1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 #include <linux/export.h> 7 #include <linux/thread_info.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/bitmap.h> 11 #include <linux/bitops.h> 12 #include <linux/bug.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/page.h> 20 21 #include "kstrtox.h" 22 23 /** 24 * DOC: bitmap introduction 25 * 26 * bitmaps provide an array of bits, implemented using an an 27 * array of unsigned longs. The number of valid bits in a 28 * given bitmap does _not_ need to be an exact multiple of 29 * BITS_PER_LONG. 30 * 31 * The possible unused bits in the last, partially used word 32 * of a bitmap are 'don't care'. The implementation makes 33 * no particular effort to keep them zero. It ensures that 34 * their value will not affect the results of any operation. 35 * The bitmap operations that return Boolean (bitmap_empty, 36 * for example) or scalar (bitmap_weight, for example) results 37 * carefully filter out these unused bits from impacting their 38 * results. 39 * 40 * The byte ordering of bitmaps is more natural on little 41 * endian architectures. See the big-endian headers 42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 43 * for the best explanations of this ordering. 44 */ 45 46 int __bitmap_equal(const unsigned long *bitmap1, 47 const unsigned long *bitmap2, unsigned int bits) 48 { 49 unsigned int k, lim = bits/BITS_PER_LONG; 50 for (k = 0; k < lim; ++k) 51 if (bitmap1[k] != bitmap2[k]) 52 return 0; 53 54 if (bits % BITS_PER_LONG) 55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 56 return 0; 57 58 return 1; 59 } 60 EXPORT_SYMBOL(__bitmap_equal); 61 62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 63 { 64 unsigned int k, lim = BITS_TO_LONGS(bits); 65 for (k = 0; k < lim; ++k) 66 dst[k] = ~src[k]; 67 } 68 EXPORT_SYMBOL(__bitmap_complement); 69 70 /** 71 * __bitmap_shift_right - logical right shift of the bits in a bitmap 72 * @dst : destination bitmap 73 * @src : source bitmap 74 * @shift : shift by this many bits 75 * @nbits : bitmap size, in bits 76 * 77 * Shifting right (dividing) means moving bits in the MS -> LS bit 78 * direction. Zeros are fed into the vacated MS positions and the 79 * LS bits shifted off the bottom are lost. 80 */ 81 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 82 unsigned shift, unsigned nbits) 83 { 84 unsigned k, lim = BITS_TO_LONGS(nbits); 85 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 86 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 87 for (k = 0; off + k < lim; ++k) { 88 unsigned long upper, lower; 89 90 /* 91 * If shift is not word aligned, take lower rem bits of 92 * word above and make them the top rem bits of result. 93 */ 94 if (!rem || off + k + 1 >= lim) 95 upper = 0; 96 else { 97 upper = src[off + k + 1]; 98 if (off + k + 1 == lim - 1) 99 upper &= mask; 100 upper <<= (BITS_PER_LONG - rem); 101 } 102 lower = src[off + k]; 103 if (off + k == lim - 1) 104 lower &= mask; 105 lower >>= rem; 106 dst[k] = lower | upper; 107 } 108 if (off) 109 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 110 } 111 EXPORT_SYMBOL(__bitmap_shift_right); 112 113 114 /** 115 * __bitmap_shift_left - logical left shift of the bits in a bitmap 116 * @dst : destination bitmap 117 * @src : source bitmap 118 * @shift : shift by this many bits 119 * @nbits : bitmap size, in bits 120 * 121 * Shifting left (multiplying) means moving bits in the LS -> MS 122 * direction. Zeros are fed into the vacated LS bit positions 123 * and those MS bits shifted off the top are lost. 124 */ 125 126 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 127 unsigned int shift, unsigned int nbits) 128 { 129 int k; 130 unsigned int lim = BITS_TO_LONGS(nbits); 131 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 132 for (k = lim - off - 1; k >= 0; --k) { 133 unsigned long upper, lower; 134 135 /* 136 * If shift is not word aligned, take upper rem bits of 137 * word below and make them the bottom rem bits of result. 138 */ 139 if (rem && k > 0) 140 lower = src[k - 1] >> (BITS_PER_LONG - rem); 141 else 142 lower = 0; 143 upper = src[k] << rem; 144 dst[k + off] = lower | upper; 145 } 146 if (off) 147 memset(dst, 0, off*sizeof(unsigned long)); 148 } 149 EXPORT_SYMBOL(__bitmap_shift_left); 150 151 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 152 const unsigned long *bitmap2, unsigned int bits) 153 { 154 unsigned int k; 155 unsigned int lim = bits/BITS_PER_LONG; 156 unsigned long result = 0; 157 158 for (k = 0; k < lim; k++) 159 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 160 if (bits % BITS_PER_LONG) 161 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 162 BITMAP_LAST_WORD_MASK(bits)); 163 return result != 0; 164 } 165 EXPORT_SYMBOL(__bitmap_and); 166 167 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 168 const unsigned long *bitmap2, unsigned int bits) 169 { 170 unsigned int k; 171 unsigned int nr = BITS_TO_LONGS(bits); 172 173 for (k = 0; k < nr; k++) 174 dst[k] = bitmap1[k] | bitmap2[k]; 175 } 176 EXPORT_SYMBOL(__bitmap_or); 177 178 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 179 const unsigned long *bitmap2, unsigned int bits) 180 { 181 unsigned int k; 182 unsigned int nr = BITS_TO_LONGS(bits); 183 184 for (k = 0; k < nr; k++) 185 dst[k] = bitmap1[k] ^ bitmap2[k]; 186 } 187 EXPORT_SYMBOL(__bitmap_xor); 188 189 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 190 const unsigned long *bitmap2, unsigned int bits) 191 { 192 unsigned int k; 193 unsigned int lim = bits/BITS_PER_LONG; 194 unsigned long result = 0; 195 196 for (k = 0; k < lim; k++) 197 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 198 if (bits % BITS_PER_LONG) 199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 200 BITMAP_LAST_WORD_MASK(bits)); 201 return result != 0; 202 } 203 EXPORT_SYMBOL(__bitmap_andnot); 204 205 int __bitmap_intersects(const unsigned long *bitmap1, 206 const unsigned long *bitmap2, unsigned int bits) 207 { 208 unsigned int k, lim = bits/BITS_PER_LONG; 209 for (k = 0; k < lim; ++k) 210 if (bitmap1[k] & bitmap2[k]) 211 return 1; 212 213 if (bits % BITS_PER_LONG) 214 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 215 return 1; 216 return 0; 217 } 218 EXPORT_SYMBOL(__bitmap_intersects); 219 220 int __bitmap_subset(const unsigned long *bitmap1, 221 const unsigned long *bitmap2, unsigned int bits) 222 { 223 unsigned int k, lim = bits/BITS_PER_LONG; 224 for (k = 0; k < lim; ++k) 225 if (bitmap1[k] & ~bitmap2[k]) 226 return 0; 227 228 if (bits % BITS_PER_LONG) 229 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 230 return 0; 231 return 1; 232 } 233 EXPORT_SYMBOL(__bitmap_subset); 234 235 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 236 { 237 unsigned int k, lim = bits/BITS_PER_LONG; 238 int w = 0; 239 240 for (k = 0; k < lim; k++) 241 w += hweight_long(bitmap[k]); 242 243 if (bits % BITS_PER_LONG) 244 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 245 246 return w; 247 } 248 EXPORT_SYMBOL(__bitmap_weight); 249 250 void __bitmap_set(unsigned long *map, unsigned int start, int len) 251 { 252 unsigned long *p = map + BIT_WORD(start); 253 const unsigned int size = start + len; 254 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 255 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 256 257 while (len - bits_to_set >= 0) { 258 *p |= mask_to_set; 259 len -= bits_to_set; 260 bits_to_set = BITS_PER_LONG; 261 mask_to_set = ~0UL; 262 p++; 263 } 264 if (len) { 265 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 266 *p |= mask_to_set; 267 } 268 } 269 EXPORT_SYMBOL(__bitmap_set); 270 271 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 272 { 273 unsigned long *p = map + BIT_WORD(start); 274 const unsigned int size = start + len; 275 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 276 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 277 278 while (len - bits_to_clear >= 0) { 279 *p &= ~mask_to_clear; 280 len -= bits_to_clear; 281 bits_to_clear = BITS_PER_LONG; 282 mask_to_clear = ~0UL; 283 p++; 284 } 285 if (len) { 286 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 287 *p &= ~mask_to_clear; 288 } 289 } 290 EXPORT_SYMBOL(__bitmap_clear); 291 292 /** 293 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 294 * @map: The address to base the search on 295 * @size: The bitmap size in bits 296 * @start: The bitnumber to start searching at 297 * @nr: The number of zeroed bits we're looking for 298 * @align_mask: Alignment mask for zero area 299 * @align_offset: Alignment offset for zero area. 300 * 301 * The @align_mask should be one less than a power of 2; the effect is that 302 * the bit offset of all zero areas this function finds plus @align_offset 303 * is multiple of that power of 2. 304 */ 305 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 306 unsigned long size, 307 unsigned long start, 308 unsigned int nr, 309 unsigned long align_mask, 310 unsigned long align_offset) 311 { 312 unsigned long index, end, i; 313 again: 314 index = find_next_zero_bit(map, size, start); 315 316 /* Align allocation */ 317 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 318 319 end = index + nr; 320 if (end > size) 321 return end; 322 i = find_next_bit(map, end, index); 323 if (i < end) { 324 start = i + 1; 325 goto again; 326 } 327 return index; 328 } 329 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 330 331 /* 332 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 333 * second version by Paul Jackson, third by Joe Korty. 334 */ 335 336 #define CHUNKSZ 32 337 #define nbits_to_hold_value(val) fls(val) 338 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 339 340 /** 341 * __bitmap_parse - convert an ASCII hex string into a bitmap. 342 * @buf: pointer to buffer containing string. 343 * @buflen: buffer size in bytes. If string is smaller than this 344 * then it must be terminated with a \0. 345 * @is_user: location of buffer, 0 indicates kernel space 346 * @maskp: pointer to bitmap array that will contain result. 347 * @nmaskbits: size of bitmap, in bits. 348 * 349 * Commas group hex digits into chunks. Each chunk defines exactly 32 350 * bits of the resultant bitmask. No chunk may specify a value larger 351 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 352 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 353 * characters and for grouping errors such as "1,,5", ",44", "," and "". 354 * Leading and trailing whitespace accepted, but not embedded whitespace. 355 */ 356 int __bitmap_parse(const char *buf, unsigned int buflen, 357 int is_user, unsigned long *maskp, 358 int nmaskbits) 359 { 360 int c, old_c, totaldigits, ndigits, nchunks, nbits; 361 u32 chunk; 362 const char __user __force *ubuf = (const char __user __force *)buf; 363 364 bitmap_zero(maskp, nmaskbits); 365 366 nchunks = nbits = totaldigits = c = 0; 367 do { 368 chunk = 0; 369 ndigits = totaldigits; 370 371 /* Get the next chunk of the bitmap */ 372 while (buflen) { 373 old_c = c; 374 if (is_user) { 375 if (__get_user(c, ubuf++)) 376 return -EFAULT; 377 } 378 else 379 c = *buf++; 380 buflen--; 381 if (isspace(c)) 382 continue; 383 384 /* 385 * If the last character was a space and the current 386 * character isn't '\0', we've got embedded whitespace. 387 * This is a no-no, so throw an error. 388 */ 389 if (totaldigits && c && isspace(old_c)) 390 return -EINVAL; 391 392 /* A '\0' or a ',' signal the end of the chunk */ 393 if (c == '\0' || c == ',') 394 break; 395 396 if (!isxdigit(c)) 397 return -EINVAL; 398 399 /* 400 * Make sure there are at least 4 free bits in 'chunk'. 401 * If not, this hexdigit will overflow 'chunk', so 402 * throw an error. 403 */ 404 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 405 return -EOVERFLOW; 406 407 chunk = (chunk << 4) | hex_to_bin(c); 408 totaldigits++; 409 } 410 if (ndigits == totaldigits) 411 return -EINVAL; 412 if (nchunks == 0 && chunk == 0) 413 continue; 414 415 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 416 *maskp |= chunk; 417 nchunks++; 418 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 419 if (nbits > nmaskbits) 420 return -EOVERFLOW; 421 } while (buflen && c == ','); 422 423 return 0; 424 } 425 EXPORT_SYMBOL(__bitmap_parse); 426 427 /** 428 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 429 * 430 * @ubuf: pointer to user buffer containing string. 431 * @ulen: buffer size in bytes. If string is smaller than this 432 * then it must be terminated with a \0. 433 * @maskp: pointer to bitmap array that will contain result. 434 * @nmaskbits: size of bitmap, in bits. 435 * 436 * Wrapper for __bitmap_parse(), providing it with user buffer. 437 * 438 * We cannot have this as an inline function in bitmap.h because it needs 439 * linux/uaccess.h to get the access_ok() declaration and this causes 440 * cyclic dependencies. 441 */ 442 int bitmap_parse_user(const char __user *ubuf, 443 unsigned int ulen, unsigned long *maskp, 444 int nmaskbits) 445 { 446 if (!access_ok(ubuf, ulen)) 447 return -EFAULT; 448 return __bitmap_parse((const char __force *)ubuf, 449 ulen, 1, maskp, nmaskbits); 450 451 } 452 EXPORT_SYMBOL(bitmap_parse_user); 453 454 /** 455 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 456 * @list: indicates whether the bitmap must be list 457 * @buf: page aligned buffer into which string is placed 458 * @maskp: pointer to bitmap to convert 459 * @nmaskbits: size of bitmap, in bits 460 * 461 * Output format is a comma-separated list of decimal numbers and 462 * ranges if list is specified or hex digits grouped into comma-separated 463 * sets of 8 digits/set. Returns the number of characters written to buf. 464 * 465 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 466 * area and that sufficient storage remains at @buf to accommodate the 467 * bitmap_print_to_pagebuf() output. Returns the number of characters 468 * actually printed to @buf, excluding terminating '\0'. 469 */ 470 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 471 int nmaskbits) 472 { 473 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 474 475 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 476 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 477 } 478 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 479 480 /* 481 * Region 9-38:4/10 describes the following bitmap structure: 482 * 0 9 12 18 38 483 * .........****......****......****...... 484 * ^ ^ ^ ^ 485 * start off group_len end 486 */ 487 struct region { 488 unsigned int start; 489 unsigned int off; 490 unsigned int group_len; 491 unsigned int end; 492 }; 493 494 static int bitmap_set_region(const struct region *r, 495 unsigned long *bitmap, int nbits) 496 { 497 unsigned int start; 498 499 if (r->end >= nbits) 500 return -ERANGE; 501 502 for (start = r->start; start <= r->end; start += r->group_len) 503 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 504 505 return 0; 506 } 507 508 static int bitmap_check_region(const struct region *r) 509 { 510 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 511 return -EINVAL; 512 513 return 0; 514 } 515 516 static const char *bitmap_getnum(const char *str, unsigned int *num) 517 { 518 unsigned long long n; 519 unsigned int len; 520 521 len = _parse_integer(str, 10, &n); 522 if (!len) 523 return ERR_PTR(-EINVAL); 524 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 525 return ERR_PTR(-EOVERFLOW); 526 527 *num = n; 528 return str + len; 529 } 530 531 static inline bool end_of_str(char c) 532 { 533 return c == '\0' || c == '\n'; 534 } 535 536 static inline bool __end_of_region(char c) 537 { 538 return isspace(c) || c == ','; 539 } 540 541 static inline bool end_of_region(char c) 542 { 543 return __end_of_region(c) || end_of_str(c); 544 } 545 546 /* 547 * The format allows commas and whitespases at the beginning 548 * of the region. 549 */ 550 static const char *bitmap_find_region(const char *str) 551 { 552 while (__end_of_region(*str)) 553 str++; 554 555 return end_of_str(*str) ? NULL : str; 556 } 557 558 static const char *bitmap_parse_region(const char *str, struct region *r) 559 { 560 str = bitmap_getnum(str, &r->start); 561 if (IS_ERR(str)) 562 return str; 563 564 if (end_of_region(*str)) 565 goto no_end; 566 567 if (*str != '-') 568 return ERR_PTR(-EINVAL); 569 570 str = bitmap_getnum(str + 1, &r->end); 571 if (IS_ERR(str)) 572 return str; 573 574 if (end_of_region(*str)) 575 goto no_pattern; 576 577 if (*str != ':') 578 return ERR_PTR(-EINVAL); 579 580 str = bitmap_getnum(str + 1, &r->off); 581 if (IS_ERR(str)) 582 return str; 583 584 if (*str != '/') 585 return ERR_PTR(-EINVAL); 586 587 return bitmap_getnum(str + 1, &r->group_len); 588 589 no_end: 590 r->end = r->start; 591 no_pattern: 592 r->off = r->end + 1; 593 r->group_len = r->end + 1; 594 595 return end_of_str(*str) ? NULL : str; 596 } 597 598 /** 599 * bitmap_parselist - convert list format ASCII string to bitmap 600 * @buf: read user string from this buffer; must be terminated 601 * with a \0 or \n. 602 * @maskp: write resulting mask here 603 * @nmaskbits: number of bits in mask to be written 604 * 605 * Input format is a comma-separated list of decimal numbers and 606 * ranges. Consecutively set bits are shown as two hyphen-separated 607 * decimal numbers, the smallest and largest bit numbers set in 608 * the range. 609 * Optionally each range can be postfixed to denote that only parts of it 610 * should be set. The range will divided to groups of specific size. 611 * From each group will be used only defined amount of bits. 612 * Syntax: range:used_size/group_size 613 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 614 * 615 * Returns: 0 on success, -errno on invalid input strings. Error values: 616 * 617 * - ``-EINVAL``: wrong region format 618 * - ``-EINVAL``: invalid character in string 619 * - ``-ERANGE``: bit number specified too large for mask 620 * - ``-EOVERFLOW``: integer overflow in the input parameters 621 */ 622 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 623 { 624 struct region r; 625 long ret; 626 627 bitmap_zero(maskp, nmaskbits); 628 629 while (buf) { 630 buf = bitmap_find_region(buf); 631 if (buf == NULL) 632 return 0; 633 634 buf = bitmap_parse_region(buf, &r); 635 if (IS_ERR(buf)) 636 return PTR_ERR(buf); 637 638 ret = bitmap_check_region(&r); 639 if (ret) 640 return ret; 641 642 ret = bitmap_set_region(&r, maskp, nmaskbits); 643 if (ret) 644 return ret; 645 } 646 647 return 0; 648 } 649 EXPORT_SYMBOL(bitmap_parselist); 650 651 652 /** 653 * bitmap_parselist_user() 654 * 655 * @ubuf: pointer to user buffer containing string. 656 * @ulen: buffer size in bytes. If string is smaller than this 657 * then it must be terminated with a \0. 658 * @maskp: pointer to bitmap array that will contain result. 659 * @nmaskbits: size of bitmap, in bits. 660 * 661 * Wrapper for bitmap_parselist(), providing it with user buffer. 662 */ 663 int bitmap_parselist_user(const char __user *ubuf, 664 unsigned int ulen, unsigned long *maskp, 665 int nmaskbits) 666 { 667 char *buf; 668 int ret; 669 670 buf = memdup_user_nul(ubuf, ulen); 671 if (IS_ERR(buf)) 672 return PTR_ERR(buf); 673 674 ret = bitmap_parselist(buf, maskp, nmaskbits); 675 676 kfree(buf); 677 return ret; 678 } 679 EXPORT_SYMBOL(bitmap_parselist_user); 680 681 682 #ifdef CONFIG_NUMA 683 /** 684 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 685 * @buf: pointer to a bitmap 686 * @pos: a bit position in @buf (0 <= @pos < @nbits) 687 * @nbits: number of valid bit positions in @buf 688 * 689 * Map the bit at position @pos in @buf (of length @nbits) to the 690 * ordinal of which set bit it is. If it is not set or if @pos 691 * is not a valid bit position, map to -1. 692 * 693 * If for example, just bits 4 through 7 are set in @buf, then @pos 694 * values 4 through 7 will get mapped to 0 through 3, respectively, 695 * and other @pos values will get mapped to -1. When @pos value 7 696 * gets mapped to (returns) @ord value 3 in this example, that means 697 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 698 * 699 * The bit positions 0 through @bits are valid positions in @buf. 700 */ 701 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 702 { 703 if (pos >= nbits || !test_bit(pos, buf)) 704 return -1; 705 706 return __bitmap_weight(buf, pos); 707 } 708 709 /** 710 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 711 * @buf: pointer to bitmap 712 * @ord: ordinal bit position (n-th set bit, n >= 0) 713 * @nbits: number of valid bit positions in @buf 714 * 715 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 716 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 717 * >= weight(buf), returns @nbits. 718 * 719 * If for example, just bits 4 through 7 are set in @buf, then @ord 720 * values 0 through 3 will get mapped to 4 through 7, respectively, 721 * and all other @ord values returns @nbits. When @ord value 3 722 * gets mapped to (returns) @pos value 7 in this example, that means 723 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 724 * 725 * The bit positions 0 through @nbits-1 are valid positions in @buf. 726 */ 727 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 728 { 729 unsigned int pos; 730 731 for (pos = find_first_bit(buf, nbits); 732 pos < nbits && ord; 733 pos = find_next_bit(buf, nbits, pos + 1)) 734 ord--; 735 736 return pos; 737 } 738 739 /** 740 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 741 * @dst: remapped result 742 * @src: subset to be remapped 743 * @old: defines domain of map 744 * @new: defines range of map 745 * @nbits: number of bits in each of these bitmaps 746 * 747 * Let @old and @new define a mapping of bit positions, such that 748 * whatever position is held by the n-th set bit in @old is mapped 749 * to the n-th set bit in @new. In the more general case, allowing 750 * for the possibility that the weight 'w' of @new is less than the 751 * weight of @old, map the position of the n-th set bit in @old to 752 * the position of the m-th set bit in @new, where m == n % w. 753 * 754 * If either of the @old and @new bitmaps are empty, or if @src and 755 * @dst point to the same location, then this routine copies @src 756 * to @dst. 757 * 758 * The positions of unset bits in @old are mapped to themselves 759 * (the identify map). 760 * 761 * Apply the above specified mapping to @src, placing the result in 762 * @dst, clearing any bits previously set in @dst. 763 * 764 * For example, lets say that @old has bits 4 through 7 set, and 765 * @new has bits 12 through 15 set. This defines the mapping of bit 766 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 767 * bit positions unchanged. So if say @src comes into this routine 768 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 769 * 13 and 15 set. 770 */ 771 void bitmap_remap(unsigned long *dst, const unsigned long *src, 772 const unsigned long *old, const unsigned long *new, 773 unsigned int nbits) 774 { 775 unsigned int oldbit, w; 776 777 if (dst == src) /* following doesn't handle inplace remaps */ 778 return; 779 bitmap_zero(dst, nbits); 780 781 w = bitmap_weight(new, nbits); 782 for_each_set_bit(oldbit, src, nbits) { 783 int n = bitmap_pos_to_ord(old, oldbit, nbits); 784 785 if (n < 0 || w == 0) 786 set_bit(oldbit, dst); /* identity map */ 787 else 788 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 789 } 790 } 791 792 /** 793 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 794 * @oldbit: bit position to be mapped 795 * @old: defines domain of map 796 * @new: defines range of map 797 * @bits: number of bits in each of these bitmaps 798 * 799 * Let @old and @new define a mapping of bit positions, such that 800 * whatever position is held by the n-th set bit in @old is mapped 801 * to the n-th set bit in @new. In the more general case, allowing 802 * for the possibility that the weight 'w' of @new is less than the 803 * weight of @old, map the position of the n-th set bit in @old to 804 * the position of the m-th set bit in @new, where m == n % w. 805 * 806 * The positions of unset bits in @old are mapped to themselves 807 * (the identify map). 808 * 809 * Apply the above specified mapping to bit position @oldbit, returning 810 * the new bit position. 811 * 812 * For example, lets say that @old has bits 4 through 7 set, and 813 * @new has bits 12 through 15 set. This defines the mapping of bit 814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 815 * bit positions unchanged. So if say @oldbit is 5, then this routine 816 * returns 13. 817 */ 818 int bitmap_bitremap(int oldbit, const unsigned long *old, 819 const unsigned long *new, int bits) 820 { 821 int w = bitmap_weight(new, bits); 822 int n = bitmap_pos_to_ord(old, oldbit, bits); 823 if (n < 0 || w == 0) 824 return oldbit; 825 else 826 return bitmap_ord_to_pos(new, n % w, bits); 827 } 828 829 /** 830 * bitmap_onto - translate one bitmap relative to another 831 * @dst: resulting translated bitmap 832 * @orig: original untranslated bitmap 833 * @relmap: bitmap relative to which translated 834 * @bits: number of bits in each of these bitmaps 835 * 836 * Set the n-th bit of @dst iff there exists some m such that the 837 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 838 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 839 * (If you understood the previous sentence the first time your 840 * read it, you're overqualified for your current job.) 841 * 842 * In other words, @orig is mapped onto (surjectively) @dst, 843 * using the map { <n, m> | the n-th bit of @relmap is the 844 * m-th set bit of @relmap }. 845 * 846 * Any set bits in @orig above bit number W, where W is the 847 * weight of (number of set bits in) @relmap are mapped nowhere. 848 * In particular, if for all bits m set in @orig, m >= W, then 849 * @dst will end up empty. In situations where the possibility 850 * of such an empty result is not desired, one way to avoid it is 851 * to use the bitmap_fold() operator, below, to first fold the 852 * @orig bitmap over itself so that all its set bits x are in the 853 * range 0 <= x < W. The bitmap_fold() operator does this by 854 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 855 * 856 * Example [1] for bitmap_onto(): 857 * Let's say @relmap has bits 30-39 set, and @orig has bits 858 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 859 * @dst will have bits 31, 33, 35, 37 and 39 set. 860 * 861 * When bit 0 is set in @orig, it means turn on the bit in 862 * @dst corresponding to whatever is the first bit (if any) 863 * that is turned on in @relmap. Since bit 0 was off in the 864 * above example, we leave off that bit (bit 30) in @dst. 865 * 866 * When bit 1 is set in @orig (as in the above example), it 867 * means turn on the bit in @dst corresponding to whatever 868 * is the second bit that is turned on in @relmap. The second 869 * bit in @relmap that was turned on in the above example was 870 * bit 31, so we turned on bit 31 in @dst. 871 * 872 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 873 * because they were the 4th, 6th, 8th and 10th set bits 874 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 875 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 876 * 877 * When bit 11 is set in @orig, it means turn on the bit in 878 * @dst corresponding to whatever is the twelfth bit that is 879 * turned on in @relmap. In the above example, there were 880 * only ten bits turned on in @relmap (30..39), so that bit 881 * 11 was set in @orig had no affect on @dst. 882 * 883 * Example [2] for bitmap_fold() + bitmap_onto(): 884 * Let's say @relmap has these ten bits set:: 885 * 886 * 40 41 42 43 45 48 53 61 74 95 887 * 888 * (for the curious, that's 40 plus the first ten terms of the 889 * Fibonacci sequence.) 890 * 891 * Further lets say we use the following code, invoking 892 * bitmap_fold() then bitmap_onto, as suggested above to 893 * avoid the possibility of an empty @dst result:: 894 * 895 * unsigned long *tmp; // a temporary bitmap's bits 896 * 897 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 898 * bitmap_onto(dst, tmp, relmap, bits); 899 * 900 * Then this table shows what various values of @dst would be, for 901 * various @orig's. I list the zero-based positions of each set bit. 902 * The tmp column shows the intermediate result, as computed by 903 * using bitmap_fold() to fold the @orig bitmap modulo ten 904 * (the weight of @relmap): 905 * 906 * =============== ============== ================= 907 * @orig tmp @dst 908 * 0 0 40 909 * 1 1 41 910 * 9 9 95 911 * 10 0 40 [#f1]_ 912 * 1 3 5 7 1 3 5 7 41 43 48 61 913 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 914 * 0 9 18 27 0 9 8 7 40 61 74 95 915 * 0 10 20 30 0 40 916 * 0 11 22 33 0 1 2 3 40 41 42 43 917 * 0 12 24 36 0 2 4 6 40 42 45 53 918 * 78 102 211 1 2 8 41 42 74 [#f1]_ 919 * =============== ============== ================= 920 * 921 * .. [#f1] 922 * 923 * For these marked lines, if we hadn't first done bitmap_fold() 924 * into tmp, then the @dst result would have been empty. 925 * 926 * If either of @orig or @relmap is empty (no set bits), then @dst 927 * will be returned empty. 928 * 929 * If (as explained above) the only set bits in @orig are in positions 930 * m where m >= W, (where W is the weight of @relmap) then @dst will 931 * once again be returned empty. 932 * 933 * All bits in @dst not set by the above rule are cleared. 934 */ 935 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 936 const unsigned long *relmap, unsigned int bits) 937 { 938 unsigned int n, m; /* same meaning as in above comment */ 939 940 if (dst == orig) /* following doesn't handle inplace mappings */ 941 return; 942 bitmap_zero(dst, bits); 943 944 /* 945 * The following code is a more efficient, but less 946 * obvious, equivalent to the loop: 947 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 948 * n = bitmap_ord_to_pos(orig, m, bits); 949 * if (test_bit(m, orig)) 950 * set_bit(n, dst); 951 * } 952 */ 953 954 m = 0; 955 for_each_set_bit(n, relmap, bits) { 956 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 957 if (test_bit(m, orig)) 958 set_bit(n, dst); 959 m++; 960 } 961 } 962 963 /** 964 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 965 * @dst: resulting smaller bitmap 966 * @orig: original larger bitmap 967 * @sz: specified size 968 * @nbits: number of bits in each of these bitmaps 969 * 970 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 971 * Clear all other bits in @dst. See further the comment and 972 * Example [2] for bitmap_onto() for why and how to use this. 973 */ 974 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 975 unsigned int sz, unsigned int nbits) 976 { 977 unsigned int oldbit; 978 979 if (dst == orig) /* following doesn't handle inplace mappings */ 980 return; 981 bitmap_zero(dst, nbits); 982 983 for_each_set_bit(oldbit, orig, nbits) 984 set_bit(oldbit % sz, dst); 985 } 986 #endif /* CONFIG_NUMA */ 987 988 /* 989 * Common code for bitmap_*_region() routines. 990 * bitmap: array of unsigned longs corresponding to the bitmap 991 * pos: the beginning of the region 992 * order: region size (log base 2 of number of bits) 993 * reg_op: operation(s) to perform on that region of bitmap 994 * 995 * Can set, verify and/or release a region of bits in a bitmap, 996 * depending on which combination of REG_OP_* flag bits is set. 997 * 998 * A region of a bitmap is a sequence of bits in the bitmap, of 999 * some size '1 << order' (a power of two), aligned to that same 1000 * '1 << order' power of two. 1001 * 1002 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1003 * Returns 0 in all other cases and reg_ops. 1004 */ 1005 1006 enum { 1007 REG_OP_ISFREE, /* true if region is all zero bits */ 1008 REG_OP_ALLOC, /* set all bits in region */ 1009 REG_OP_RELEASE, /* clear all bits in region */ 1010 }; 1011 1012 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1013 { 1014 int nbits_reg; /* number of bits in region */ 1015 int index; /* index first long of region in bitmap */ 1016 int offset; /* bit offset region in bitmap[index] */ 1017 int nlongs_reg; /* num longs spanned by region in bitmap */ 1018 int nbitsinlong; /* num bits of region in each spanned long */ 1019 unsigned long mask; /* bitmask for one long of region */ 1020 int i; /* scans bitmap by longs */ 1021 int ret = 0; /* return value */ 1022 1023 /* 1024 * Either nlongs_reg == 1 (for small orders that fit in one long) 1025 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1026 */ 1027 nbits_reg = 1 << order; 1028 index = pos / BITS_PER_LONG; 1029 offset = pos - (index * BITS_PER_LONG); 1030 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1031 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1032 1033 /* 1034 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1035 * overflows if nbitsinlong == BITS_PER_LONG. 1036 */ 1037 mask = (1UL << (nbitsinlong - 1)); 1038 mask += mask - 1; 1039 mask <<= offset; 1040 1041 switch (reg_op) { 1042 case REG_OP_ISFREE: 1043 for (i = 0; i < nlongs_reg; i++) { 1044 if (bitmap[index + i] & mask) 1045 goto done; 1046 } 1047 ret = 1; /* all bits in region free (zero) */ 1048 break; 1049 1050 case REG_OP_ALLOC: 1051 for (i = 0; i < nlongs_reg; i++) 1052 bitmap[index + i] |= mask; 1053 break; 1054 1055 case REG_OP_RELEASE: 1056 for (i = 0; i < nlongs_reg; i++) 1057 bitmap[index + i] &= ~mask; 1058 break; 1059 } 1060 done: 1061 return ret; 1062 } 1063 1064 /** 1065 * bitmap_find_free_region - find a contiguous aligned mem region 1066 * @bitmap: array of unsigned longs corresponding to the bitmap 1067 * @bits: number of bits in the bitmap 1068 * @order: region size (log base 2 of number of bits) to find 1069 * 1070 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1071 * allocate them (set them to one). Only consider regions of length 1072 * a power (@order) of two, aligned to that power of two, which 1073 * makes the search algorithm much faster. 1074 * 1075 * Return the bit offset in bitmap of the allocated region, 1076 * or -errno on failure. 1077 */ 1078 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1079 { 1080 unsigned int pos, end; /* scans bitmap by regions of size order */ 1081 1082 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1083 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1084 continue; 1085 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1086 return pos; 1087 } 1088 return -ENOMEM; 1089 } 1090 EXPORT_SYMBOL(bitmap_find_free_region); 1091 1092 /** 1093 * bitmap_release_region - release allocated bitmap region 1094 * @bitmap: array of unsigned longs corresponding to the bitmap 1095 * @pos: beginning of bit region to release 1096 * @order: region size (log base 2 of number of bits) to release 1097 * 1098 * This is the complement to __bitmap_find_free_region() and releases 1099 * the found region (by clearing it in the bitmap). 1100 * 1101 * No return value. 1102 */ 1103 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1104 { 1105 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1106 } 1107 EXPORT_SYMBOL(bitmap_release_region); 1108 1109 /** 1110 * bitmap_allocate_region - allocate bitmap region 1111 * @bitmap: array of unsigned longs corresponding to the bitmap 1112 * @pos: beginning of bit region to allocate 1113 * @order: region size (log base 2 of number of bits) to allocate 1114 * 1115 * Allocate (set bits in) a specified region of a bitmap. 1116 * 1117 * Return 0 on success, or %-EBUSY if specified region wasn't 1118 * free (not all bits were zero). 1119 */ 1120 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1121 { 1122 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1123 return -EBUSY; 1124 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1125 } 1126 EXPORT_SYMBOL(bitmap_allocate_region); 1127 1128 /** 1129 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1130 * @dst: destination buffer 1131 * @src: bitmap to copy 1132 * @nbits: number of bits in the bitmap 1133 * 1134 * Require nbits % BITS_PER_LONG == 0. 1135 */ 1136 #ifdef __BIG_ENDIAN 1137 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1138 { 1139 unsigned int i; 1140 1141 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1142 if (BITS_PER_LONG == 64) 1143 dst[i] = cpu_to_le64(src[i]); 1144 else 1145 dst[i] = cpu_to_le32(src[i]); 1146 } 1147 } 1148 EXPORT_SYMBOL(bitmap_copy_le); 1149 #endif 1150 1151 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1152 { 1153 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1154 flags); 1155 } 1156 EXPORT_SYMBOL(bitmap_alloc); 1157 1158 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1159 { 1160 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1161 } 1162 EXPORT_SYMBOL(bitmap_zalloc); 1163 1164 void bitmap_free(const unsigned long *bitmap) 1165 { 1166 kfree(bitmap); 1167 } 1168 EXPORT_SYMBOL(bitmap_free); 1169 1170 #if BITS_PER_LONG == 64 1171 /** 1172 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1173 * @bitmap: array of unsigned longs, the destination bitmap 1174 * @buf: array of u32 (in host byte order), the source bitmap 1175 * @nbits: number of bits in @bitmap 1176 */ 1177 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1178 { 1179 unsigned int i, halfwords; 1180 1181 halfwords = DIV_ROUND_UP(nbits, 32); 1182 for (i = 0; i < halfwords; i++) { 1183 bitmap[i/2] = (unsigned long) buf[i]; 1184 if (++i < halfwords) 1185 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1186 } 1187 1188 /* Clear tail bits in last word beyond nbits. */ 1189 if (nbits % BITS_PER_LONG) 1190 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1191 } 1192 EXPORT_SYMBOL(bitmap_from_arr32); 1193 1194 /** 1195 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1196 * @buf: array of u32 (in host byte order), the dest bitmap 1197 * @bitmap: array of unsigned longs, the source bitmap 1198 * @nbits: number of bits in @bitmap 1199 */ 1200 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1201 { 1202 unsigned int i, halfwords; 1203 1204 halfwords = DIV_ROUND_UP(nbits, 32); 1205 for (i = 0; i < halfwords; i++) { 1206 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1207 if (++i < halfwords) 1208 buf[i] = (u32) (bitmap[i/2] >> 32); 1209 } 1210 1211 /* Clear tail bits in last element of array beyond nbits. */ 1212 if (nbits % BITS_PER_LONG) 1213 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1214 } 1215 EXPORT_SYMBOL(bitmap_to_arr32); 1216 1217 #endif 1218