bitmap_clear); 293 294 /** 295 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 296 * @map: The address to base the search on 297 * @size: The bitmap size in bits 298 * @start: The bitnumber to start searching at 299 * @nr: The number of zeroed bits we're looking for 300 * @align_mask: Alignment mask for zero area 301 * @align_offset: Alignment offset for zero area. 302 * 303 * The @align_mask should be one less than a power of 2; the effect is that 304 * the bit offset of all zero areas this function finds plus @align_offset 305 * is multiple of that power of 2. 306 */ 307 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 308 unsigned long size, 309 unsigned long start, 310 unsigned int nr, 311 unsigned long align_mask, 312 unsigned long align_offset) 313 { 314 unsigned long index, end, i; 315 again: 316 index = find_next_zero_bit(map, size, start); 317 318 /* Align allocation */ 319 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 320 321 end = index + nr; 322 if (end > size) 323 return end; 324 i = find_next_bit(map, end, index); 325 if (i < end) { 326 start = i + 1; 327 goto again; 328 } 329 return index; 330 } 331 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 332 333 /* 334 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 335 * second version by Paul Jackson, third by Joe Korty. 336 */ 337 338 #define CHUNKSZ 32 339 #define nbits_to_hold_value(val) fls(val) 340 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 341 342 /** 343 * __bitmap_parse - convert an ASCII hex string into a bitmap. 344 * @buf: pointer to buffer containing string. 345 * @buflen: buffer size in bytes. If string is smaller than this 346 * then it must be terminated with a \0. 347 * @is_user: location of buffer, 0 indicates kernel space 348 * @maskp: pointer to bitmap array that will contain result. 349 * @nmaskbits: size of bitmap, in bits. 350 * 351 * Commas group hex digits into chunks. Each chunk defines exactly 32 352 * bits of the resultant bitmask. No chunk may specify a value larger 353 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 354 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 355 * characters and for grouping errors such as "1,,5", ",44", "," and "". 356 * Leading and trailing whitespace accepted, but not embedded whitespace. 357 */ 358 int __bitmap_parse(const char *buf, unsigned int buflen, 359 int is_user, unsigned long *maskp, 360 int nmaskbits) 361 { 362 int c, old_c, totaldigits, ndigits, nchunks, nbits; 363 u32 chunk; 364 const char __user __force *ubuf = (const char __user __force *)buf; 365 366 bitmap_zero(maskp, nmaskbits); 367 368 nchunks = nbits = totaldigits = c = 0; 369 do { 370 chunk = 0; 371 ndigits = totaldigits; 372 373 /* Get the next chunk of the bitmap */ 374 while (buflen) { 375 old_c = c; 376 if (is_user) { 377 if (__get_user(c, ubuf++)) 378 return -EFAULT; 379 } 380 else 381 c = *buf++; 382 buflen--; 383 if (isspace(c)) 384 continue; 385 386 /* 387 * If the last character was a space and the current 388 * character isn't '\0', we've got embedded whitespace. 389 * This is a no-no, so throw an error. 390 */ 391 if (totaldigits && c && isspace(old_c)) 392 return -EINVAL; 393 394 /* A '\0' or a ',' signal the end of the chunk */ 395 if (c == '\0' || c == ',') 396 break; 397 398 if (!isxdigit(c)) 399 return -EINVAL; 400 401 /* 402 * Make sure there are at least 4 free bits in 'chunk'. 403 * If not, this hexdigit will overflow 'chunk', so 404 * throw an error. 405 */ 406 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 407 return -EOVERFLOW; 408 409 chunk = (chunk << 4) | hex_to_bin(c); 410 totaldigits++; 411 } 412 if (ndigits == totaldigits) 413 return -EINVAL; 414 if (nchunks == 0 && chunk == 0) 415 continue; 416 417 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 418 *maskp |= chunk; 419 nchunks++; 420 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 421 if (nbits > nmaskbits) 422 return -EOVERFLOW; 423 } while (buflen && c == ','); 424 425 return 0; 426 } 427 EXPORT_SYMBOL(__bitmap_parse); 428 429 /** 430 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 431 * 432 * @ubuf: pointer to user buffer containing string. 433 * @ulen: buffer size in bytes. If string is smaller than this 434 * then it must be terminated with a \0. 435 * @maskp: pointer to bitmap array that will contain result. 436 * @nmaskbits: size of bitmap, in bits. 437 * 438 * Wrapper for __bitmap_parse(), providing it with user buffer. 439 * 440 * We cannot have this as an inline function in bitmap.h because it needs 441 * linux/uaccess.h to get the access_ok() declaration and this causes 442 * cyclic dependencies. 443 */ 444 int bitmap_parse_user(const char __user *ubuf, 445 unsigned int ulen, unsigned long *maskp, 446 int nmaskbits) 447 { 448 if (!access_ok(ubuf, ulen)) 449 return -EFAULT; 450 return __bitmap_parse((const char __force *)ubuf, 451 ulen, 1, maskp, nmaskbits); 452 453 } 454 EXPORT_SYMBOL(bitmap_parse_user); 455 456 /** 457 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 458 * @list: indicates whether the bitmap must be list 459 * @buf: page aligned buffer into which string is placed 460 * @maskp: pointer to bitmap to convert 461 * @nmaskbits: size of bitmap, in bits 462 * 463 * Output format is a comma-separated list of decimal numbers and 464 * ranges if list is specified or hex digits grouped into comma-separated 465 * sets of 8 digits/set. Returns the number of characters written to buf. 466 * 467 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 468 * area and that sufficient storage remains at @buf to accommodate the 469 * bitmap_print_to_pagebuf() output. Returns the number of characters 470 * actually printed to @buf, excluding terminating '\0'. 471 */ 472 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 473 int nmaskbits) 474 { 475 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 476 477 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 478 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 479 } 480 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 481 482 /* 483 * Region 9-38:4/10 describes the following bitmap structure: 484 * 0 9 12 18 38 485 * .........****......****......****...... 486 * ^ ^ ^ ^ 487 * start off group_len end 488 */ 489 struct region { 490 unsigned int start; 491 unsigned int off; 492 unsigned int group_len; 493 unsigned int end; 494 }; 495 496 static int bitmap_set_region(const struct region *r, 497 unsigned long *bitmap, int nbits) 498 { 499 unsigned int start; 500 501 if (r->end >= nbits) 502 return -ERANGE; 503 504 for (start = r->start; start <= r->end; start += r->group_len) 505 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 506 507 return 0; 508 } 509 510 static int bitmap_check_region(const struct region *r) 511 { 512 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 513 return -EINVAL; 514 515 return 0; 516 } 517 518 static const char *bitmap_getnum(const char *str, unsigned int *num) 519 { 520 unsigned long long n; 521 unsigned int len; 522 523 len = _parse_integer(str, 10, &n); 524 if (!len) 525 return ERR_PTR(-EINVAL); 526 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 527 return ERR_PTR(-EOVERFLOW); 528 529 *num = n; 530 return str + len; 531 } 532 533 static inline bool end_of_str(char c) 534 { 535 return c == '\0' || c == '\n'; 536 } 537 538 static inline bool __end_of_region(char c) 539 { 540 return isspace(c) || c == ','; 541 } 542 543 static inline bool end_of_region(char c) 544 { 545 return __end_of_region(c) || end_of_str(c); 546 } 547 548 /* 549 * The format allows commas and whitespases at the beginning 550 * of the region. 551 */ 552 static const char *bitmap_find_region(const char *str) 553 { 554 while (__end_of_region(*str)) 555 str++; 556 557 return end_of_str(*str) ? NULL : str; 558 } 559 560 static const char *bitmap_parse_region(const char *str, struct region *r) 561 { 562 str = bitmap_getnum(str, &r->start); 563 if (IS_ERR(str)) 564 return str; 565 566 if (end_of_region(*str)) 567 goto no_end; 568 569 if (*str != '-') 570 return ERR_PTR(-EINVAL); 571 572 str = bitmap_getnum(str + 1, &r->end); 573 if (IS_ERR(str)) 574 return str; 575 576 if (end_of_region(*str)) 577 goto no_pattern; 578 579 if (*str != ':') 580 return ERR_PTR(-EINVAL); 581 582 str = bitmap_getnum(str + 1, &r->off); 583 if (IS_ERR(str)) 584 return str; 585 586 if (*str != '/') 587 return ERR_PTR(-EINVAL); 588 589 return bitmap_getnum(str + 1, &r->group_len); 590 591 no_end: 592 r->end = r->start; 593 no_pattern: 594 r->off = r->end + 1; 595 r->group_len = r->end + 1; 596 597 return end_of_str(*str) ? NULL : str; 598 } 599 600 /** 601 * bitmap_parselist - convert list format ASCII string to bitmap 602 * @buf: read user string from this buffer; must be terminated 603 * with a \0 or \n. 604 * @maskp: write resulting mask here 605 * @nmaskbits: number of bits in mask to be written 606 * 607 * Input format is a comma-separated list of decimal numbers and 608 * ranges. Consecutively set bits are shown as two hyphen-separated 609 * decimal numbers, the smallest and largest bit numbers set in 610 * the range. 611 * Optionally each range can be postfixed to denote that only parts of it 612 * should be set. The range will divided to groups of specific size. 613 * From each group will be used only defined amount of bits. 614 * Syntax: range:used_size/group_size 615 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 616 * 617 * Returns: 0 on success, -errno on invalid input strings. Error values: 618 * 619 * - ``-EINVAL``: wrong region format 620 * - ``-EINVAL``: invalid character in string 621 * - ``-ERANGE``: bit number specified too large for mask 622 * - ``-EOVERFLOW``: integer overflow in the input parameters 623 */ 624 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 625 { 626 struct region r; 627 long ret; 628 629 bitmap_zero(maskp, nmaskbits); 630 631 while (buf) { 632 buf = bitmap_find_region(buf); 633 if (buf == NULL) 634 return 0; 635 636 buf = bitmap_parse_region(buf, &r); 637 if (IS_ERR(buf)) 638 return PTR_ERR(buf); 639 640 ret = bitmap_check_region(&r); 641 if (ret) 642 return ret; 643 644 ret = bitmap_set_region(&r, maskp, nmaskbits); 645 if (ret) 646 return ret; 647 } 648 649 return 0; 650 } 651 EXPORT_SYMBOL(bitmap_parselist); 652 653 654 /** 655 * bitmap_parselist_user() 656 * 657 * @ubuf: pointer to user buffer containing string. 658 * @ulen: buffer size in bytes. If string is smaller than this 659 * then it must be terminated with a \0. 660 * @maskp: pointer to bitmap array that will contain result. 661 * @nmaskbits: size of bitmap, in bits. 662 * 663 * Wrapper for bitmap_parselist(), providing it with user buffer. 664 */ 665 int bitmap_parselist_user(const char __user *ubuf, 666 unsigned int ulen, unsigned long *maskp, 667 int nmaskbits) 668 { 669 char *buf; 670 int ret; 671 672 buf = memdup_user_nul(ubuf, ulen); 673 if (IS_ERR(buf)) 674 return PTR_ERR(buf); 675 676 ret = bitmap_parselist(buf, maskp, nmaskbits); 677 678 kfree(buf); 679 return ret; 680 } 681 EXPORT_SYMBOL(bitmap_parselist_user); 682 683 684 #ifdef CONFIG_NUMA 685 /** 686 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 687 * @buf: pointer to a bitmap 688 * @pos: a bit position in @buf (0 <= @pos < @nbits) 689 * @nbits: number of valid bit positions in @buf 690 * 691 * Map the bit at position @pos in @buf (of length @nbits) to the 692 * ordinal of which set bit it is. If it is not set or if @pos 693 * is not a valid bit position, map to -1. 694 * 695 * If for example, just bits 4 through 7 are set in @buf, then @pos 696 * values 4 through 7 will get mapped to 0 through 3, respectively, 697 * and other @pos values will get mapped to -1. When @pos value 7 698 * gets mapped to (returns) @ord value 3 in this example, that means 699 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 700 * 701 * The bit positions 0 through @bits are valid positions in @buf. 702 */ 703 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 704 { 705 if (pos >= nbits || !test_bit(pos, buf)) 706 return -1; 707 708 return __bitmap_weight(buf, pos); 709 } 710 711 /** 712 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 713 * @buf: pointer to bitmap 714 * @ord: ordinal bit position (n-th set bit, n >= 0) 715 * @nbits: number of valid bit positions in @buf 716 * 717 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 718 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 719 * >= weight(buf), returns @nbits. 720 * 721 * If for example, just bits 4 through 7 are set in @buf, then @ord 722 * values 0 through 3 will get mapped to 4 through 7, respectively, 723 * and all other @ord values returns @nbits. When @ord value 3 724 * gets mapped to (returns) @pos value 7 in this example, that means 725 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 726 * 727 * The bit positions 0 through @nbits-1 are valid positions in @buf. 728 */ 729 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 730 { 731 unsigned int pos; 732 733 for (pos = find_first_bit(buf, nbits); 734 pos < nbits && ord; 735 pos = find_next_bit(buf, nbits, pos + 1)) 736 ord--; 737 738 return pos; 739 } 740 741 /** 742 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 743 * @dst: remapped result 744 * @src: subset to be remapped 745 * @old: defines domain of map 746 * @new: defines range of map 747 * @nbits: number of bits in each of these bitmaps 748 * 749 * Let @old and @new define a mapping of bit positions, such that 750 * whatever position is held by the n-th set bit in @old is mapped 751 * to the n-th set bit in @new. In the more general case, allowing 752 * for the possibility that the weight 'w' of @new is less than the 753 * weight of @old, map the position of the n-th set bit in @old to 754 * the position of the m-th set bit in @new, where m == n % w. 755 * 756 * If either of the @old and @new bitmaps are empty, or if @src and 757 * @dst point to the same location, then this routine copies @src 758 * to @dst. 759 * 760 * The positions of unset bits in @old are mapped to themselves 761 * (the identify map). 762 * 763 * Apply the above specified mapping to @src, placing the result in 764 * @dst, clearing any bits previously set in @dst. 765 * 766 * For example, lets say that @old has bits 4 through 7 set, and 767 * @new has bits 12 through 15 set. This defines the mapping of bit 768 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 769 * bit positions unchanged. So if say @src comes into this routine 770 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 771 * 13 and 15 set. 772 */ 773 void bitmap_remap(unsigned long *dst, const unsigned long *src, 774 const unsigned long *old, const unsigned long *new, 775 unsigned int nbits) 776 { 777 unsigned int oldbit, w; 778 779 if (dst == src) /* following doesn't handle inplace remaps */ 780 return; 781 bitmap_zero(dst, nbits); 782 783 w = bitmap_weight(new, nbits); 784 for_each_set_bit(oldbit, src, nbits) { 785 int n = bitmap_pos_to_ord(old, oldbit, nbits); 786 787 if (n < 0 || w == 0) 788 set_bit(oldbit, dst); /* identity map */ 789 else 790 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 791 } 792 } 793 794 /** 795 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 796 * @oldbit: bit position to be mapped 797 * @old: defines domain of map 798 * @new: defines range of map 799 * @bits: number of bits in each of these bitmaps 800 * 801 * Let @old and @new define a mapping of bit positions, such that 802 * whatever position is held by the n-th set bit in @old is mapped 803 * to the n-th set bit in @new. In the more general case, allowing 804 * for the possibility that the weight 'w' of @new is less than the 805 * weight of @old, map the position of the n-th set bit in @old to 806 * the position of the m-th set bit in @new, where m == n % w. 807 * 808 * The positions of unset bits in @old are mapped to themselves 809 * (the identify map). 810 * 811 * Apply the above specified mapping to bit position @oldbit, returning 812 * the new bit position. 813 * 814 * For example, lets say that @old has bits 4 through 7 set, and 815 * @new has bits 12 through 15 set. This defines the mapping of bit 816 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 817 * bit positions unchanged. So if say @oldbit is 5, then this routine 818 * returns 13. 819 */ 820 int bitmap_bitremap(int oldbit, const unsigned long *old, 821 const unsigned long *new, int bits) 822 { 823 int w = bitmap_weight(new, bits); 824 int n = bitmap_pos_to_ord(old, oldbit, bits); 825 if (n < 0 || w == 0) 826 return oldbit; 827 else 828 return bitmap_ord_to_pos(new, n % w, bits); 829 } 830 831 /** 832 * bitmap_onto - translate one bitmap relative to another 833 * @dst: resulting translated bitmap 834 * @orig: original untranslated bitmap 835 * @relmap: bitmap relative to which translated 836 * @bits: number of bits in each of these bitmaps 837 * 838 * Set the n-th bit of @dst iff there exists some m such that the 839 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 840 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 841 * (If you understood the previous sentence the first time your 842 * read it, you're overqualified for your current job.) 843 * 844 * In other words, @orig is mapped onto (surjectively) @dst, 845 * using the map { <n, m> | the n-th bit of @relmap is the 846 * m-th set bit of @relmap }. 847 * 848 * Any set bits in @orig above bit number W, where W is the 849 * weight of (number of set bits in) @relmap are mapped nowhere. 850 * In particular, if for all bits m set in @orig, m >= W, then 851 * @dst will end up empty. In situations where the possibility 852 * of such an empty result is not desired, one way to avoid it is 853 * to use the bitmap_fold() operator, below, to first fold the 854 * @orig bitmap over itself so that all its set bits x are in the 855 * range 0 <= x < W. The bitmap_fold() operator does this by 856 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 857 * 858 * Example [1] for bitmap_onto(): 859 * Let's say @relmap has bits 30-39 set, and @orig has bits 860 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 861 * @dst will have bits 31, 33, 35, 37 and 39 set. 862 * 863 * When bit 0 is set in @orig, it means turn on the bit in 864 * @dst corresponding to whatever is the first bit (if any) 865 * that is turned on in @relmap. Since bit 0 was off in the 866 * above example, we leave off that bit (bit 30) in @dst. 867 * 868 * When bit 1 is set in @orig (as in the above example), it 869 * means turn on the bit in @dst corresponding to whatever 870 * is the second bit that is turned on in @relmap. The second 871 * bit in @relmap that was turned on in the above example was 872 * bit 31, so we turned on bit 31 in @dst. 873 * 874 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 875 * because they were the 4th, 6th, 8th and 10th set bits 876 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 877 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 878 * 879 * When bit 11 is set in @orig, it means turn on the bit in 880 * @dst corresponding to whatever is the twelfth bit that is 881 * turned on in @relmap. In the above example, there were 882 * only ten bits turned on in @relmap (30..39), so that bit 883 * 11 was set in @orig had no affect on @dst. 884 * 885 * Example [2] for bitmap_fold() + bitmap_onto(): 886 * Let's say @relmap has these ten bits set:: 887 * 888 * 40 41 42 43 45 48 53 61 74 95 889 * 890 * (for the curious, that's 40 plus the first ten terms of the 891 * Fibonacci sequence.) 892 * 893 * Further lets say we use the following code, invoking 894 * bitmap_fold() then bitmap_onto, as suggested above to 895 * avoid the possibility of an empty @dst result:: 896 * 897 * unsigned long *tmp; // a temporary bitmap's bits 898 * 899 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 900 * bitmap_onto(dst, tmp, relmap, bits); 901 * 902 * Then this table shows what various values of @dst would be, for 903 * various @orig's. I list the zero-based positions of each set bit. 904 * The tmp column shows the intermediate result, as computed by 905 * using bitmap_fold() to fold the @orig bitmap modulo ten 906 * (the weight of @relmap): 907 * 908 * =============== ============== ================= 909 * @orig tmp @dst 910 * 0 0 40 911 * 1 1 41 912 * 9 9 95 913 * 10 0 40 [#f1]_ 914 * 1 3 5 7 1 3 5 7 41 43 48 61 915 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 916 * 0 9 18 27 0 9 8 7 40 61 74 95 917 * 0 10 20 30 0 40 918 * 0 11 22 33 0 1 2 3 40 41 42 43 919 * 0 12 24 36 0 2 4 6 40 42 45 53 920 * 78 102 211 1 2 8 41 42 74 [#f1]_ 921 * =============== ============== ================= 922 * 923 * .. [#f1] 924 * 925 * For these marked lines, if we hadn't first done bitmap_fold() 926 * into tmp, then the @dst result would have been empty. 927 * 928 * If either of @orig or @relmap is empty (no set bits), then @dst 929 * will be returned empty. 930 * 931 * If (as explained above) the only set bits in @orig are in positions 932 * m where m >= W, (where W is the weight of @relmap) then @dst will 933 * once again be returned empty. 934 * 935 * All bits in @dst not set by the above rule are cleared. 936 */ 937 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 938 const unsigned long *relmap, unsigned int bits) 939 { 940 unsigned int n, m; /* same meaning as in above comment */ 941 942 if (dst == orig) /* following doesn't handle inplace mappings */ 943 return; 944 bitmap_zero(dst, bits); 945 946 /* 947 * The following code is a more efficient, but less 948 * obvious, equivalent to the loop: 949 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 950 * n = bitmap_ord_to_pos(orig, m, bits); 951 * if (test_bit(m, orig)) 952 * set_bit(n, dst); 953 * } 954 */ 955 956 m = 0; 957 for_each_set_bit(n, relmap, bits) { 958 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 959 if (test_bit(m, orig)) 960 set_bit(n, dst); 961 m++; 962 } 963 } 964 965 /** 966 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 967 * @dst: resulting smaller bitmap 968 * @orig: original larger bitmap 969 * @sz: specified size 970 * @nbits: number of bits in each of these bitmaps 971 * 972 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 973 * Clear all other bits in @dst. See further the comment and 974 * Example [2] for bitmap_onto() for why and how to use this. 975 */ 976 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 977 unsigned int sz, unsigned int nbits) 978 { 979 unsigned int oldbit; 980 981 if (dst == orig) /* following doesn't handle inplace mappings */ 982 return; 983 bitmap_zero(dst, nbits); 984 985 for_each_set_bit(oldbit, orig, nbits) 986 set_bit(oldbit % sz, dst); 987 } 988 #endif /* CONFIG_NUMA */ 989 990 /* 991 * Common code for bitmap_*_region() routines. 992 * bitmap: array of unsigned longs corresponding to the bitmap 993 * pos: the beginning of the region 994 * order: region size (log base 2 of number of bits) 995 * reg_op: operation(s) to perform on that region of bitmap 996 * 997 * Can set, verify and/or release a region of bits in a bitmap, 998 * depending on which combination of REG_OP_* flag bits is set. 999 * 1000 * A region of a bitmap is a sequence of bits in the bitmap, of 1001 * some size '1 << order' (a power of two), aligned to that same 1002 * '1 << order' power of two. 1003 * 1004 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1005 * Returns 0 in all other cases and reg_ops. 1006 */ 1007 1008 enum { 1009 REG_OP_ISFREE, /* true if region is all zero bits */ 1010 REG_OP_ALLOC, /* set all bits in region */ 1011 REG_OP_RELEASE, /* clear all bits in region */ 1012 }; 1013 1014 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1015 { 1016 int nbits_reg; /* number of bits in region */ 1017 int index; /* index first long of region in bitmap */ 1018 int offset; /* bit offset region in bitmap[index] */ 1019 int nlongs_reg; /* num longs spanned by region in bitmap */ 1020 int nbitsinlong; /* num bits of region in each spanned long */ 1021 unsigned long mask; /* bitmask for one long of region */ 1022 int i; /* scans bitmap by longs */ 1023 int ret = 0; /* return value */ 1024 1025 /* 1026 * Either nlongs_reg == 1 (for small orders that fit in one long) 1027 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1028 */ 1029 nbits_reg = 1 << order; 1030 index = pos / BITS_PER_LONG; 1031 offset = pos - (index * BITS_PER_LONG); 1032 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1033 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1034 1035 /* 1036 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1037 * overflows if nbitsinlong == BITS_PER_LONG. 1038 */ 1039 mask = (1UL << (nbitsinlong - 1)); 1040 mask += mask - 1; 1041 mask <<= offset; 1042 1043 switch (reg_op) { 1044 case REG_OP_ISFREE: 1045 for (i = 0; i < nlongs_reg; i++) { 1046 if (bitmap[index + i] & mask) 1047 goto done; 1048 } 1049 ret = 1; /* all bits in region free (zero) */ 1050 break; 1051 1052 case REG_OP_ALLOC: 1053 for (i = 0; i < nlongs_reg; i++) 1054 bitmap[index + i] |= mask; 1055 break; 1056 1057 case REG_OP_RELEASE: 1058 for (i = 0; i < nlongs_reg; i++) 1059 bitmap[index + i] &= ~mask; 1060 break; 1061 } 1062 done: 1063 return ret; 1064 } 1065 1066 /** 1067 * bitmap_find_free_region - find a contiguous aligned mem region 1068 * @bitmap: array of unsigned longs corresponding to the bitmap 1069 * @bits: number of bits in the bitmap 1070 * @order: region size (log base 2 of number of bits) to find 1071 * 1072 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1073 * allocate them (set them to one). Only consider regions of length 1074 * a power (@order) of two, aligned to that power of two, which 1075 * makes the search algorithm much faster. 1076 * 1077 * Return the bit offset in bitmap of the allocated region, 1078 * or -errno on failure. 1079 */ 1080 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1081 { 1082 unsigned int pos, end; /* scans bitmap by regions of size order */ 1083 1084 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1085 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1086 continue; 1087 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1088 return pos; 1089 } 1090 return -ENOMEM; 1091 } 1092 EXPORT_SYMBOL(bitmap_find_free_region); 1093 1094 /** 1095 * bitmap_release_region - release allocated bitmap region 1096 * @bitmap: array of unsigned longs corresponding to the bitmap 1097 * @pos: beginning of bit region to release 1098 * @order: region size (log base 2 of number of bits) to release 1099 * 1100 * This is the complement to __bitmap_find_free_region() and releases 1101 * the found region (by clearing it in the bitmap). 1102 * 1103 * No return value. 1104 */ 1105 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1106 { 1107 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1108 } 1109 EXPORT_SYMBOL(bitmap_release_region); 1110 1111 /** 1112 * bitmap_allocate_region - allocate bitmap region 1113 * @bitmap: array of unsigned longs corresponding to the bitmap 1114 * @pos: beginning of bit region to allocate 1115 * @order: region size (log base 2 of number of bits) to allocate 1116 * 1117 * Allocate (set bits in) a specified region of a bitmap. 1118 * 1119 * Return 0 on success, or %-EBUSY if specified region wasn't 1120 * free (not all bits were zero). 1121 */ 1122 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1123 { 1124 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1125 return -EBUSY; 1126 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1127 } 1128 EXPORT_SYMBOL(bitmap_allocate_region); 1129 1130 /** 1131 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1132 * @dst: destination buffer 1133 * @src: bitmap to copy 1134 * @nbits: number of bits in the bitmap 1135 * 1136 * Require nbits % BITS_PER_LONG == 0. 1137 */ 1138 #ifdef __BIG_ENDIAN 1139 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1140 { 1141 unsigned int i; 1142 1143 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1144 if (BITS_PER_LONG == 64) 1145 dst[i] = cpu_to_le64(src[i]); 1146 else 1147 dst[i] = cpu_to_le32(src[i]); 1148 } 1149 } 1150 EXPORT_SYMBOL(bitmap_copy_le); 1151 #endif 1152 1153 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1154 { 1155 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1156 flags); 1157 } 1158 EXPORT_SYMBOL(bitmap_alloc); 1159 1160 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1161 { 1162 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1163 } 1164 EXPORT_SYMBOL(bitmap_zalloc); 1165 1166 void bitmap_free(const unsigned long *bitmap) 1167 { 1168 kfree(bitmap); 1169 } 1170 EXPORT_SYMBOL(bitmap_free); 1171 1172 #if BITS_PER_LONG == 64 1173 /** 1174 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1175 * @bitmap: array of unsigned longs, the destination bitmap 1176 * @buf: array of u32 (in host byte order), the source bitmap 1177 * @nbits: number of bits in @bitmap 1178 */ 1179 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1180 { 1181 unsigned int i, halfwords; 1182 1183 halfwords = DIV_ROUND_UP(nbits, 32); 1184 for (i = 0; i < halfwords; i++) { 1185 bitmap[i/2] = (unsigned long) buf[i]; 1186 if (++i < halfwords) 1187 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1188 } 1189 1190 /* Clear tail bits in last word beyond nbits. */ 1191 if (nbits % BITS_PER_LONG) 1192 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1193 } 1194 EXPORT_SYMBOL(bitmap_from_arr32); 1195 1196 /** 1197 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1198 * @buf: array of u32 (in host byte order), the dest bitmap 1199 * @bitmap: array of unsigned longs, the source bitmap 1200 * @nbits: number of bits in @bitmap 1201 */ 1202 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1203 { 1204 unsigned int i, halfwords; 1205 1206 halfwords = DIV_ROUND_UP(nbits, 32); 1207 for (i = 0; i < halfwords; i++) { 1208 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1209 if (++i < halfwords) 1210 buf[i] = (u32) (bitmap[i/2] >> 32); 1211 } 1212 1213 /* Clear tail bits in last element of array beyond nbits. */ 1214 if (nbits % BITS_PER_LONG) 1215 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1216 } 1217 EXPORT_SYMBOL(bitmap_to_arr32); 1218 1219 #endif 1220