1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 16 #include <asm/page.h> 17 #include <asm/uaccess.h> 18 19 /* 20 * bitmaps provide an array of bits, implemented using an an 21 * array of unsigned longs. The number of valid bits in a 22 * given bitmap does _not_ need to be an exact multiple of 23 * BITS_PER_LONG. 24 * 25 * The possible unused bits in the last, partially used word 26 * of a bitmap are 'don't care'. The implementation makes 27 * no particular effort to keep them zero. It ensures that 28 * their value will not affect the results of any operation. 29 * The bitmap operations that return Boolean (bitmap_empty, 30 * for example) or scalar (bitmap_weight, for example) results 31 * carefully filter out these unused bits from impacting their 32 * results. 33 * 34 * These operations actually hold to a slightly stronger rule: 35 * if you don't input any bitmaps to these ops that have some 36 * unused bits set, then they won't output any set unused bits 37 * in output bitmaps. 38 * 39 * The byte ordering of bitmaps is more natural on little 40 * endian architectures. See the big-endian headers 41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 42 * for the best explanations of this ordering. 43 */ 44 45 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits) 46 { 47 unsigned int k, lim = bits/BITS_PER_LONG; 48 for (k = 0; k < lim; ++k) 49 if (bitmap[k]) 50 return 0; 51 52 if (bits % BITS_PER_LONG) 53 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 54 return 0; 55 56 return 1; 57 } 58 EXPORT_SYMBOL(__bitmap_empty); 59 60 int __bitmap_full(const unsigned long *bitmap, unsigned int bits) 61 { 62 unsigned int k, lim = bits/BITS_PER_LONG; 63 for (k = 0; k < lim; ++k) 64 if (~bitmap[k]) 65 return 0; 66 67 if (bits % BITS_PER_LONG) 68 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 69 return 0; 70 71 return 1; 72 } 73 EXPORT_SYMBOL(__bitmap_full); 74 75 int __bitmap_equal(const unsigned long *bitmap1, 76 const unsigned long *bitmap2, unsigned int bits) 77 { 78 unsigned int k, lim = bits/BITS_PER_LONG; 79 for (k = 0; k < lim; ++k) 80 if (bitmap1[k] != bitmap2[k]) 81 return 0; 82 83 if (bits % BITS_PER_LONG) 84 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 85 return 0; 86 87 return 1; 88 } 89 EXPORT_SYMBOL(__bitmap_equal); 90 91 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 92 { 93 unsigned int k, lim = bits/BITS_PER_LONG; 94 for (k = 0; k < lim; ++k) 95 dst[k] = ~src[k]; 96 97 if (bits % BITS_PER_LONG) 98 dst[k] = ~src[k]; 99 } 100 EXPORT_SYMBOL(__bitmap_complement); 101 102 /** 103 * __bitmap_shift_right - logical right shift of the bits in a bitmap 104 * @dst : destination bitmap 105 * @src : source bitmap 106 * @shift : shift by this many bits 107 * @nbits : bitmap size, in bits 108 * 109 * Shifting right (dividing) means moving bits in the MS -> LS bit 110 * direction. Zeros are fed into the vacated MS positions and the 111 * LS bits shifted off the bottom are lost. 112 */ 113 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 114 unsigned shift, unsigned nbits) 115 { 116 unsigned k, lim = BITS_TO_LONGS(nbits); 117 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 118 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 119 for (k = 0; off + k < lim; ++k) { 120 unsigned long upper, lower; 121 122 /* 123 * If shift is not word aligned, take lower rem bits of 124 * word above and make them the top rem bits of result. 125 */ 126 if (!rem || off + k + 1 >= lim) 127 upper = 0; 128 else { 129 upper = src[off + k + 1]; 130 if (off + k + 1 == lim - 1) 131 upper &= mask; 132 upper <<= (BITS_PER_LONG - rem); 133 } 134 lower = src[off + k]; 135 if (off + k == lim - 1) 136 lower &= mask; 137 lower >>= rem; 138 dst[k] = lower | upper; 139 } 140 if (off) 141 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 142 } 143 EXPORT_SYMBOL(__bitmap_shift_right); 144 145 146 /** 147 * __bitmap_shift_left - logical left shift of the bits in a bitmap 148 * @dst : destination bitmap 149 * @src : source bitmap 150 * @shift : shift by this many bits 151 * @nbits : bitmap size, in bits 152 * 153 * Shifting left (multiplying) means moving bits in the LS -> MS 154 * direction. Zeros are fed into the vacated LS bit positions 155 * and those MS bits shifted off the top are lost. 156 */ 157 158 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 159 unsigned int shift, unsigned int nbits) 160 { 161 int k; 162 unsigned int lim = BITS_TO_LONGS(nbits); 163 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 164 for (k = lim - off - 1; k >= 0; --k) { 165 unsigned long upper, lower; 166 167 /* 168 * If shift is not word aligned, take upper rem bits of 169 * word below and make them the bottom rem bits of result. 170 */ 171 if (rem && k > 0) 172 lower = src[k - 1] >> (BITS_PER_LONG - rem); 173 else 174 lower = 0; 175 upper = src[k] << rem; 176 dst[k + off] = lower | upper; 177 } 178 if (off) 179 memset(dst, 0, off*sizeof(unsigned long)); 180 } 181 EXPORT_SYMBOL(__bitmap_shift_left); 182 183 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 184 const unsigned long *bitmap2, unsigned int bits) 185 { 186 unsigned int k; 187 unsigned int lim = bits/BITS_PER_LONG; 188 unsigned long result = 0; 189 190 for (k = 0; k < lim; k++) 191 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 192 if (bits % BITS_PER_LONG) 193 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 194 BITMAP_LAST_WORD_MASK(bits)); 195 return result != 0; 196 } 197 EXPORT_SYMBOL(__bitmap_and); 198 199 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 200 const unsigned long *bitmap2, unsigned int bits) 201 { 202 unsigned int k; 203 unsigned int nr = BITS_TO_LONGS(bits); 204 205 for (k = 0; k < nr; k++) 206 dst[k] = bitmap1[k] | bitmap2[k]; 207 } 208 EXPORT_SYMBOL(__bitmap_or); 209 210 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 211 const unsigned long *bitmap2, unsigned int bits) 212 { 213 unsigned int k; 214 unsigned int nr = BITS_TO_LONGS(bits); 215 216 for (k = 0; k < nr; k++) 217 dst[k] = bitmap1[k] ^ bitmap2[k]; 218 } 219 EXPORT_SYMBOL(__bitmap_xor); 220 221 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 222 const unsigned long *bitmap2, unsigned int bits) 223 { 224 unsigned int k; 225 unsigned int lim = bits/BITS_PER_LONG; 226 unsigned long result = 0; 227 228 for (k = 0; k < lim; k++) 229 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 230 if (bits % BITS_PER_LONG) 231 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 232 BITMAP_LAST_WORD_MASK(bits)); 233 return result != 0; 234 } 235 EXPORT_SYMBOL(__bitmap_andnot); 236 237 int __bitmap_intersects(const unsigned long *bitmap1, 238 const unsigned long *bitmap2, unsigned int bits) 239 { 240 unsigned int k, lim = bits/BITS_PER_LONG; 241 for (k = 0; k < lim; ++k) 242 if (bitmap1[k] & bitmap2[k]) 243 return 1; 244 245 if (bits % BITS_PER_LONG) 246 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 247 return 1; 248 return 0; 249 } 250 EXPORT_SYMBOL(__bitmap_intersects); 251 252 int __bitmap_subset(const unsigned long *bitmap1, 253 const unsigned long *bitmap2, unsigned int bits) 254 { 255 unsigned int k, lim = bits/BITS_PER_LONG; 256 for (k = 0; k < lim; ++k) 257 if (bitmap1[k] & ~bitmap2[k]) 258 return 0; 259 260 if (bits % BITS_PER_LONG) 261 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 262 return 0; 263 return 1; 264 } 265 EXPORT_SYMBOL(__bitmap_subset); 266 267 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 268 { 269 unsigned int k, lim = bits/BITS_PER_LONG; 270 int w = 0; 271 272 for (k = 0; k < lim; k++) 273 w += hweight_long(bitmap[k]); 274 275 if (bits % BITS_PER_LONG) 276 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 277 278 return w; 279 } 280 EXPORT_SYMBOL(__bitmap_weight); 281 282 void bitmap_set(unsigned long *map, unsigned int start, int len) 283 { 284 unsigned long *p = map + BIT_WORD(start); 285 const unsigned int size = start + len; 286 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 287 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 288 289 while (len - bits_to_set >= 0) { 290 *p |= mask_to_set; 291 len -= bits_to_set; 292 bits_to_set = BITS_PER_LONG; 293 mask_to_set = ~0UL; 294 p++; 295 } 296 if (len) { 297 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 298 *p |= mask_to_set; 299 } 300 } 301 EXPORT_SYMBOL(bitmap_set); 302 303 void bitmap_clear(unsigned long *map, unsigned int start, int len) 304 { 305 unsigned long *p = map + BIT_WORD(start); 306 const unsigned int size = start + len; 307 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 308 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 309 310 while (len - bits_to_clear >= 0) { 311 *p &= ~mask_to_clear; 312 len -= bits_to_clear; 313 bits_to_clear = BITS_PER_LONG; 314 mask_to_clear = ~0UL; 315 p++; 316 } 317 if (len) { 318 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 319 *p &= ~mask_to_clear; 320 } 321 } 322 EXPORT_SYMBOL(bitmap_clear); 323 324 /** 325 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 326 * @map: The address to base the search on 327 * @size: The bitmap size in bits 328 * @start: The bitnumber to start searching at 329 * @nr: The number of zeroed bits we're looking for 330 * @align_mask: Alignment mask for zero area 331 * @align_offset: Alignment offset for zero area. 332 * 333 * The @align_mask should be one less than a power of 2; the effect is that 334 * the bit offset of all zero areas this function finds plus @align_offset 335 * is multiple of that power of 2. 336 */ 337 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 338 unsigned long size, 339 unsigned long start, 340 unsigned int nr, 341 unsigned long align_mask, 342 unsigned long align_offset) 343 { 344 unsigned long index, end, i; 345 again: 346 index = find_next_zero_bit(map, size, start); 347 348 /* Align allocation */ 349 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 350 351 end = index + nr; 352 if (end > size) 353 return end; 354 i = find_next_bit(map, end, index); 355 if (i < end) { 356 start = i + 1; 357 goto again; 358 } 359 return index; 360 } 361 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 362 363 /* 364 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 365 * second version by Paul Jackson, third by Joe Korty. 366 */ 367 368 #define CHUNKSZ 32 369 #define nbits_to_hold_value(val) fls(val) 370 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 371 372 /** 373 * __bitmap_parse - convert an ASCII hex string into a bitmap. 374 * @buf: pointer to buffer containing string. 375 * @buflen: buffer size in bytes. If string is smaller than this 376 * then it must be terminated with a \0. 377 * @is_user: location of buffer, 0 indicates kernel space 378 * @maskp: pointer to bitmap array that will contain result. 379 * @nmaskbits: size of bitmap, in bits. 380 * 381 * Commas group hex digits into chunks. Each chunk defines exactly 32 382 * bits of the resultant bitmask. No chunk may specify a value larger 383 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 384 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 385 * characters and for grouping errors such as "1,,5", ",44", "," and "". 386 * Leading and trailing whitespace accepted, but not embedded whitespace. 387 */ 388 int __bitmap_parse(const char *buf, unsigned int buflen, 389 int is_user, unsigned long *maskp, 390 int nmaskbits) 391 { 392 int c, old_c, totaldigits, ndigits, nchunks, nbits; 393 u32 chunk; 394 const char __user __force *ubuf = (const char __user __force *)buf; 395 396 bitmap_zero(maskp, nmaskbits); 397 398 nchunks = nbits = totaldigits = c = 0; 399 do { 400 chunk = ndigits = 0; 401 402 /* Get the next chunk of the bitmap */ 403 while (buflen) { 404 old_c = c; 405 if (is_user) { 406 if (__get_user(c, ubuf++)) 407 return -EFAULT; 408 } 409 else 410 c = *buf++; 411 buflen--; 412 if (isspace(c)) 413 continue; 414 415 /* 416 * If the last character was a space and the current 417 * character isn't '\0', we've got embedded whitespace. 418 * This is a no-no, so throw an error. 419 */ 420 if (totaldigits && c && isspace(old_c)) 421 return -EINVAL; 422 423 /* A '\0' or a ',' signal the end of the chunk */ 424 if (c == '\0' || c == ',') 425 break; 426 427 if (!isxdigit(c)) 428 return -EINVAL; 429 430 /* 431 * Make sure there are at least 4 free bits in 'chunk'. 432 * If not, this hexdigit will overflow 'chunk', so 433 * throw an error. 434 */ 435 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 436 return -EOVERFLOW; 437 438 chunk = (chunk << 4) | hex_to_bin(c); 439 ndigits++; totaldigits++; 440 } 441 if (ndigits == 0) 442 return -EINVAL; 443 if (nchunks == 0 && chunk == 0) 444 continue; 445 446 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 447 *maskp |= chunk; 448 nchunks++; 449 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 450 if (nbits > nmaskbits) 451 return -EOVERFLOW; 452 } while (buflen && c == ','); 453 454 return 0; 455 } 456 EXPORT_SYMBOL(__bitmap_parse); 457 458 /** 459 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 460 * 461 * @ubuf: pointer to user buffer containing string. 462 * @ulen: buffer size in bytes. If string is smaller than this 463 * then it must be terminated with a \0. 464 * @maskp: pointer to bitmap array that will contain result. 465 * @nmaskbits: size of bitmap, in bits. 466 * 467 * Wrapper for __bitmap_parse(), providing it with user buffer. 468 * 469 * We cannot have this as an inline function in bitmap.h because it needs 470 * linux/uaccess.h to get the access_ok() declaration and this causes 471 * cyclic dependencies. 472 */ 473 int bitmap_parse_user(const char __user *ubuf, 474 unsigned int ulen, unsigned long *maskp, 475 int nmaskbits) 476 { 477 if (!access_ok(VERIFY_READ, ubuf, ulen)) 478 return -EFAULT; 479 return __bitmap_parse((const char __force *)ubuf, 480 ulen, 1, maskp, nmaskbits); 481 482 } 483 EXPORT_SYMBOL(bitmap_parse_user); 484 485 /** 486 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 487 * @list: indicates whether the bitmap must be list 488 * @buf: page aligned buffer into which string is placed 489 * @maskp: pointer to bitmap to convert 490 * @nmaskbits: size of bitmap, in bits 491 * 492 * Output format is a comma-separated list of decimal numbers and 493 * ranges if list is specified or hex digits grouped into comma-separated 494 * sets of 8 digits/set. Returns the number of characters written to buf. 495 */ 496 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 497 int nmaskbits) 498 { 499 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf - 2; 500 int n = 0; 501 502 if (len > 1) { 503 n = list ? scnprintf(buf, len, "%*pbl", nmaskbits, maskp) : 504 scnprintf(buf, len, "%*pb", nmaskbits, maskp); 505 buf[n++] = '\n'; 506 buf[n] = '\0'; 507 } 508 return n; 509 } 510 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 511 512 /** 513 * __bitmap_parselist - convert list format ASCII string to bitmap 514 * @buf: read nul-terminated user string from this buffer 515 * @buflen: buffer size in bytes. If string is smaller than this 516 * then it must be terminated with a \0. 517 * @is_user: location of buffer, 0 indicates kernel space 518 * @maskp: write resulting mask here 519 * @nmaskbits: number of bits in mask to be written 520 * 521 * Input format is a comma-separated list of decimal numbers and 522 * ranges. Consecutively set bits are shown as two hyphen-separated 523 * decimal numbers, the smallest and largest bit numbers set in 524 * the range. 525 * 526 * Returns 0 on success, -errno on invalid input strings. 527 * Error values: 528 * %-EINVAL: second number in range smaller than first 529 * %-EINVAL: invalid character in string 530 * %-ERANGE: bit number specified too large for mask 531 */ 532 static int __bitmap_parselist(const char *buf, unsigned int buflen, 533 int is_user, unsigned long *maskp, 534 int nmaskbits) 535 { 536 unsigned a, b; 537 int c, old_c, totaldigits; 538 const char __user __force *ubuf = (const char __user __force *)buf; 539 int exp_digit, in_range; 540 541 totaldigits = c = 0; 542 bitmap_zero(maskp, nmaskbits); 543 do { 544 exp_digit = 1; 545 in_range = 0; 546 a = b = 0; 547 548 /* Get the next cpu# or a range of cpu#'s */ 549 while (buflen) { 550 old_c = c; 551 if (is_user) { 552 if (__get_user(c, ubuf++)) 553 return -EFAULT; 554 } else 555 c = *buf++; 556 buflen--; 557 if (isspace(c)) 558 continue; 559 560 /* 561 * If the last character was a space and the current 562 * character isn't '\0', we've got embedded whitespace. 563 * This is a no-no, so throw an error. 564 */ 565 if (totaldigits && c && isspace(old_c)) 566 return -EINVAL; 567 568 /* A '\0' or a ',' signal the end of a cpu# or range */ 569 if (c == '\0' || c == ',') 570 break; 571 572 if (c == '-') { 573 if (exp_digit || in_range) 574 return -EINVAL; 575 b = 0; 576 in_range = 1; 577 exp_digit = 1; 578 continue; 579 } 580 581 if (!isdigit(c)) 582 return -EINVAL; 583 584 b = b * 10 + (c - '0'); 585 if (!in_range) 586 a = b; 587 exp_digit = 0; 588 totaldigits++; 589 } 590 if (!(a <= b)) 591 return -EINVAL; 592 if (b >= nmaskbits) 593 return -ERANGE; 594 while (a <= b) { 595 set_bit(a, maskp); 596 a++; 597 } 598 } while (buflen && c == ','); 599 return 0; 600 } 601 602 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 603 { 604 char *nl = strchrnul(bp, '\n'); 605 int len = nl - bp; 606 607 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 608 } 609 EXPORT_SYMBOL(bitmap_parselist); 610 611 612 /** 613 * bitmap_parselist_user() 614 * 615 * @ubuf: pointer to user buffer containing string. 616 * @ulen: buffer size in bytes. If string is smaller than this 617 * then it must be terminated with a \0. 618 * @maskp: pointer to bitmap array that will contain result. 619 * @nmaskbits: size of bitmap, in bits. 620 * 621 * Wrapper for bitmap_parselist(), providing it with user buffer. 622 * 623 * We cannot have this as an inline function in bitmap.h because it needs 624 * linux/uaccess.h to get the access_ok() declaration and this causes 625 * cyclic dependencies. 626 */ 627 int bitmap_parselist_user(const char __user *ubuf, 628 unsigned int ulen, unsigned long *maskp, 629 int nmaskbits) 630 { 631 if (!access_ok(VERIFY_READ, ubuf, ulen)) 632 return -EFAULT; 633 return __bitmap_parselist((const char __force *)ubuf, 634 ulen, 1, maskp, nmaskbits); 635 } 636 EXPORT_SYMBOL(bitmap_parselist_user); 637 638 639 /** 640 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 641 * @buf: pointer to a bitmap 642 * @pos: a bit position in @buf (0 <= @pos < @nbits) 643 * @nbits: number of valid bit positions in @buf 644 * 645 * Map the bit at position @pos in @buf (of length @nbits) to the 646 * ordinal of which set bit it is. If it is not set or if @pos 647 * is not a valid bit position, map to -1. 648 * 649 * If for example, just bits 4 through 7 are set in @buf, then @pos 650 * values 4 through 7 will get mapped to 0 through 3, respectively, 651 * and other @pos values will get mapped to -1. When @pos value 7 652 * gets mapped to (returns) @ord value 3 in this example, that means 653 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 654 * 655 * The bit positions 0 through @bits are valid positions in @buf. 656 */ 657 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 658 { 659 if (pos >= nbits || !test_bit(pos, buf)) 660 return -1; 661 662 return __bitmap_weight(buf, pos); 663 } 664 665 /** 666 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 667 * @buf: pointer to bitmap 668 * @ord: ordinal bit position (n-th set bit, n >= 0) 669 * @nbits: number of valid bit positions in @buf 670 * 671 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 672 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 673 * >= weight(buf), returns @nbits. 674 * 675 * If for example, just bits 4 through 7 are set in @buf, then @ord 676 * values 0 through 3 will get mapped to 4 through 7, respectively, 677 * and all other @ord values returns @nbits. When @ord value 3 678 * gets mapped to (returns) @pos value 7 in this example, that means 679 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 680 * 681 * The bit positions 0 through @nbits-1 are valid positions in @buf. 682 */ 683 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 684 { 685 unsigned int pos; 686 687 for (pos = find_first_bit(buf, nbits); 688 pos < nbits && ord; 689 pos = find_next_bit(buf, nbits, pos + 1)) 690 ord--; 691 692 return pos; 693 } 694 695 /** 696 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 697 * @dst: remapped result 698 * @src: subset to be remapped 699 * @old: defines domain of map 700 * @new: defines range of map 701 * @nbits: number of bits in each of these bitmaps 702 * 703 * Let @old and @new define a mapping of bit positions, such that 704 * whatever position is held by the n-th set bit in @old is mapped 705 * to the n-th set bit in @new. In the more general case, allowing 706 * for the possibility that the weight 'w' of @new is less than the 707 * weight of @old, map the position of the n-th set bit in @old to 708 * the position of the m-th set bit in @new, where m == n % w. 709 * 710 * If either of the @old and @new bitmaps are empty, or if @src and 711 * @dst point to the same location, then this routine copies @src 712 * to @dst. 713 * 714 * The positions of unset bits in @old are mapped to themselves 715 * (the identify map). 716 * 717 * Apply the above specified mapping to @src, placing the result in 718 * @dst, clearing any bits previously set in @dst. 719 * 720 * For example, lets say that @old has bits 4 through 7 set, and 721 * @new has bits 12 through 15 set. This defines the mapping of bit 722 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 723 * bit positions unchanged. So if say @src comes into this routine 724 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 725 * 13 and 15 set. 726 */ 727 void bitmap_remap(unsigned long *dst, const unsigned long *src, 728 const unsigned long *old, const unsigned long *new, 729 unsigned int nbits) 730 { 731 unsigned int oldbit, w; 732 733 if (dst == src) /* following doesn't handle inplace remaps */ 734 return; 735 bitmap_zero(dst, nbits); 736 737 w = bitmap_weight(new, nbits); 738 for_each_set_bit(oldbit, src, nbits) { 739 int n = bitmap_pos_to_ord(old, oldbit, nbits); 740 741 if (n < 0 || w == 0) 742 set_bit(oldbit, dst); /* identity map */ 743 else 744 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 745 } 746 } 747 EXPORT_SYMBOL(bitmap_remap); 748 749 /** 750 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 751 * @oldbit: bit position to be mapped 752 * @old: defines domain of map 753 * @new: defines range of map 754 * @bits: number of bits in each of these bitmaps 755 * 756 * Let @old and @new define a mapping of bit positions, such that 757 * whatever position is held by the n-th set bit in @old is mapped 758 * to the n-th set bit in @new. In the more general case, allowing 759 * for the possibility that the weight 'w' of @new is less than the 760 * weight of @old, map the position of the n-th set bit in @old to 761 * the position of the m-th set bit in @new, where m == n % w. 762 * 763 * The positions of unset bits in @old are mapped to themselves 764 * (the identify map). 765 * 766 * Apply the above specified mapping to bit position @oldbit, returning 767 * the new bit position. 768 * 769 * For example, lets say that @old has bits 4 through 7 set, and 770 * @new has bits 12 through 15 set. This defines the mapping of bit 771 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 772 * bit positions unchanged. So if say @oldbit is 5, then this routine 773 * returns 13. 774 */ 775 int bitmap_bitremap(int oldbit, const unsigned long *old, 776 const unsigned long *new, int bits) 777 { 778 int w = bitmap_weight(new, bits); 779 int n = bitmap_pos_to_ord(old, oldbit, bits); 780 if (n < 0 || w == 0) 781 return oldbit; 782 else 783 return bitmap_ord_to_pos(new, n % w, bits); 784 } 785 EXPORT_SYMBOL(bitmap_bitremap); 786 787 /** 788 * bitmap_onto - translate one bitmap relative to another 789 * @dst: resulting translated bitmap 790 * @orig: original untranslated bitmap 791 * @relmap: bitmap relative to which translated 792 * @bits: number of bits in each of these bitmaps 793 * 794 * Set the n-th bit of @dst iff there exists some m such that the 795 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 796 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 797 * (If you understood the previous sentence the first time your 798 * read it, you're overqualified for your current job.) 799 * 800 * In other words, @orig is mapped onto (surjectively) @dst, 801 * using the map { <n, m> | the n-th bit of @relmap is the 802 * m-th set bit of @relmap }. 803 * 804 * Any set bits in @orig above bit number W, where W is the 805 * weight of (number of set bits in) @relmap are mapped nowhere. 806 * In particular, if for all bits m set in @orig, m >= W, then 807 * @dst will end up empty. In situations where the possibility 808 * of such an empty result is not desired, one way to avoid it is 809 * to use the bitmap_fold() operator, below, to first fold the 810 * @orig bitmap over itself so that all its set bits x are in the 811 * range 0 <= x < W. The bitmap_fold() operator does this by 812 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 813 * 814 * Example [1] for bitmap_onto(): 815 * Let's say @relmap has bits 30-39 set, and @orig has bits 816 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 817 * @dst will have bits 31, 33, 35, 37 and 39 set. 818 * 819 * When bit 0 is set in @orig, it means turn on the bit in 820 * @dst corresponding to whatever is the first bit (if any) 821 * that is turned on in @relmap. Since bit 0 was off in the 822 * above example, we leave off that bit (bit 30) in @dst. 823 * 824 * When bit 1 is set in @orig (as in the above example), it 825 * means turn on the bit in @dst corresponding to whatever 826 * is the second bit that is turned on in @relmap. The second 827 * bit in @relmap that was turned on in the above example was 828 * bit 31, so we turned on bit 31 in @dst. 829 * 830 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 831 * because they were the 4th, 6th, 8th and 10th set bits 832 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 833 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 834 * 835 * When bit 11 is set in @orig, it means turn on the bit in 836 * @dst corresponding to whatever is the twelfth bit that is 837 * turned on in @relmap. In the above example, there were 838 * only ten bits turned on in @relmap (30..39), so that bit 839 * 11 was set in @orig had no affect on @dst. 840 * 841 * Example [2] for bitmap_fold() + bitmap_onto(): 842 * Let's say @relmap has these ten bits set: 843 * 40 41 42 43 45 48 53 61 74 95 844 * (for the curious, that's 40 plus the first ten terms of the 845 * Fibonacci sequence.) 846 * 847 * Further lets say we use the following code, invoking 848 * bitmap_fold() then bitmap_onto, as suggested above to 849 * avoid the possibility of an empty @dst result: 850 * 851 * unsigned long *tmp; // a temporary bitmap's bits 852 * 853 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 854 * bitmap_onto(dst, tmp, relmap, bits); 855 * 856 * Then this table shows what various values of @dst would be, for 857 * various @orig's. I list the zero-based positions of each set bit. 858 * The tmp column shows the intermediate result, as computed by 859 * using bitmap_fold() to fold the @orig bitmap modulo ten 860 * (the weight of @relmap). 861 * 862 * @orig tmp @dst 863 * 0 0 40 864 * 1 1 41 865 * 9 9 95 866 * 10 0 40 (*) 867 * 1 3 5 7 1 3 5 7 41 43 48 61 868 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 869 * 0 9 18 27 0 9 8 7 40 61 74 95 870 * 0 10 20 30 0 40 871 * 0 11 22 33 0 1 2 3 40 41 42 43 872 * 0 12 24 36 0 2 4 6 40 42 45 53 873 * 78 102 211 1 2 8 41 42 74 (*) 874 * 875 * (*) For these marked lines, if we hadn't first done bitmap_fold() 876 * into tmp, then the @dst result would have been empty. 877 * 878 * If either of @orig or @relmap is empty (no set bits), then @dst 879 * will be returned empty. 880 * 881 * If (as explained above) the only set bits in @orig are in positions 882 * m where m >= W, (where W is the weight of @relmap) then @dst will 883 * once again be returned empty. 884 * 885 * All bits in @dst not set by the above rule are cleared. 886 */ 887 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 888 const unsigned long *relmap, unsigned int bits) 889 { 890 unsigned int n, m; /* same meaning as in above comment */ 891 892 if (dst == orig) /* following doesn't handle inplace mappings */ 893 return; 894 bitmap_zero(dst, bits); 895 896 /* 897 * The following code is a more efficient, but less 898 * obvious, equivalent to the loop: 899 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 900 * n = bitmap_ord_to_pos(orig, m, bits); 901 * if (test_bit(m, orig)) 902 * set_bit(n, dst); 903 * } 904 */ 905 906 m = 0; 907 for_each_set_bit(n, relmap, bits) { 908 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 909 if (test_bit(m, orig)) 910 set_bit(n, dst); 911 m++; 912 } 913 } 914 EXPORT_SYMBOL(bitmap_onto); 915 916 /** 917 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 918 * @dst: resulting smaller bitmap 919 * @orig: original larger bitmap 920 * @sz: specified size 921 * @nbits: number of bits in each of these bitmaps 922 * 923 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 924 * Clear all other bits in @dst. See further the comment and 925 * Example [2] for bitmap_onto() for why and how to use this. 926 */ 927 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 928 unsigned int sz, unsigned int nbits) 929 { 930 unsigned int oldbit; 931 932 if (dst == orig) /* following doesn't handle inplace mappings */ 933 return; 934 bitmap_zero(dst, nbits); 935 936 for_each_set_bit(oldbit, orig, nbits) 937 set_bit(oldbit % sz, dst); 938 } 939 EXPORT_SYMBOL(bitmap_fold); 940 941 /* 942 * Common code for bitmap_*_region() routines. 943 * bitmap: array of unsigned longs corresponding to the bitmap 944 * pos: the beginning of the region 945 * order: region size (log base 2 of number of bits) 946 * reg_op: operation(s) to perform on that region of bitmap 947 * 948 * Can set, verify and/or release a region of bits in a bitmap, 949 * depending on which combination of REG_OP_* flag bits is set. 950 * 951 * A region of a bitmap is a sequence of bits in the bitmap, of 952 * some size '1 << order' (a power of two), aligned to that same 953 * '1 << order' power of two. 954 * 955 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 956 * Returns 0 in all other cases and reg_ops. 957 */ 958 959 enum { 960 REG_OP_ISFREE, /* true if region is all zero bits */ 961 REG_OP_ALLOC, /* set all bits in region */ 962 REG_OP_RELEASE, /* clear all bits in region */ 963 }; 964 965 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 966 { 967 int nbits_reg; /* number of bits in region */ 968 int index; /* index first long of region in bitmap */ 969 int offset; /* bit offset region in bitmap[index] */ 970 int nlongs_reg; /* num longs spanned by region in bitmap */ 971 int nbitsinlong; /* num bits of region in each spanned long */ 972 unsigned long mask; /* bitmask for one long of region */ 973 int i; /* scans bitmap by longs */ 974 int ret = 0; /* return value */ 975 976 /* 977 * Either nlongs_reg == 1 (for small orders that fit in one long) 978 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 979 */ 980 nbits_reg = 1 << order; 981 index = pos / BITS_PER_LONG; 982 offset = pos - (index * BITS_PER_LONG); 983 nlongs_reg = BITS_TO_LONGS(nbits_reg); 984 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 985 986 /* 987 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 988 * overflows if nbitsinlong == BITS_PER_LONG. 989 */ 990 mask = (1UL << (nbitsinlong - 1)); 991 mask += mask - 1; 992 mask <<= offset; 993 994 switch (reg_op) { 995 case REG_OP_ISFREE: 996 for (i = 0; i < nlongs_reg; i++) { 997 if (bitmap[index + i] & mask) 998 goto done; 999 } 1000 ret = 1; /* all bits in region free (zero) */ 1001 break; 1002 1003 case REG_OP_ALLOC: 1004 for (i = 0; i < nlongs_reg; i++) 1005 bitmap[index + i] |= mask; 1006 break; 1007 1008 case REG_OP_RELEASE: 1009 for (i = 0; i < nlongs_reg; i++) 1010 bitmap[index + i] &= ~mask; 1011 break; 1012 } 1013 done: 1014 return ret; 1015 } 1016 1017 /** 1018 * bitmap_find_free_region - find a contiguous aligned mem region 1019 * @bitmap: array of unsigned longs corresponding to the bitmap 1020 * @bits: number of bits in the bitmap 1021 * @order: region size (log base 2 of number of bits) to find 1022 * 1023 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1024 * allocate them (set them to one). Only consider regions of length 1025 * a power (@order) of two, aligned to that power of two, which 1026 * makes the search algorithm much faster. 1027 * 1028 * Return the bit offset in bitmap of the allocated region, 1029 * or -errno on failure. 1030 */ 1031 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1032 { 1033 unsigned int pos, end; /* scans bitmap by regions of size order */ 1034 1035 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1036 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1037 continue; 1038 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1039 return pos; 1040 } 1041 return -ENOMEM; 1042 } 1043 EXPORT_SYMBOL(bitmap_find_free_region); 1044 1045 /** 1046 * bitmap_release_region - release allocated bitmap region 1047 * @bitmap: array of unsigned longs corresponding to the bitmap 1048 * @pos: beginning of bit region to release 1049 * @order: region size (log base 2 of number of bits) to release 1050 * 1051 * This is the complement to __bitmap_find_free_region() and releases 1052 * the found region (by clearing it in the bitmap). 1053 * 1054 * No return value. 1055 */ 1056 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1057 { 1058 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1059 } 1060 EXPORT_SYMBOL(bitmap_release_region); 1061 1062 /** 1063 * bitmap_allocate_region - allocate bitmap region 1064 * @bitmap: array of unsigned longs corresponding to the bitmap 1065 * @pos: beginning of bit region to allocate 1066 * @order: region size (log base 2 of number of bits) to allocate 1067 * 1068 * Allocate (set bits in) a specified region of a bitmap. 1069 * 1070 * Return 0 on success, or %-EBUSY if specified region wasn't 1071 * free (not all bits were zero). 1072 */ 1073 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1074 { 1075 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1076 return -EBUSY; 1077 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1078 } 1079 EXPORT_SYMBOL(bitmap_allocate_region); 1080 1081 /** 1082 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1083 * @dst: destination buffer 1084 * @src: bitmap to copy 1085 * @nbits: number of bits in the bitmap 1086 * 1087 * Require nbits % BITS_PER_LONG == 0. 1088 */ 1089 #ifdef __BIG_ENDIAN 1090 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1091 { 1092 unsigned int i; 1093 1094 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1095 if (BITS_PER_LONG == 64) 1096 dst[i] = cpu_to_le64(src[i]); 1097 else 1098 dst[i] = cpu_to_le32(src[i]); 1099 } 1100 } 1101 EXPORT_SYMBOL(bitmap_copy_le); 1102 #endif 1103