1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/module.h> 9 #include <linux/ctype.h> 10 #include <linux/errno.h> 11 #include <linux/bitmap.h> 12 #include <linux/bitops.h> 13 #include <asm/uaccess.h> 14 15 /* 16 * bitmaps provide an array of bits, implemented using an an 17 * array of unsigned longs. The number of valid bits in a 18 * given bitmap does _not_ need to be an exact multiple of 19 * BITS_PER_LONG. 20 * 21 * The possible unused bits in the last, partially used word 22 * of a bitmap are 'don't care'. The implementation makes 23 * no particular effort to keep them zero. It ensures that 24 * their value will not affect the results of any operation. 25 * The bitmap operations that return Boolean (bitmap_empty, 26 * for example) or scalar (bitmap_weight, for example) results 27 * carefully filter out these unused bits from impacting their 28 * results. 29 * 30 * These operations actually hold to a slightly stronger rule: 31 * if you don't input any bitmaps to these ops that have some 32 * unused bits set, then they won't output any set unused bits 33 * in output bitmaps. 34 * 35 * The byte ordering of bitmaps is more natural on little 36 * endian architectures. See the big-endian headers 37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 38 * for the best explanations of this ordering. 39 */ 40 41 int __bitmap_empty(const unsigned long *bitmap, int bits) 42 { 43 int k, lim = bits/BITS_PER_LONG; 44 for (k = 0; k < lim; ++k) 45 if (bitmap[k]) 46 return 0; 47 48 if (bits % BITS_PER_LONG) 49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 50 return 0; 51 52 return 1; 53 } 54 EXPORT_SYMBOL(__bitmap_empty); 55 56 int __bitmap_full(const unsigned long *bitmap, int bits) 57 { 58 int k, lim = bits/BITS_PER_LONG; 59 for (k = 0; k < lim; ++k) 60 if (~bitmap[k]) 61 return 0; 62 63 if (bits % BITS_PER_LONG) 64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 65 return 0; 66 67 return 1; 68 } 69 EXPORT_SYMBOL(__bitmap_full); 70 71 int __bitmap_equal(const unsigned long *bitmap1, 72 const unsigned long *bitmap2, int bits) 73 { 74 int k, lim = bits/BITS_PER_LONG; 75 for (k = 0; k < lim; ++k) 76 if (bitmap1[k] != bitmap2[k]) 77 return 0; 78 79 if (bits % BITS_PER_LONG) 80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 81 return 0; 82 83 return 1; 84 } 85 EXPORT_SYMBOL(__bitmap_equal); 86 87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) 88 { 89 int k, lim = bits/BITS_PER_LONG; 90 for (k = 0; k < lim; ++k) 91 dst[k] = ~src[k]; 92 93 if (bits % BITS_PER_LONG) 94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); 95 } 96 EXPORT_SYMBOL(__bitmap_complement); 97 98 /** 99 * __bitmap_shift_right - logical right shift of the bits in a bitmap 100 * @dst : destination bitmap 101 * @src : source bitmap 102 * @shift : shift by this many bits 103 * @bits : bitmap size, in bits 104 * 105 * Shifting right (dividing) means moving bits in the MS -> LS bit 106 * direction. Zeros are fed into the vacated MS positions and the 107 * LS bits shifted off the bottom are lost. 108 */ 109 void __bitmap_shift_right(unsigned long *dst, 110 const unsigned long *src, int shift, int bits) 111 { 112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 114 unsigned long mask = (1UL << left) - 1; 115 for (k = 0; off + k < lim; ++k) { 116 unsigned long upper, lower; 117 118 /* 119 * If shift is not word aligned, take lower rem bits of 120 * word above and make them the top rem bits of result. 121 */ 122 if (!rem || off + k + 1 >= lim) 123 upper = 0; 124 else { 125 upper = src[off + k + 1]; 126 if (off + k + 1 == lim - 1 && left) 127 upper &= mask; 128 } 129 lower = src[off + k]; 130 if (left && off + k == lim - 1) 131 lower &= mask; 132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; 133 if (left && k == lim - 1) 134 dst[k] &= mask; 135 } 136 if (off) 137 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 138 } 139 EXPORT_SYMBOL(__bitmap_shift_right); 140 141 142 /** 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap 144 * @dst : destination bitmap 145 * @src : source bitmap 146 * @shift : shift by this many bits 147 * @bits : bitmap size, in bits 148 * 149 * Shifting left (multiplying) means moving bits in the LS -> MS 150 * direction. Zeros are fed into the vacated LS bit positions 151 * and those MS bits shifted off the top are lost. 152 */ 153 154 void __bitmap_shift_left(unsigned long *dst, 155 const unsigned long *src, int shift, int bits) 156 { 157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 159 for (k = lim - off - 1; k >= 0; --k) { 160 unsigned long upper, lower; 161 162 /* 163 * If shift is not word aligned, take upper rem bits of 164 * word below and make them the bottom rem bits of result. 165 */ 166 if (rem && k > 0) 167 lower = src[k - 1]; 168 else 169 lower = 0; 170 upper = src[k]; 171 if (left && k == lim - 1) 172 upper &= (1UL << left) - 1; 173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem; 174 if (left && k + off == lim - 1) 175 dst[k + off] &= (1UL << left) - 1; 176 } 177 if (off) 178 memset(dst, 0, off*sizeof(unsigned long)); 179 } 180 EXPORT_SYMBOL(__bitmap_shift_left); 181 182 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 183 const unsigned long *bitmap2, int bits) 184 { 185 int k; 186 int nr = BITS_TO_LONGS(bits); 187 unsigned long result = 0; 188 189 for (k = 0; k < nr; k++) 190 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 191 return result != 0; 192 } 193 EXPORT_SYMBOL(__bitmap_and); 194 195 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 196 const unsigned long *bitmap2, int bits) 197 { 198 int k; 199 int nr = BITS_TO_LONGS(bits); 200 201 for (k = 0; k < nr; k++) 202 dst[k] = bitmap1[k] | bitmap2[k]; 203 } 204 EXPORT_SYMBOL(__bitmap_or); 205 206 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 207 const unsigned long *bitmap2, int bits) 208 { 209 int k; 210 int nr = BITS_TO_LONGS(bits); 211 212 for (k = 0; k < nr; k++) 213 dst[k] = bitmap1[k] ^ bitmap2[k]; 214 } 215 EXPORT_SYMBOL(__bitmap_xor); 216 217 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 218 const unsigned long *bitmap2, int bits) 219 { 220 int k; 221 int nr = BITS_TO_LONGS(bits); 222 unsigned long result = 0; 223 224 for (k = 0; k < nr; k++) 225 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 226 return result != 0; 227 } 228 EXPORT_SYMBOL(__bitmap_andnot); 229 230 int __bitmap_intersects(const unsigned long *bitmap1, 231 const unsigned long *bitmap2, int bits) 232 { 233 int k, lim = bits/BITS_PER_LONG; 234 for (k = 0; k < lim; ++k) 235 if (bitmap1[k] & bitmap2[k]) 236 return 1; 237 238 if (bits % BITS_PER_LONG) 239 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 240 return 1; 241 return 0; 242 } 243 EXPORT_SYMBOL(__bitmap_intersects); 244 245 int __bitmap_subset(const unsigned long *bitmap1, 246 const unsigned long *bitmap2, int bits) 247 { 248 int k, lim = bits/BITS_PER_LONG; 249 for (k = 0; k < lim; ++k) 250 if (bitmap1[k] & ~bitmap2[k]) 251 return 0; 252 253 if (bits % BITS_PER_LONG) 254 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 255 return 0; 256 return 1; 257 } 258 EXPORT_SYMBOL(__bitmap_subset); 259 260 int __bitmap_weight(const unsigned long *bitmap, int bits) 261 { 262 int k, w = 0, lim = bits/BITS_PER_LONG; 263 264 for (k = 0; k < lim; k++) 265 w += hweight_long(bitmap[k]); 266 267 if (bits % BITS_PER_LONG) 268 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 269 270 return w; 271 } 272 EXPORT_SYMBOL(__bitmap_weight); 273 274 void bitmap_set(unsigned long *map, int start, int nr) 275 { 276 unsigned long *p = map + BIT_WORD(start); 277 const int size = start + nr; 278 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 279 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 280 281 while (nr - bits_to_set >= 0) { 282 *p |= mask_to_set; 283 nr -= bits_to_set; 284 bits_to_set = BITS_PER_LONG; 285 mask_to_set = ~0UL; 286 p++; 287 } 288 if (nr) { 289 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 290 *p |= mask_to_set; 291 } 292 } 293 EXPORT_SYMBOL(bitmap_set); 294 295 void bitmap_clear(unsigned long *map, int start, int nr) 296 { 297 unsigned long *p = map + BIT_WORD(start); 298 const int size = start + nr; 299 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 300 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 301 302 while (nr - bits_to_clear >= 0) { 303 *p &= ~mask_to_clear; 304 nr -= bits_to_clear; 305 bits_to_clear = BITS_PER_LONG; 306 mask_to_clear = ~0UL; 307 p++; 308 } 309 if (nr) { 310 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 311 *p &= ~mask_to_clear; 312 } 313 } 314 EXPORT_SYMBOL(bitmap_clear); 315 316 /* 317 * bitmap_find_next_zero_area - find a contiguous aligned zero area 318 * @map: The address to base the search on 319 * @size: The bitmap size in bits 320 * @start: The bitnumber to start searching at 321 * @nr: The number of zeroed bits we're looking for 322 * @align_mask: Alignment mask for zero area 323 * 324 * The @align_mask should be one less than a power of 2; the effect is that 325 * the bit offset of all zero areas this function finds is multiples of that 326 * power of 2. A @align_mask of 0 means no alignment is required. 327 */ 328 unsigned long bitmap_find_next_zero_area(unsigned long *map, 329 unsigned long size, 330 unsigned long start, 331 unsigned int nr, 332 unsigned long align_mask) 333 { 334 unsigned long index, end, i; 335 again: 336 index = find_next_zero_bit(map, size, start); 337 338 /* Align allocation */ 339 index = __ALIGN_MASK(index, align_mask); 340 341 end = index + nr; 342 if (end > size) 343 return end; 344 i = find_next_bit(map, end, index); 345 if (i < end) { 346 start = i + 1; 347 goto again; 348 } 349 return index; 350 } 351 EXPORT_SYMBOL(bitmap_find_next_zero_area); 352 353 /* 354 * Bitmap printing & parsing functions: first version by Bill Irwin, 355 * second version by Paul Jackson, third by Joe Korty. 356 */ 357 358 #define CHUNKSZ 32 359 #define nbits_to_hold_value(val) fls(val) 360 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 361 362 /** 363 * bitmap_scnprintf - convert bitmap to an ASCII hex string. 364 * @buf: byte buffer into which string is placed 365 * @buflen: reserved size of @buf, in bytes 366 * @maskp: pointer to bitmap to convert 367 * @nmaskbits: size of bitmap, in bits 368 * 369 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into 370 * comma-separated sets of eight digits per set. 371 */ 372 int bitmap_scnprintf(char *buf, unsigned int buflen, 373 const unsigned long *maskp, int nmaskbits) 374 { 375 int i, word, bit, len = 0; 376 unsigned long val; 377 const char *sep = ""; 378 int chunksz; 379 u32 chunkmask; 380 381 chunksz = nmaskbits & (CHUNKSZ - 1); 382 if (chunksz == 0) 383 chunksz = CHUNKSZ; 384 385 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; 386 for (; i >= 0; i -= CHUNKSZ) { 387 chunkmask = ((1ULL << chunksz) - 1); 388 word = i / BITS_PER_LONG; 389 bit = i % BITS_PER_LONG; 390 val = (maskp[word] >> bit) & chunkmask; 391 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, 392 (chunksz+3)/4, val); 393 chunksz = CHUNKSZ; 394 sep = ","; 395 } 396 return len; 397 } 398 EXPORT_SYMBOL(bitmap_scnprintf); 399 400 /** 401 * __bitmap_parse - convert an ASCII hex string into a bitmap. 402 * @buf: pointer to buffer containing string. 403 * @buflen: buffer size in bytes. If string is smaller than this 404 * then it must be terminated with a \0. 405 * @is_user: location of buffer, 0 indicates kernel space 406 * @maskp: pointer to bitmap array that will contain result. 407 * @nmaskbits: size of bitmap, in bits. 408 * 409 * Commas group hex digits into chunks. Each chunk defines exactly 32 410 * bits of the resultant bitmask. No chunk may specify a value larger 411 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 412 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 413 * characters and for grouping errors such as "1,,5", ",44", "," and "". 414 * Leading and trailing whitespace accepted, but not embedded whitespace. 415 */ 416 int __bitmap_parse(const char *buf, unsigned int buflen, 417 int is_user, unsigned long *maskp, 418 int nmaskbits) 419 { 420 int c, old_c, totaldigits, ndigits, nchunks, nbits; 421 u32 chunk; 422 const char __user *ubuf = buf; 423 424 bitmap_zero(maskp, nmaskbits); 425 426 nchunks = nbits = totaldigits = c = 0; 427 do { 428 chunk = ndigits = 0; 429 430 /* Get the next chunk of the bitmap */ 431 while (buflen) { 432 old_c = c; 433 if (is_user) { 434 if (__get_user(c, ubuf++)) 435 return -EFAULT; 436 } 437 else 438 c = *buf++; 439 buflen--; 440 if (isspace(c)) 441 continue; 442 443 /* 444 * If the last character was a space and the current 445 * character isn't '\0', we've got embedded whitespace. 446 * This is a no-no, so throw an error. 447 */ 448 if (totaldigits && c && isspace(old_c)) 449 return -EINVAL; 450 451 /* A '\0' or a ',' signal the end of the chunk */ 452 if (c == '\0' || c == ',') 453 break; 454 455 if (!isxdigit(c)) 456 return -EINVAL; 457 458 /* 459 * Make sure there are at least 4 free bits in 'chunk'. 460 * If not, this hexdigit will overflow 'chunk', so 461 * throw an error. 462 */ 463 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 464 return -EOVERFLOW; 465 466 chunk = (chunk << 4) | hex_to_bin(c); 467 ndigits++; totaldigits++; 468 } 469 if (ndigits == 0) 470 return -EINVAL; 471 if (nchunks == 0 && chunk == 0) 472 continue; 473 474 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 475 *maskp |= chunk; 476 nchunks++; 477 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 478 if (nbits > nmaskbits) 479 return -EOVERFLOW; 480 } while (buflen && c == ','); 481 482 return 0; 483 } 484 EXPORT_SYMBOL(__bitmap_parse); 485 486 /** 487 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 488 * 489 * @ubuf: pointer to user buffer containing string. 490 * @ulen: buffer size in bytes. If string is smaller than this 491 * then it must be terminated with a \0. 492 * @maskp: pointer to bitmap array that will contain result. 493 * @nmaskbits: size of bitmap, in bits. 494 * 495 * Wrapper for __bitmap_parse(), providing it with user buffer. 496 * 497 * We cannot have this as an inline function in bitmap.h because it needs 498 * linux/uaccess.h to get the access_ok() declaration and this causes 499 * cyclic dependencies. 500 */ 501 int bitmap_parse_user(const char __user *ubuf, 502 unsigned int ulen, unsigned long *maskp, 503 int nmaskbits) 504 { 505 if (!access_ok(VERIFY_READ, ubuf, ulen)) 506 return -EFAULT; 507 return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits); 508 } 509 EXPORT_SYMBOL(bitmap_parse_user); 510 511 /* 512 * bscnl_emit(buf, buflen, rbot, rtop, bp) 513 * 514 * Helper routine for bitmap_scnlistprintf(). Write decimal number 515 * or range to buf, suppressing output past buf+buflen, with optional 516 * comma-prefix. Return len of what would be written to buf, if it 517 * all fit. 518 */ 519 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) 520 { 521 if (len > 0) 522 len += scnprintf(buf + len, buflen - len, ","); 523 if (rbot == rtop) 524 len += scnprintf(buf + len, buflen - len, "%d", rbot); 525 else 526 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); 527 return len; 528 } 529 530 /** 531 * bitmap_scnlistprintf - convert bitmap to list format ASCII string 532 * @buf: byte buffer into which string is placed 533 * @buflen: reserved size of @buf, in bytes 534 * @maskp: pointer to bitmap to convert 535 * @nmaskbits: size of bitmap, in bits 536 * 537 * Output format is a comma-separated list of decimal numbers and 538 * ranges. Consecutively set bits are shown as two hyphen-separated 539 * decimal numbers, the smallest and largest bit numbers set in 540 * the range. Output format is compatible with the format 541 * accepted as input by bitmap_parselist(). 542 * 543 * The return value is the number of characters which would be 544 * generated for the given input, excluding the trailing '\0', as 545 * per ISO C99. 546 */ 547 int bitmap_scnlistprintf(char *buf, unsigned int buflen, 548 const unsigned long *maskp, int nmaskbits) 549 { 550 int len = 0; 551 /* current bit is 'cur', most recently seen range is [rbot, rtop] */ 552 int cur, rbot, rtop; 553 554 if (buflen == 0) 555 return 0; 556 buf[0] = 0; 557 558 rbot = cur = find_first_bit(maskp, nmaskbits); 559 while (cur < nmaskbits) { 560 rtop = cur; 561 cur = find_next_bit(maskp, nmaskbits, cur+1); 562 if (cur >= nmaskbits || cur > rtop + 1) { 563 len = bscnl_emit(buf, buflen, rbot, rtop, len); 564 rbot = cur; 565 } 566 } 567 return len; 568 } 569 EXPORT_SYMBOL(bitmap_scnlistprintf); 570 571 /** 572 * __bitmap_parselist - convert list format ASCII string to bitmap 573 * @buf: read nul-terminated user string from this buffer 574 * @buflen: buffer size in bytes. If string is smaller than this 575 * then it must be terminated with a \0. 576 * @is_user: location of buffer, 0 indicates kernel space 577 * @maskp: write resulting mask here 578 * @nmaskbits: number of bits in mask to be written 579 * 580 * Input format is a comma-separated list of decimal numbers and 581 * ranges. Consecutively set bits are shown as two hyphen-separated 582 * decimal numbers, the smallest and largest bit numbers set in 583 * the range. 584 * 585 * Returns 0 on success, -errno on invalid input strings. 586 * Error values: 587 * %-EINVAL: second number in range smaller than first 588 * %-EINVAL: invalid character in string 589 * %-ERANGE: bit number specified too large for mask 590 */ 591 static int __bitmap_parselist(const char *buf, unsigned int buflen, 592 int is_user, unsigned long *maskp, 593 int nmaskbits) 594 { 595 unsigned a, b; 596 int c, old_c, totaldigits; 597 const char __user *ubuf = buf; 598 int exp_digit, in_range; 599 600 totaldigits = c = 0; 601 bitmap_zero(maskp, nmaskbits); 602 do { 603 exp_digit = 1; 604 in_range = 0; 605 a = b = 0; 606 607 /* Get the next cpu# or a range of cpu#'s */ 608 while (buflen) { 609 old_c = c; 610 if (is_user) { 611 if (__get_user(c, ubuf++)) 612 return -EFAULT; 613 } else 614 c = *buf++; 615 buflen--; 616 if (isspace(c)) 617 continue; 618 619 /* 620 * If the last character was a space and the current 621 * character isn't '\0', we've got embedded whitespace. 622 * This is a no-no, so throw an error. 623 */ 624 if (totaldigits && c && isspace(old_c)) 625 return -EINVAL; 626 627 /* A '\0' or a ',' signal the end of a cpu# or range */ 628 if (c == '\0' || c == ',') 629 break; 630 631 if (c == '-') { 632 if (exp_digit || in_range) 633 return -EINVAL; 634 b = 0; 635 in_range = 1; 636 exp_digit = 1; 637 continue; 638 } 639 640 if (!isdigit(c)) 641 return -EINVAL; 642 643 b = b * 10 + (c - '0'); 644 if (!in_range) 645 a = b; 646 exp_digit = 0; 647 totaldigits++; 648 } 649 if (!(a <= b)) 650 return -EINVAL; 651 if (b >= nmaskbits) 652 return -ERANGE; 653 while (a <= b) { 654 set_bit(a, maskp); 655 a++; 656 } 657 } while (buflen && c == ','); 658 return 0; 659 } 660 661 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 662 { 663 char *nl = strchr(bp, '\n'); 664 int len; 665 666 if (nl) 667 len = nl - bp; 668 else 669 len = strlen(bp); 670 671 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 672 } 673 EXPORT_SYMBOL(bitmap_parselist); 674 675 676 /** 677 * bitmap_parselist_user() 678 * 679 * @ubuf: pointer to user buffer containing string. 680 * @ulen: buffer size in bytes. If string is smaller than this 681 * then it must be terminated with a \0. 682 * @maskp: pointer to bitmap array that will contain result. 683 * @nmaskbits: size of bitmap, in bits. 684 * 685 * Wrapper for bitmap_parselist(), providing it with user buffer. 686 * 687 * We cannot have this as an inline function in bitmap.h because it needs 688 * linux/uaccess.h to get the access_ok() declaration and this causes 689 * cyclic dependencies. 690 */ 691 int bitmap_parselist_user(const char __user *ubuf, 692 unsigned int ulen, unsigned long *maskp, 693 int nmaskbits) 694 { 695 if (!access_ok(VERIFY_READ, ubuf, ulen)) 696 return -EFAULT; 697 return __bitmap_parselist((const char *)ubuf, 698 ulen, 1, maskp, nmaskbits); 699 } 700 EXPORT_SYMBOL(bitmap_parselist_user); 701 702 703 /** 704 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 705 * @buf: pointer to a bitmap 706 * @pos: a bit position in @buf (0 <= @pos < @bits) 707 * @bits: number of valid bit positions in @buf 708 * 709 * Map the bit at position @pos in @buf (of length @bits) to the 710 * ordinal of which set bit it is. If it is not set or if @pos 711 * is not a valid bit position, map to -1. 712 * 713 * If for example, just bits 4 through 7 are set in @buf, then @pos 714 * values 4 through 7 will get mapped to 0 through 3, respectively, 715 * and other @pos values will get mapped to 0. When @pos value 7 716 * gets mapped to (returns) @ord value 3 in this example, that means 717 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 718 * 719 * The bit positions 0 through @bits are valid positions in @buf. 720 */ 721 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) 722 { 723 int i, ord; 724 725 if (pos < 0 || pos >= bits || !test_bit(pos, buf)) 726 return -1; 727 728 i = find_first_bit(buf, bits); 729 ord = 0; 730 while (i < pos) { 731 i = find_next_bit(buf, bits, i + 1); 732 ord++; 733 } 734 BUG_ON(i != pos); 735 736 return ord; 737 } 738 739 /** 740 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 741 * @buf: pointer to bitmap 742 * @ord: ordinal bit position (n-th set bit, n >= 0) 743 * @bits: number of valid bit positions in @buf 744 * 745 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 746 * Value of @ord should be in range 0 <= @ord < weight(buf), else 747 * results are undefined. 748 * 749 * If for example, just bits 4 through 7 are set in @buf, then @ord 750 * values 0 through 3 will get mapped to 4 through 7, respectively, 751 * and all other @ord values return undefined values. When @ord value 3 752 * gets mapped to (returns) @pos value 7 in this example, that means 753 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 754 * 755 * The bit positions 0 through @bits are valid positions in @buf. 756 */ 757 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) 758 { 759 int pos = 0; 760 761 if (ord >= 0 && ord < bits) { 762 int i; 763 764 for (i = find_first_bit(buf, bits); 765 i < bits && ord > 0; 766 i = find_next_bit(buf, bits, i + 1)) 767 ord--; 768 if (i < bits && ord == 0) 769 pos = i; 770 } 771 772 return pos; 773 } 774 775 /** 776 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 777 * @dst: remapped result 778 * @src: subset to be remapped 779 * @old: defines domain of map 780 * @new: defines range of map 781 * @bits: number of bits in each of these bitmaps 782 * 783 * Let @old and @new define a mapping of bit positions, such that 784 * whatever position is held by the n-th set bit in @old is mapped 785 * to the n-th set bit in @new. In the more general case, allowing 786 * for the possibility that the weight 'w' of @new is less than the 787 * weight of @old, map the position of the n-th set bit in @old to 788 * the position of the m-th set bit in @new, where m == n % w. 789 * 790 * If either of the @old and @new bitmaps are empty, or if @src and 791 * @dst point to the same location, then this routine copies @src 792 * to @dst. 793 * 794 * The positions of unset bits in @old are mapped to themselves 795 * (the identify map). 796 * 797 * Apply the above specified mapping to @src, placing the result in 798 * @dst, clearing any bits previously set in @dst. 799 * 800 * For example, lets say that @old has bits 4 through 7 set, and 801 * @new has bits 12 through 15 set. This defines the mapping of bit 802 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 803 * bit positions unchanged. So if say @src comes into this routine 804 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 805 * 13 and 15 set. 806 */ 807 void bitmap_remap(unsigned long *dst, const unsigned long *src, 808 const unsigned long *old, const unsigned long *new, 809 int bits) 810 { 811 int oldbit, w; 812 813 if (dst == src) /* following doesn't handle inplace remaps */ 814 return; 815 bitmap_zero(dst, bits); 816 817 w = bitmap_weight(new, bits); 818 for_each_set_bit(oldbit, src, bits) { 819 int n = bitmap_pos_to_ord(old, oldbit, bits); 820 821 if (n < 0 || w == 0) 822 set_bit(oldbit, dst); /* identity map */ 823 else 824 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); 825 } 826 } 827 EXPORT_SYMBOL(bitmap_remap); 828 829 /** 830 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 831 * @oldbit: bit position to be mapped 832 * @old: defines domain of map 833 * @new: defines range of map 834 * @bits: number of bits in each of these bitmaps 835 * 836 * Let @old and @new define a mapping of bit positions, such that 837 * whatever position is held by the n-th set bit in @old is mapped 838 * to the n-th set bit in @new. In the more general case, allowing 839 * for the possibility that the weight 'w' of @new is less than the 840 * weight of @old, map the position of the n-th set bit in @old to 841 * the position of the m-th set bit in @new, where m == n % w. 842 * 843 * The positions of unset bits in @old are mapped to themselves 844 * (the identify map). 845 * 846 * Apply the above specified mapping to bit position @oldbit, returning 847 * the new bit position. 848 * 849 * For example, lets say that @old has bits 4 through 7 set, and 850 * @new has bits 12 through 15 set. This defines the mapping of bit 851 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 852 * bit positions unchanged. So if say @oldbit is 5, then this routine 853 * returns 13. 854 */ 855 int bitmap_bitremap(int oldbit, const unsigned long *old, 856 const unsigned long *new, int bits) 857 { 858 int w = bitmap_weight(new, bits); 859 int n = bitmap_pos_to_ord(old, oldbit, bits); 860 if (n < 0 || w == 0) 861 return oldbit; 862 else 863 return bitmap_ord_to_pos(new, n % w, bits); 864 } 865 EXPORT_SYMBOL(bitmap_bitremap); 866 867 /** 868 * bitmap_onto - translate one bitmap relative to another 869 * @dst: resulting translated bitmap 870 * @orig: original untranslated bitmap 871 * @relmap: bitmap relative to which translated 872 * @bits: number of bits in each of these bitmaps 873 * 874 * Set the n-th bit of @dst iff there exists some m such that the 875 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 876 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 877 * (If you understood the previous sentence the first time your 878 * read it, you're overqualified for your current job.) 879 * 880 * In other words, @orig is mapped onto (surjectively) @dst, 881 * using the the map { <n, m> | the n-th bit of @relmap is the 882 * m-th set bit of @relmap }. 883 * 884 * Any set bits in @orig above bit number W, where W is the 885 * weight of (number of set bits in) @relmap are mapped nowhere. 886 * In particular, if for all bits m set in @orig, m >= W, then 887 * @dst will end up empty. In situations where the possibility 888 * of such an empty result is not desired, one way to avoid it is 889 * to use the bitmap_fold() operator, below, to first fold the 890 * @orig bitmap over itself so that all its set bits x are in the 891 * range 0 <= x < W. The bitmap_fold() operator does this by 892 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 893 * 894 * Example [1] for bitmap_onto(): 895 * Let's say @relmap has bits 30-39 set, and @orig has bits 896 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 897 * @dst will have bits 31, 33, 35, 37 and 39 set. 898 * 899 * When bit 0 is set in @orig, it means turn on the bit in 900 * @dst corresponding to whatever is the first bit (if any) 901 * that is turned on in @relmap. Since bit 0 was off in the 902 * above example, we leave off that bit (bit 30) in @dst. 903 * 904 * When bit 1 is set in @orig (as in the above example), it 905 * means turn on the bit in @dst corresponding to whatever 906 * is the second bit that is turned on in @relmap. The second 907 * bit in @relmap that was turned on in the above example was 908 * bit 31, so we turned on bit 31 in @dst. 909 * 910 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 911 * because they were the 4th, 6th, 8th and 10th set bits 912 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 913 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 914 * 915 * When bit 11 is set in @orig, it means turn on the bit in 916 * @dst corresponding to whatever is the twelfth bit that is 917 * turned on in @relmap. In the above example, there were 918 * only ten bits turned on in @relmap (30..39), so that bit 919 * 11 was set in @orig had no affect on @dst. 920 * 921 * Example [2] for bitmap_fold() + bitmap_onto(): 922 * Let's say @relmap has these ten bits set: 923 * 40 41 42 43 45 48 53 61 74 95 924 * (for the curious, that's 40 plus the first ten terms of the 925 * Fibonacci sequence.) 926 * 927 * Further lets say we use the following code, invoking 928 * bitmap_fold() then bitmap_onto, as suggested above to 929 * avoid the possitility of an empty @dst result: 930 * 931 * unsigned long *tmp; // a temporary bitmap's bits 932 * 933 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 934 * bitmap_onto(dst, tmp, relmap, bits); 935 * 936 * Then this table shows what various values of @dst would be, for 937 * various @orig's. I list the zero-based positions of each set bit. 938 * The tmp column shows the intermediate result, as computed by 939 * using bitmap_fold() to fold the @orig bitmap modulo ten 940 * (the weight of @relmap). 941 * 942 * @orig tmp @dst 943 * 0 0 40 944 * 1 1 41 945 * 9 9 95 946 * 10 0 40 (*) 947 * 1 3 5 7 1 3 5 7 41 43 48 61 948 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 949 * 0 9 18 27 0 9 8 7 40 61 74 95 950 * 0 10 20 30 0 40 951 * 0 11 22 33 0 1 2 3 40 41 42 43 952 * 0 12 24 36 0 2 4 6 40 42 45 53 953 * 78 102 211 1 2 8 41 42 74 (*) 954 * 955 * (*) For these marked lines, if we hadn't first done bitmap_fold() 956 * into tmp, then the @dst result would have been empty. 957 * 958 * If either of @orig or @relmap is empty (no set bits), then @dst 959 * will be returned empty. 960 * 961 * If (as explained above) the only set bits in @orig are in positions 962 * m where m >= W, (where W is the weight of @relmap) then @dst will 963 * once again be returned empty. 964 * 965 * All bits in @dst not set by the above rule are cleared. 966 */ 967 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 968 const unsigned long *relmap, int bits) 969 { 970 int n, m; /* same meaning as in above comment */ 971 972 if (dst == orig) /* following doesn't handle inplace mappings */ 973 return; 974 bitmap_zero(dst, bits); 975 976 /* 977 * The following code is a more efficient, but less 978 * obvious, equivalent to the loop: 979 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 980 * n = bitmap_ord_to_pos(orig, m, bits); 981 * if (test_bit(m, orig)) 982 * set_bit(n, dst); 983 * } 984 */ 985 986 m = 0; 987 for_each_set_bit(n, relmap, bits) { 988 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 989 if (test_bit(m, orig)) 990 set_bit(n, dst); 991 m++; 992 } 993 } 994 EXPORT_SYMBOL(bitmap_onto); 995 996 /** 997 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 998 * @dst: resulting smaller bitmap 999 * @orig: original larger bitmap 1000 * @sz: specified size 1001 * @bits: number of bits in each of these bitmaps 1002 * 1003 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1004 * Clear all other bits in @dst. See further the comment and 1005 * Example [2] for bitmap_onto() for why and how to use this. 1006 */ 1007 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1008 int sz, int bits) 1009 { 1010 int oldbit; 1011 1012 if (dst == orig) /* following doesn't handle inplace mappings */ 1013 return; 1014 bitmap_zero(dst, bits); 1015 1016 for_each_set_bit(oldbit, orig, bits) 1017 set_bit(oldbit % sz, dst); 1018 } 1019 EXPORT_SYMBOL(bitmap_fold); 1020 1021 /* 1022 * Common code for bitmap_*_region() routines. 1023 * bitmap: array of unsigned longs corresponding to the bitmap 1024 * pos: the beginning of the region 1025 * order: region size (log base 2 of number of bits) 1026 * reg_op: operation(s) to perform on that region of bitmap 1027 * 1028 * Can set, verify and/or release a region of bits in a bitmap, 1029 * depending on which combination of REG_OP_* flag bits is set. 1030 * 1031 * A region of a bitmap is a sequence of bits in the bitmap, of 1032 * some size '1 << order' (a power of two), aligned to that same 1033 * '1 << order' power of two. 1034 * 1035 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1036 * Returns 0 in all other cases and reg_ops. 1037 */ 1038 1039 enum { 1040 REG_OP_ISFREE, /* true if region is all zero bits */ 1041 REG_OP_ALLOC, /* set all bits in region */ 1042 REG_OP_RELEASE, /* clear all bits in region */ 1043 }; 1044 1045 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) 1046 { 1047 int nbits_reg; /* number of bits in region */ 1048 int index; /* index first long of region in bitmap */ 1049 int offset; /* bit offset region in bitmap[index] */ 1050 int nlongs_reg; /* num longs spanned by region in bitmap */ 1051 int nbitsinlong; /* num bits of region in each spanned long */ 1052 unsigned long mask; /* bitmask for one long of region */ 1053 int i; /* scans bitmap by longs */ 1054 int ret = 0; /* return value */ 1055 1056 /* 1057 * Either nlongs_reg == 1 (for small orders that fit in one long) 1058 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1059 */ 1060 nbits_reg = 1 << order; 1061 index = pos / BITS_PER_LONG; 1062 offset = pos - (index * BITS_PER_LONG); 1063 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1064 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1065 1066 /* 1067 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1068 * overflows if nbitsinlong == BITS_PER_LONG. 1069 */ 1070 mask = (1UL << (nbitsinlong - 1)); 1071 mask += mask - 1; 1072 mask <<= offset; 1073 1074 switch (reg_op) { 1075 case REG_OP_ISFREE: 1076 for (i = 0; i < nlongs_reg; i++) { 1077 if (bitmap[index + i] & mask) 1078 goto done; 1079 } 1080 ret = 1; /* all bits in region free (zero) */ 1081 break; 1082 1083 case REG_OP_ALLOC: 1084 for (i = 0; i < nlongs_reg; i++) 1085 bitmap[index + i] |= mask; 1086 break; 1087 1088 case REG_OP_RELEASE: 1089 for (i = 0; i < nlongs_reg; i++) 1090 bitmap[index + i] &= ~mask; 1091 break; 1092 } 1093 done: 1094 return ret; 1095 } 1096 1097 /** 1098 * bitmap_find_free_region - find a contiguous aligned mem region 1099 * @bitmap: array of unsigned longs corresponding to the bitmap 1100 * @bits: number of bits in the bitmap 1101 * @order: region size (log base 2 of number of bits) to find 1102 * 1103 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1104 * allocate them (set them to one). Only consider regions of length 1105 * a power (@order) of two, aligned to that power of two, which 1106 * makes the search algorithm much faster. 1107 * 1108 * Return the bit offset in bitmap of the allocated region, 1109 * or -errno on failure. 1110 */ 1111 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) 1112 { 1113 int pos, end; /* scans bitmap by regions of size order */ 1114 1115 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) { 1116 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1117 continue; 1118 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1119 return pos; 1120 } 1121 return -ENOMEM; 1122 } 1123 EXPORT_SYMBOL(bitmap_find_free_region); 1124 1125 /** 1126 * bitmap_release_region - release allocated bitmap region 1127 * @bitmap: array of unsigned longs corresponding to the bitmap 1128 * @pos: beginning of bit region to release 1129 * @order: region size (log base 2 of number of bits) to release 1130 * 1131 * This is the complement to __bitmap_find_free_region() and releases 1132 * the found region (by clearing it in the bitmap). 1133 * 1134 * No return value. 1135 */ 1136 void bitmap_release_region(unsigned long *bitmap, int pos, int order) 1137 { 1138 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1139 } 1140 EXPORT_SYMBOL(bitmap_release_region); 1141 1142 /** 1143 * bitmap_allocate_region - allocate bitmap region 1144 * @bitmap: array of unsigned longs corresponding to the bitmap 1145 * @pos: beginning of bit region to allocate 1146 * @order: region size (log base 2 of number of bits) to allocate 1147 * 1148 * Allocate (set bits in) a specified region of a bitmap. 1149 * 1150 * Return 0 on success, or %-EBUSY if specified region wasn't 1151 * free (not all bits were zero). 1152 */ 1153 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) 1154 { 1155 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1156 return -EBUSY; 1157 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1158 return 0; 1159 } 1160 EXPORT_SYMBOL(bitmap_allocate_region); 1161 1162 /** 1163 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1164 * @dst: destination buffer 1165 * @src: bitmap to copy 1166 * @nbits: number of bits in the bitmap 1167 * 1168 * Require nbits % BITS_PER_LONG == 0. 1169 */ 1170 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) 1171 { 1172 unsigned long *d = dst; 1173 int i; 1174 1175 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1176 if (BITS_PER_LONG == 64) 1177 d[i] = cpu_to_le64(src[i]); 1178 else 1179 d[i] = cpu_to_le32(src[i]); 1180 } 1181 } 1182 EXPORT_SYMBOL(bitmap_copy_le); 1183