xref: /openbmc/linux/lib/bitmap.c (revision 9c1f8594)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40 
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43 	int k, lim = bits/BITS_PER_LONG;
44 	for (k = 0; k < lim; ++k)
45 		if (bitmap[k])
46 			return 0;
47 
48 	if (bits % BITS_PER_LONG)
49 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 			return 0;
51 
52 	return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55 
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58 	int k, lim = bits/BITS_PER_LONG;
59 	for (k = 0; k < lim; ++k)
60 		if (~bitmap[k])
61 			return 0;
62 
63 	if (bits % BITS_PER_LONG)
64 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 			return 0;
66 
67 	return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70 
71 int __bitmap_equal(const unsigned long *bitmap1,
72 		const unsigned long *bitmap2, int bits)
73 {
74 	int k, lim = bits/BITS_PER_LONG;
75 	for (k = 0; k < lim; ++k)
76 		if (bitmap1[k] != bitmap2[k])
77 			return 0;
78 
79 	if (bits % BITS_PER_LONG)
80 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 			return 0;
82 
83 	return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86 
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89 	int k, lim = bits/BITS_PER_LONG;
90 	for (k = 0; k < lim; ++k)
91 		dst[k] = ~src[k];
92 
93 	if (bits % BITS_PER_LONG)
94 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97 
98 /**
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst : destination bitmap
101  *   @src : source bitmap
102  *   @shift : shift by this many bits
103  *   @bits : bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110 			const unsigned long *src, int shift, int bits)
111 {
112 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 	unsigned long mask = (1UL << left) - 1;
115 	for (k = 0; off + k < lim; ++k) {
116 		unsigned long upper, lower;
117 
118 		/*
119 		 * If shift is not word aligned, take lower rem bits of
120 		 * word above and make them the top rem bits of result.
121 		 */
122 		if (!rem || off + k + 1 >= lim)
123 			upper = 0;
124 		else {
125 			upper = src[off + k + 1];
126 			if (off + k + 1 == lim - 1 && left)
127 				upper &= mask;
128 		}
129 		lower = src[off + k];
130 		if (left && off + k == lim - 1)
131 			lower &= mask;
132 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 		if (left && k == lim - 1)
134 			dst[k] &= mask;
135 	}
136 	if (off)
137 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140 
141 
142 /**
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst : destination bitmap
145  *   @src : source bitmap
146  *   @shift : shift by this many bits
147  *   @bits : bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153 
154 void __bitmap_shift_left(unsigned long *dst,
155 			const unsigned long *src, int shift, int bits)
156 {
157 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 	for (k = lim - off - 1; k >= 0; --k) {
160 		unsigned long upper, lower;
161 
162 		/*
163 		 * If shift is not word aligned, take upper rem bits of
164 		 * word below and make them the bottom rem bits of result.
165 		 */
166 		if (rem && k > 0)
167 			lower = src[k - 1];
168 		else
169 			lower = 0;
170 		upper = src[k];
171 		if (left && k == lim - 1)
172 			upper &= (1UL << left) - 1;
173 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174 		if (left && k + off == lim - 1)
175 			dst[k + off] &= (1UL << left) - 1;
176 	}
177 	if (off)
178 		memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181 
182 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, int bits)
184 {
185 	int k;
186 	int nr = BITS_TO_LONGS(bits);
187 	unsigned long result = 0;
188 
189 	for (k = 0; k < nr; k++)
190 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191 	return result != 0;
192 }
193 EXPORT_SYMBOL(__bitmap_and);
194 
195 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
196 				const unsigned long *bitmap2, int bits)
197 {
198 	int k;
199 	int nr = BITS_TO_LONGS(bits);
200 
201 	for (k = 0; k < nr; k++)
202 		dst[k] = bitmap1[k] | bitmap2[k];
203 }
204 EXPORT_SYMBOL(__bitmap_or);
205 
206 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
207 				const unsigned long *bitmap2, int bits)
208 {
209 	int k;
210 	int nr = BITS_TO_LONGS(bits);
211 
212 	for (k = 0; k < nr; k++)
213 		dst[k] = bitmap1[k] ^ bitmap2[k];
214 }
215 EXPORT_SYMBOL(__bitmap_xor);
216 
217 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
218 				const unsigned long *bitmap2, int bits)
219 {
220 	int k;
221 	int nr = BITS_TO_LONGS(bits);
222 	unsigned long result = 0;
223 
224 	for (k = 0; k < nr; k++)
225 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
226 	return result != 0;
227 }
228 EXPORT_SYMBOL(__bitmap_andnot);
229 
230 int __bitmap_intersects(const unsigned long *bitmap1,
231 				const unsigned long *bitmap2, int bits)
232 {
233 	int k, lim = bits/BITS_PER_LONG;
234 	for (k = 0; k < lim; ++k)
235 		if (bitmap1[k] & bitmap2[k])
236 			return 1;
237 
238 	if (bits % BITS_PER_LONG)
239 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
240 			return 1;
241 	return 0;
242 }
243 EXPORT_SYMBOL(__bitmap_intersects);
244 
245 int __bitmap_subset(const unsigned long *bitmap1,
246 				const unsigned long *bitmap2, int bits)
247 {
248 	int k, lim = bits/BITS_PER_LONG;
249 	for (k = 0; k < lim; ++k)
250 		if (bitmap1[k] & ~bitmap2[k])
251 			return 0;
252 
253 	if (bits % BITS_PER_LONG)
254 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
255 			return 0;
256 	return 1;
257 }
258 EXPORT_SYMBOL(__bitmap_subset);
259 
260 int __bitmap_weight(const unsigned long *bitmap, int bits)
261 {
262 	int k, w = 0, lim = bits/BITS_PER_LONG;
263 
264 	for (k = 0; k < lim; k++)
265 		w += hweight_long(bitmap[k]);
266 
267 	if (bits % BITS_PER_LONG)
268 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
269 
270 	return w;
271 }
272 EXPORT_SYMBOL(__bitmap_weight);
273 
274 void bitmap_set(unsigned long *map, int start, int nr)
275 {
276 	unsigned long *p = map + BIT_WORD(start);
277 	const int size = start + nr;
278 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
279 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
280 
281 	while (nr - bits_to_set >= 0) {
282 		*p |= mask_to_set;
283 		nr -= bits_to_set;
284 		bits_to_set = BITS_PER_LONG;
285 		mask_to_set = ~0UL;
286 		p++;
287 	}
288 	if (nr) {
289 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
290 		*p |= mask_to_set;
291 	}
292 }
293 EXPORT_SYMBOL(bitmap_set);
294 
295 void bitmap_clear(unsigned long *map, int start, int nr)
296 {
297 	unsigned long *p = map + BIT_WORD(start);
298 	const int size = start + nr;
299 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
300 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
301 
302 	while (nr - bits_to_clear >= 0) {
303 		*p &= ~mask_to_clear;
304 		nr -= bits_to_clear;
305 		bits_to_clear = BITS_PER_LONG;
306 		mask_to_clear = ~0UL;
307 		p++;
308 	}
309 	if (nr) {
310 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
311 		*p &= ~mask_to_clear;
312 	}
313 }
314 EXPORT_SYMBOL(bitmap_clear);
315 
316 /*
317  * bitmap_find_next_zero_area - find a contiguous aligned zero area
318  * @map: The address to base the search on
319  * @size: The bitmap size in bits
320  * @start: The bitnumber to start searching at
321  * @nr: The number of zeroed bits we're looking for
322  * @align_mask: Alignment mask for zero area
323  *
324  * The @align_mask should be one less than a power of 2; the effect is that
325  * the bit offset of all zero areas this function finds is multiples of that
326  * power of 2. A @align_mask of 0 means no alignment is required.
327  */
328 unsigned long bitmap_find_next_zero_area(unsigned long *map,
329 					 unsigned long size,
330 					 unsigned long start,
331 					 unsigned int nr,
332 					 unsigned long align_mask)
333 {
334 	unsigned long index, end, i;
335 again:
336 	index = find_next_zero_bit(map, size, start);
337 
338 	/* Align allocation */
339 	index = __ALIGN_MASK(index, align_mask);
340 
341 	end = index + nr;
342 	if (end > size)
343 		return end;
344 	i = find_next_bit(map, end, index);
345 	if (i < end) {
346 		start = i + 1;
347 		goto again;
348 	}
349 	return index;
350 }
351 EXPORT_SYMBOL(bitmap_find_next_zero_area);
352 
353 /*
354  * Bitmap printing & parsing functions: first version by Bill Irwin,
355  * second version by Paul Jackson, third by Joe Korty.
356  */
357 
358 #define CHUNKSZ				32
359 #define nbits_to_hold_value(val)	fls(val)
360 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
361 
362 /**
363  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
364  * @buf: byte buffer into which string is placed
365  * @buflen: reserved size of @buf, in bytes
366  * @maskp: pointer to bitmap to convert
367  * @nmaskbits: size of bitmap, in bits
368  *
369  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
370  * comma-separated sets of eight digits per set.
371  */
372 int bitmap_scnprintf(char *buf, unsigned int buflen,
373 	const unsigned long *maskp, int nmaskbits)
374 {
375 	int i, word, bit, len = 0;
376 	unsigned long val;
377 	const char *sep = "";
378 	int chunksz;
379 	u32 chunkmask;
380 
381 	chunksz = nmaskbits & (CHUNKSZ - 1);
382 	if (chunksz == 0)
383 		chunksz = CHUNKSZ;
384 
385 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
386 	for (; i >= 0; i -= CHUNKSZ) {
387 		chunkmask = ((1ULL << chunksz) - 1);
388 		word = i / BITS_PER_LONG;
389 		bit = i % BITS_PER_LONG;
390 		val = (maskp[word] >> bit) & chunkmask;
391 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
392 			(chunksz+3)/4, val);
393 		chunksz = CHUNKSZ;
394 		sep = ",";
395 	}
396 	return len;
397 }
398 EXPORT_SYMBOL(bitmap_scnprintf);
399 
400 /**
401  * __bitmap_parse - convert an ASCII hex string into a bitmap.
402  * @buf: pointer to buffer containing string.
403  * @buflen: buffer size in bytes.  If string is smaller than this
404  *    then it must be terminated with a \0.
405  * @is_user: location of buffer, 0 indicates kernel space
406  * @maskp: pointer to bitmap array that will contain result.
407  * @nmaskbits: size of bitmap, in bits.
408  *
409  * Commas group hex digits into chunks.  Each chunk defines exactly 32
410  * bits of the resultant bitmask.  No chunk may specify a value larger
411  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
412  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
413  * characters and for grouping errors such as "1,,5", ",44", "," and "".
414  * Leading and trailing whitespace accepted, but not embedded whitespace.
415  */
416 int __bitmap_parse(const char *buf, unsigned int buflen,
417 		int is_user, unsigned long *maskp,
418 		int nmaskbits)
419 {
420 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
421 	u32 chunk;
422 	const char __user *ubuf = buf;
423 
424 	bitmap_zero(maskp, nmaskbits);
425 
426 	nchunks = nbits = totaldigits = c = 0;
427 	do {
428 		chunk = ndigits = 0;
429 
430 		/* Get the next chunk of the bitmap */
431 		while (buflen) {
432 			old_c = c;
433 			if (is_user) {
434 				if (__get_user(c, ubuf++))
435 					return -EFAULT;
436 			}
437 			else
438 				c = *buf++;
439 			buflen--;
440 			if (isspace(c))
441 				continue;
442 
443 			/*
444 			 * If the last character was a space and the current
445 			 * character isn't '\0', we've got embedded whitespace.
446 			 * This is a no-no, so throw an error.
447 			 */
448 			if (totaldigits && c && isspace(old_c))
449 				return -EINVAL;
450 
451 			/* A '\0' or a ',' signal the end of the chunk */
452 			if (c == '\0' || c == ',')
453 				break;
454 
455 			if (!isxdigit(c))
456 				return -EINVAL;
457 
458 			/*
459 			 * Make sure there are at least 4 free bits in 'chunk'.
460 			 * If not, this hexdigit will overflow 'chunk', so
461 			 * throw an error.
462 			 */
463 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
464 				return -EOVERFLOW;
465 
466 			chunk = (chunk << 4) | hex_to_bin(c);
467 			ndigits++; totaldigits++;
468 		}
469 		if (ndigits == 0)
470 			return -EINVAL;
471 		if (nchunks == 0 && chunk == 0)
472 			continue;
473 
474 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
475 		*maskp |= chunk;
476 		nchunks++;
477 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
478 		if (nbits > nmaskbits)
479 			return -EOVERFLOW;
480 	} while (buflen && c == ',');
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL(__bitmap_parse);
485 
486 /**
487  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
488  *
489  * @ubuf: pointer to user buffer containing string.
490  * @ulen: buffer size in bytes.  If string is smaller than this
491  *    then it must be terminated with a \0.
492  * @maskp: pointer to bitmap array that will contain result.
493  * @nmaskbits: size of bitmap, in bits.
494  *
495  * Wrapper for __bitmap_parse(), providing it with user buffer.
496  *
497  * We cannot have this as an inline function in bitmap.h because it needs
498  * linux/uaccess.h to get the access_ok() declaration and this causes
499  * cyclic dependencies.
500  */
501 int bitmap_parse_user(const char __user *ubuf,
502 			unsigned int ulen, unsigned long *maskp,
503 			int nmaskbits)
504 {
505 	if (!access_ok(VERIFY_READ, ubuf, ulen))
506 		return -EFAULT;
507 	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
508 }
509 EXPORT_SYMBOL(bitmap_parse_user);
510 
511 /*
512  * bscnl_emit(buf, buflen, rbot, rtop, bp)
513  *
514  * Helper routine for bitmap_scnlistprintf().  Write decimal number
515  * or range to buf, suppressing output past buf+buflen, with optional
516  * comma-prefix.  Return len of what would be written to buf, if it
517  * all fit.
518  */
519 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
520 {
521 	if (len > 0)
522 		len += scnprintf(buf + len, buflen - len, ",");
523 	if (rbot == rtop)
524 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
525 	else
526 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
527 	return len;
528 }
529 
530 /**
531  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
532  * @buf: byte buffer into which string is placed
533  * @buflen: reserved size of @buf, in bytes
534  * @maskp: pointer to bitmap to convert
535  * @nmaskbits: size of bitmap, in bits
536  *
537  * Output format is a comma-separated list of decimal numbers and
538  * ranges.  Consecutively set bits are shown as two hyphen-separated
539  * decimal numbers, the smallest and largest bit numbers set in
540  * the range.  Output format is compatible with the format
541  * accepted as input by bitmap_parselist().
542  *
543  * The return value is the number of characters which would be
544  * generated for the given input, excluding the trailing '\0', as
545  * per ISO C99.
546  */
547 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
548 	const unsigned long *maskp, int nmaskbits)
549 {
550 	int len = 0;
551 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
552 	int cur, rbot, rtop;
553 
554 	if (buflen == 0)
555 		return 0;
556 	buf[0] = 0;
557 
558 	rbot = cur = find_first_bit(maskp, nmaskbits);
559 	while (cur < nmaskbits) {
560 		rtop = cur;
561 		cur = find_next_bit(maskp, nmaskbits, cur+1);
562 		if (cur >= nmaskbits || cur > rtop + 1) {
563 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
564 			rbot = cur;
565 		}
566 	}
567 	return len;
568 }
569 EXPORT_SYMBOL(bitmap_scnlistprintf);
570 
571 /**
572  * __bitmap_parselist - convert list format ASCII string to bitmap
573  * @buf: read nul-terminated user string from this buffer
574  * @buflen: buffer size in bytes.  If string is smaller than this
575  *    then it must be terminated with a \0.
576  * @is_user: location of buffer, 0 indicates kernel space
577  * @maskp: write resulting mask here
578  * @nmaskbits: number of bits in mask to be written
579  *
580  * Input format is a comma-separated list of decimal numbers and
581  * ranges.  Consecutively set bits are shown as two hyphen-separated
582  * decimal numbers, the smallest and largest bit numbers set in
583  * the range.
584  *
585  * Returns 0 on success, -errno on invalid input strings.
586  * Error values:
587  *    %-EINVAL: second number in range smaller than first
588  *    %-EINVAL: invalid character in string
589  *    %-ERANGE: bit number specified too large for mask
590  */
591 static int __bitmap_parselist(const char *buf, unsigned int buflen,
592 		int is_user, unsigned long *maskp,
593 		int nmaskbits)
594 {
595 	unsigned a, b;
596 	int c, old_c, totaldigits;
597 	const char __user *ubuf = buf;
598 	int exp_digit, in_range;
599 
600 	totaldigits = c = 0;
601 	bitmap_zero(maskp, nmaskbits);
602 	do {
603 		exp_digit = 1;
604 		in_range = 0;
605 		a = b = 0;
606 
607 		/* Get the next cpu# or a range of cpu#'s */
608 		while (buflen) {
609 			old_c = c;
610 			if (is_user) {
611 				if (__get_user(c, ubuf++))
612 					return -EFAULT;
613 			} else
614 				c = *buf++;
615 			buflen--;
616 			if (isspace(c))
617 				continue;
618 
619 			/*
620 			 * If the last character was a space and the current
621 			 * character isn't '\0', we've got embedded whitespace.
622 			 * This is a no-no, so throw an error.
623 			 */
624 			if (totaldigits && c && isspace(old_c))
625 				return -EINVAL;
626 
627 			/* A '\0' or a ',' signal the end of a cpu# or range */
628 			if (c == '\0' || c == ',')
629 				break;
630 
631 			if (c == '-') {
632 				if (exp_digit || in_range)
633 					return -EINVAL;
634 				b = 0;
635 				in_range = 1;
636 				exp_digit = 1;
637 				continue;
638 			}
639 
640 			if (!isdigit(c))
641 				return -EINVAL;
642 
643 			b = b * 10 + (c - '0');
644 			if (!in_range)
645 				a = b;
646 			exp_digit = 0;
647 			totaldigits++;
648 		}
649 		if (!(a <= b))
650 			return -EINVAL;
651 		if (b >= nmaskbits)
652 			return -ERANGE;
653 		while (a <= b) {
654 			set_bit(a, maskp);
655 			a++;
656 		}
657 	} while (buflen && c == ',');
658 	return 0;
659 }
660 
661 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
662 {
663 	char *nl  = strchr(bp, '\n');
664 	int len;
665 
666 	if (nl)
667 		len = nl - bp;
668 	else
669 		len = strlen(bp);
670 
671 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
672 }
673 EXPORT_SYMBOL(bitmap_parselist);
674 
675 
676 /**
677  * bitmap_parselist_user()
678  *
679  * @ubuf: pointer to user buffer containing string.
680  * @ulen: buffer size in bytes.  If string is smaller than this
681  *    then it must be terminated with a \0.
682  * @maskp: pointer to bitmap array that will contain result.
683  * @nmaskbits: size of bitmap, in bits.
684  *
685  * Wrapper for bitmap_parselist(), providing it with user buffer.
686  *
687  * We cannot have this as an inline function in bitmap.h because it needs
688  * linux/uaccess.h to get the access_ok() declaration and this causes
689  * cyclic dependencies.
690  */
691 int bitmap_parselist_user(const char __user *ubuf,
692 			unsigned int ulen, unsigned long *maskp,
693 			int nmaskbits)
694 {
695 	if (!access_ok(VERIFY_READ, ubuf, ulen))
696 		return -EFAULT;
697 	return __bitmap_parselist((const char *)ubuf,
698 					ulen, 1, maskp, nmaskbits);
699 }
700 EXPORT_SYMBOL(bitmap_parselist_user);
701 
702 
703 /**
704  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
705  *	@buf: pointer to a bitmap
706  *	@pos: a bit position in @buf (0 <= @pos < @bits)
707  *	@bits: number of valid bit positions in @buf
708  *
709  * Map the bit at position @pos in @buf (of length @bits) to the
710  * ordinal of which set bit it is.  If it is not set or if @pos
711  * is not a valid bit position, map to -1.
712  *
713  * If for example, just bits 4 through 7 are set in @buf, then @pos
714  * values 4 through 7 will get mapped to 0 through 3, respectively,
715  * and other @pos values will get mapped to 0.  When @pos value 7
716  * gets mapped to (returns) @ord value 3 in this example, that means
717  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
718  *
719  * The bit positions 0 through @bits are valid positions in @buf.
720  */
721 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
722 {
723 	int i, ord;
724 
725 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
726 		return -1;
727 
728 	i = find_first_bit(buf, bits);
729 	ord = 0;
730 	while (i < pos) {
731 		i = find_next_bit(buf, bits, i + 1);
732 	     	ord++;
733 	}
734 	BUG_ON(i != pos);
735 
736 	return ord;
737 }
738 
739 /**
740  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
741  *	@buf: pointer to bitmap
742  *	@ord: ordinal bit position (n-th set bit, n >= 0)
743  *	@bits: number of valid bit positions in @buf
744  *
745  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
746  * Value of @ord should be in range 0 <= @ord < weight(buf), else
747  * results are undefined.
748  *
749  * If for example, just bits 4 through 7 are set in @buf, then @ord
750  * values 0 through 3 will get mapped to 4 through 7, respectively,
751  * and all other @ord values return undefined values.  When @ord value 3
752  * gets mapped to (returns) @pos value 7 in this example, that means
753  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
754  *
755  * The bit positions 0 through @bits are valid positions in @buf.
756  */
757 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
758 {
759 	int pos = 0;
760 
761 	if (ord >= 0 && ord < bits) {
762 		int i;
763 
764 		for (i = find_first_bit(buf, bits);
765 		     i < bits && ord > 0;
766 		     i = find_next_bit(buf, bits, i + 1))
767 	     		ord--;
768 		if (i < bits && ord == 0)
769 			pos = i;
770 	}
771 
772 	return pos;
773 }
774 
775 /**
776  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
777  *	@dst: remapped result
778  *	@src: subset to be remapped
779  *	@old: defines domain of map
780  *	@new: defines range of map
781  *	@bits: number of bits in each of these bitmaps
782  *
783  * Let @old and @new define a mapping of bit positions, such that
784  * whatever position is held by the n-th set bit in @old is mapped
785  * to the n-th set bit in @new.  In the more general case, allowing
786  * for the possibility that the weight 'w' of @new is less than the
787  * weight of @old, map the position of the n-th set bit in @old to
788  * the position of the m-th set bit in @new, where m == n % w.
789  *
790  * If either of the @old and @new bitmaps are empty, or if @src and
791  * @dst point to the same location, then this routine copies @src
792  * to @dst.
793  *
794  * The positions of unset bits in @old are mapped to themselves
795  * (the identify map).
796  *
797  * Apply the above specified mapping to @src, placing the result in
798  * @dst, clearing any bits previously set in @dst.
799  *
800  * For example, lets say that @old has bits 4 through 7 set, and
801  * @new has bits 12 through 15 set.  This defines the mapping of bit
802  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
803  * bit positions unchanged.  So if say @src comes into this routine
804  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
805  * 13 and 15 set.
806  */
807 void bitmap_remap(unsigned long *dst, const unsigned long *src,
808 		const unsigned long *old, const unsigned long *new,
809 		int bits)
810 {
811 	int oldbit, w;
812 
813 	if (dst == src)		/* following doesn't handle inplace remaps */
814 		return;
815 	bitmap_zero(dst, bits);
816 
817 	w = bitmap_weight(new, bits);
818 	for_each_set_bit(oldbit, src, bits) {
819 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
820 
821 		if (n < 0 || w == 0)
822 			set_bit(oldbit, dst);	/* identity map */
823 		else
824 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
825 	}
826 }
827 EXPORT_SYMBOL(bitmap_remap);
828 
829 /**
830  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
831  *	@oldbit: bit position to be mapped
832  *	@old: defines domain of map
833  *	@new: defines range of map
834  *	@bits: number of bits in each of these bitmaps
835  *
836  * Let @old and @new define a mapping of bit positions, such that
837  * whatever position is held by the n-th set bit in @old is mapped
838  * to the n-th set bit in @new.  In the more general case, allowing
839  * for the possibility that the weight 'w' of @new is less than the
840  * weight of @old, map the position of the n-th set bit in @old to
841  * the position of the m-th set bit in @new, where m == n % w.
842  *
843  * The positions of unset bits in @old are mapped to themselves
844  * (the identify map).
845  *
846  * Apply the above specified mapping to bit position @oldbit, returning
847  * the new bit position.
848  *
849  * For example, lets say that @old has bits 4 through 7 set, and
850  * @new has bits 12 through 15 set.  This defines the mapping of bit
851  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
852  * bit positions unchanged.  So if say @oldbit is 5, then this routine
853  * returns 13.
854  */
855 int bitmap_bitremap(int oldbit, const unsigned long *old,
856 				const unsigned long *new, int bits)
857 {
858 	int w = bitmap_weight(new, bits);
859 	int n = bitmap_pos_to_ord(old, oldbit, bits);
860 	if (n < 0 || w == 0)
861 		return oldbit;
862 	else
863 		return bitmap_ord_to_pos(new, n % w, bits);
864 }
865 EXPORT_SYMBOL(bitmap_bitremap);
866 
867 /**
868  * bitmap_onto - translate one bitmap relative to another
869  *	@dst: resulting translated bitmap
870  * 	@orig: original untranslated bitmap
871  * 	@relmap: bitmap relative to which translated
872  *	@bits: number of bits in each of these bitmaps
873  *
874  * Set the n-th bit of @dst iff there exists some m such that the
875  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
876  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
877  * (If you understood the previous sentence the first time your
878  * read it, you're overqualified for your current job.)
879  *
880  * In other words, @orig is mapped onto (surjectively) @dst,
881  * using the the map { <n, m> | the n-th bit of @relmap is the
882  * m-th set bit of @relmap }.
883  *
884  * Any set bits in @orig above bit number W, where W is the
885  * weight of (number of set bits in) @relmap are mapped nowhere.
886  * In particular, if for all bits m set in @orig, m >= W, then
887  * @dst will end up empty.  In situations where the possibility
888  * of such an empty result is not desired, one way to avoid it is
889  * to use the bitmap_fold() operator, below, to first fold the
890  * @orig bitmap over itself so that all its set bits x are in the
891  * range 0 <= x < W.  The bitmap_fold() operator does this by
892  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
893  *
894  * Example [1] for bitmap_onto():
895  *  Let's say @relmap has bits 30-39 set, and @orig has bits
896  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
897  *  @dst will have bits 31, 33, 35, 37 and 39 set.
898  *
899  *  When bit 0 is set in @orig, it means turn on the bit in
900  *  @dst corresponding to whatever is the first bit (if any)
901  *  that is turned on in @relmap.  Since bit 0 was off in the
902  *  above example, we leave off that bit (bit 30) in @dst.
903  *
904  *  When bit 1 is set in @orig (as in the above example), it
905  *  means turn on the bit in @dst corresponding to whatever
906  *  is the second bit that is turned on in @relmap.  The second
907  *  bit in @relmap that was turned on in the above example was
908  *  bit 31, so we turned on bit 31 in @dst.
909  *
910  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
911  *  because they were the 4th, 6th, 8th and 10th set bits
912  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
913  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
914  *
915  *  When bit 11 is set in @orig, it means turn on the bit in
916  *  @dst corresponding to whatever is the twelfth bit that is
917  *  turned on in @relmap.  In the above example, there were
918  *  only ten bits turned on in @relmap (30..39), so that bit
919  *  11 was set in @orig had no affect on @dst.
920  *
921  * Example [2] for bitmap_fold() + bitmap_onto():
922  *  Let's say @relmap has these ten bits set:
923  *		40 41 42 43 45 48 53 61 74 95
924  *  (for the curious, that's 40 plus the first ten terms of the
925  *  Fibonacci sequence.)
926  *
927  *  Further lets say we use the following code, invoking
928  *  bitmap_fold() then bitmap_onto, as suggested above to
929  *  avoid the possitility of an empty @dst result:
930  *
931  *	unsigned long *tmp;	// a temporary bitmap's bits
932  *
933  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
934  *	bitmap_onto(dst, tmp, relmap, bits);
935  *
936  *  Then this table shows what various values of @dst would be, for
937  *  various @orig's.  I list the zero-based positions of each set bit.
938  *  The tmp column shows the intermediate result, as computed by
939  *  using bitmap_fold() to fold the @orig bitmap modulo ten
940  *  (the weight of @relmap).
941  *
942  *      @orig           tmp            @dst
943  *      0                0             40
944  *      1                1             41
945  *      9                9             95
946  *      10               0             40 (*)
947  *      1 3 5 7          1 3 5 7       41 43 48 61
948  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
949  *      0 9 18 27        0 9 8 7       40 61 74 95
950  *      0 10 20 30       0             40
951  *      0 11 22 33       0 1 2 3       40 41 42 43
952  *      0 12 24 36       0 2 4 6       40 42 45 53
953  *      78 102 211       1 2 8         41 42 74 (*)
954  *
955  * (*) For these marked lines, if we hadn't first done bitmap_fold()
956  *     into tmp, then the @dst result would have been empty.
957  *
958  * If either of @orig or @relmap is empty (no set bits), then @dst
959  * will be returned empty.
960  *
961  * If (as explained above) the only set bits in @orig are in positions
962  * m where m >= W, (where W is the weight of @relmap) then @dst will
963  * once again be returned empty.
964  *
965  * All bits in @dst not set by the above rule are cleared.
966  */
967 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
968 			const unsigned long *relmap, int bits)
969 {
970 	int n, m;       	/* same meaning as in above comment */
971 
972 	if (dst == orig)	/* following doesn't handle inplace mappings */
973 		return;
974 	bitmap_zero(dst, bits);
975 
976 	/*
977 	 * The following code is a more efficient, but less
978 	 * obvious, equivalent to the loop:
979 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
980 	 *		n = bitmap_ord_to_pos(orig, m, bits);
981 	 *		if (test_bit(m, orig))
982 	 *			set_bit(n, dst);
983 	 *	}
984 	 */
985 
986 	m = 0;
987 	for_each_set_bit(n, relmap, bits) {
988 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
989 		if (test_bit(m, orig))
990 			set_bit(n, dst);
991 		m++;
992 	}
993 }
994 EXPORT_SYMBOL(bitmap_onto);
995 
996 /**
997  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
998  *	@dst: resulting smaller bitmap
999  *	@orig: original larger bitmap
1000  *	@sz: specified size
1001  *	@bits: number of bits in each of these bitmaps
1002  *
1003  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1004  * Clear all other bits in @dst.  See further the comment and
1005  * Example [2] for bitmap_onto() for why and how to use this.
1006  */
1007 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1008 			int sz, int bits)
1009 {
1010 	int oldbit;
1011 
1012 	if (dst == orig)	/* following doesn't handle inplace mappings */
1013 		return;
1014 	bitmap_zero(dst, bits);
1015 
1016 	for_each_set_bit(oldbit, orig, bits)
1017 		set_bit(oldbit % sz, dst);
1018 }
1019 EXPORT_SYMBOL(bitmap_fold);
1020 
1021 /*
1022  * Common code for bitmap_*_region() routines.
1023  *	bitmap: array of unsigned longs corresponding to the bitmap
1024  *	pos: the beginning of the region
1025  *	order: region size (log base 2 of number of bits)
1026  *	reg_op: operation(s) to perform on that region of bitmap
1027  *
1028  * Can set, verify and/or release a region of bits in a bitmap,
1029  * depending on which combination of REG_OP_* flag bits is set.
1030  *
1031  * A region of a bitmap is a sequence of bits in the bitmap, of
1032  * some size '1 << order' (a power of two), aligned to that same
1033  * '1 << order' power of two.
1034  *
1035  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1036  * Returns 0 in all other cases and reg_ops.
1037  */
1038 
1039 enum {
1040 	REG_OP_ISFREE,		/* true if region is all zero bits */
1041 	REG_OP_ALLOC,		/* set all bits in region */
1042 	REG_OP_RELEASE,		/* clear all bits in region */
1043 };
1044 
1045 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1046 {
1047 	int nbits_reg;		/* number of bits in region */
1048 	int index;		/* index first long of region in bitmap */
1049 	int offset;		/* bit offset region in bitmap[index] */
1050 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1051 	int nbitsinlong;	/* num bits of region in each spanned long */
1052 	unsigned long mask;	/* bitmask for one long of region */
1053 	int i;			/* scans bitmap by longs */
1054 	int ret = 0;		/* return value */
1055 
1056 	/*
1057 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1058 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1059 	 */
1060 	nbits_reg = 1 << order;
1061 	index = pos / BITS_PER_LONG;
1062 	offset = pos - (index * BITS_PER_LONG);
1063 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1064 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1065 
1066 	/*
1067 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1068 	 * overflows if nbitsinlong == BITS_PER_LONG.
1069 	 */
1070 	mask = (1UL << (nbitsinlong - 1));
1071 	mask += mask - 1;
1072 	mask <<= offset;
1073 
1074 	switch (reg_op) {
1075 	case REG_OP_ISFREE:
1076 		for (i = 0; i < nlongs_reg; i++) {
1077 			if (bitmap[index + i] & mask)
1078 				goto done;
1079 		}
1080 		ret = 1;	/* all bits in region free (zero) */
1081 		break;
1082 
1083 	case REG_OP_ALLOC:
1084 		for (i = 0; i < nlongs_reg; i++)
1085 			bitmap[index + i] |= mask;
1086 		break;
1087 
1088 	case REG_OP_RELEASE:
1089 		for (i = 0; i < nlongs_reg; i++)
1090 			bitmap[index + i] &= ~mask;
1091 		break;
1092 	}
1093 done:
1094 	return ret;
1095 }
1096 
1097 /**
1098  * bitmap_find_free_region - find a contiguous aligned mem region
1099  *	@bitmap: array of unsigned longs corresponding to the bitmap
1100  *	@bits: number of bits in the bitmap
1101  *	@order: region size (log base 2 of number of bits) to find
1102  *
1103  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1104  * allocate them (set them to one).  Only consider regions of length
1105  * a power (@order) of two, aligned to that power of two, which
1106  * makes the search algorithm much faster.
1107  *
1108  * Return the bit offset in bitmap of the allocated region,
1109  * or -errno on failure.
1110  */
1111 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1112 {
1113 	int pos, end;		/* scans bitmap by regions of size order */
1114 
1115 	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1116 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1117 			continue;
1118 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1119 		return pos;
1120 	}
1121 	return -ENOMEM;
1122 }
1123 EXPORT_SYMBOL(bitmap_find_free_region);
1124 
1125 /**
1126  * bitmap_release_region - release allocated bitmap region
1127  *	@bitmap: array of unsigned longs corresponding to the bitmap
1128  *	@pos: beginning of bit region to release
1129  *	@order: region size (log base 2 of number of bits) to release
1130  *
1131  * This is the complement to __bitmap_find_free_region() and releases
1132  * the found region (by clearing it in the bitmap).
1133  *
1134  * No return value.
1135  */
1136 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1137 {
1138 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1139 }
1140 EXPORT_SYMBOL(bitmap_release_region);
1141 
1142 /**
1143  * bitmap_allocate_region - allocate bitmap region
1144  *	@bitmap: array of unsigned longs corresponding to the bitmap
1145  *	@pos: beginning of bit region to allocate
1146  *	@order: region size (log base 2 of number of bits) to allocate
1147  *
1148  * Allocate (set bits in) a specified region of a bitmap.
1149  *
1150  * Return 0 on success, or %-EBUSY if specified region wasn't
1151  * free (not all bits were zero).
1152  */
1153 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1154 {
1155 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1156 		return -EBUSY;
1157 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1158 	return 0;
1159 }
1160 EXPORT_SYMBOL(bitmap_allocate_region);
1161 
1162 /**
1163  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1164  * @dst:   destination buffer
1165  * @src:   bitmap to copy
1166  * @nbits: number of bits in the bitmap
1167  *
1168  * Require nbits % BITS_PER_LONG == 0.
1169  */
1170 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1171 {
1172 	unsigned long *d = dst;
1173 	int i;
1174 
1175 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1176 		if (BITS_PER_LONG == 64)
1177 			d[i] = cpu_to_le64(src[i]);
1178 		else
1179 			d[i] = cpu_to_le32(src[i]);
1180 	}
1181 }
1182 EXPORT_SYMBOL(bitmap_copy_le);
1183