xref: /openbmc/linux/lib/bitmap.c (revision 7d9e5f422150ed00de744e02a80734d74cc9704d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * lib/bitmap.c
4   * Helper functions for bitmap.h.
5   */
6  #include <linux/export.h>
7  #include <linux/thread_info.h>
8  #include <linux/ctype.h>
9  #include <linux/errno.h>
10  #include <linux/bitmap.h>
11  #include <linux/bitops.h>
12  #include <linux/bug.h>
13  #include <linux/kernel.h>
14  #include <linux/mm.h>
15  #include <linux/slab.h>
16  #include <linux/string.h>
17  #include <linux/uaccess.h>
18  
19  #include <asm/page.h>
20  
21  #include "kstrtox.h"
22  
23  /**
24   * DOC: bitmap introduction
25   *
26   * bitmaps provide an array of bits, implemented using an an
27   * array of unsigned longs.  The number of valid bits in a
28   * given bitmap does _not_ need to be an exact multiple of
29   * BITS_PER_LONG.
30   *
31   * The possible unused bits in the last, partially used word
32   * of a bitmap are 'don't care'.  The implementation makes
33   * no particular effort to keep them zero.  It ensures that
34   * their value will not affect the results of any operation.
35   * The bitmap operations that return Boolean (bitmap_empty,
36   * for example) or scalar (bitmap_weight, for example) results
37   * carefully filter out these unused bits from impacting their
38   * results.
39   *
40   * The byte ordering of bitmaps is more natural on little
41   * endian architectures.  See the big-endian headers
42   * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43   * for the best explanations of this ordering.
44   */
45  
46  int __bitmap_equal(const unsigned long *bitmap1,
47  		const unsigned long *bitmap2, unsigned int bits)
48  {
49  	unsigned int k, lim = bits/BITS_PER_LONG;
50  	for (k = 0; k < lim; ++k)
51  		if (bitmap1[k] != bitmap2[k])
52  			return 0;
53  
54  	if (bits % BITS_PER_LONG)
55  		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56  			return 0;
57  
58  	return 1;
59  }
60  EXPORT_SYMBOL(__bitmap_equal);
61  
62  void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
63  {
64  	unsigned int k, lim = BITS_TO_LONGS(bits);
65  	for (k = 0; k < lim; ++k)
66  		dst[k] = ~src[k];
67  }
68  EXPORT_SYMBOL(__bitmap_complement);
69  
70  /**
71   * __bitmap_shift_right - logical right shift of the bits in a bitmap
72   *   @dst : destination bitmap
73   *   @src : source bitmap
74   *   @shift : shift by this many bits
75   *   @nbits : bitmap size, in bits
76   *
77   * Shifting right (dividing) means moving bits in the MS -> LS bit
78   * direction.  Zeros are fed into the vacated MS positions and the
79   * LS bits shifted off the bottom are lost.
80   */
81  void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
82  			unsigned shift, unsigned nbits)
83  {
84  	unsigned k, lim = BITS_TO_LONGS(nbits);
85  	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
86  	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
87  	for (k = 0; off + k < lim; ++k) {
88  		unsigned long upper, lower;
89  
90  		/*
91  		 * If shift is not word aligned, take lower rem bits of
92  		 * word above and make them the top rem bits of result.
93  		 */
94  		if (!rem || off + k + 1 >= lim)
95  			upper = 0;
96  		else {
97  			upper = src[off + k + 1];
98  			if (off + k + 1 == lim - 1)
99  				upper &= mask;
100  			upper <<= (BITS_PER_LONG - rem);
101  		}
102  		lower = src[off + k];
103  		if (off + k == lim - 1)
104  			lower &= mask;
105  		lower >>= rem;
106  		dst[k] = lower | upper;
107  	}
108  	if (off)
109  		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
110  }
111  EXPORT_SYMBOL(__bitmap_shift_right);
112  
113  
114  /**
115   * __bitmap_shift_left - logical left shift of the bits in a bitmap
116   *   @dst : destination bitmap
117   *   @src : source bitmap
118   *   @shift : shift by this many bits
119   *   @nbits : bitmap size, in bits
120   *
121   * Shifting left (multiplying) means moving bits in the LS -> MS
122   * direction.  Zeros are fed into the vacated LS bit positions
123   * and those MS bits shifted off the top are lost.
124   */
125  
126  void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
127  			unsigned int shift, unsigned int nbits)
128  {
129  	int k;
130  	unsigned int lim = BITS_TO_LONGS(nbits);
131  	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
132  	for (k = lim - off - 1; k >= 0; --k) {
133  		unsigned long upper, lower;
134  
135  		/*
136  		 * If shift is not word aligned, take upper rem bits of
137  		 * word below and make them the bottom rem bits of result.
138  		 */
139  		if (rem && k > 0)
140  			lower = src[k - 1] >> (BITS_PER_LONG - rem);
141  		else
142  			lower = 0;
143  		upper = src[k] << rem;
144  		dst[k + off] = lower | upper;
145  	}
146  	if (off)
147  		memset(dst, 0, off*sizeof(unsigned long));
148  }
149  EXPORT_SYMBOL(__bitmap_shift_left);
150  
151  int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
152  				const unsigned long *bitmap2, unsigned int bits)
153  {
154  	unsigned int k;
155  	unsigned int lim = bits/BITS_PER_LONG;
156  	unsigned long result = 0;
157  
158  	for (k = 0; k < lim; k++)
159  		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
160  	if (bits % BITS_PER_LONG)
161  		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
162  			   BITMAP_LAST_WORD_MASK(bits));
163  	return result != 0;
164  }
165  EXPORT_SYMBOL(__bitmap_and);
166  
167  void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
168  				const unsigned long *bitmap2, unsigned int bits)
169  {
170  	unsigned int k;
171  	unsigned int nr = BITS_TO_LONGS(bits);
172  
173  	for (k = 0; k < nr; k++)
174  		dst[k] = bitmap1[k] | bitmap2[k];
175  }
176  EXPORT_SYMBOL(__bitmap_or);
177  
178  void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
179  				const unsigned long *bitmap2, unsigned int bits)
180  {
181  	unsigned int k;
182  	unsigned int nr = BITS_TO_LONGS(bits);
183  
184  	for (k = 0; k < nr; k++)
185  		dst[k] = bitmap1[k] ^ bitmap2[k];
186  }
187  EXPORT_SYMBOL(__bitmap_xor);
188  
189  int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
190  				const unsigned long *bitmap2, unsigned int bits)
191  {
192  	unsigned int k;
193  	unsigned int lim = bits/BITS_PER_LONG;
194  	unsigned long result = 0;
195  
196  	for (k = 0; k < lim; k++)
197  		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
198  	if (bits % BITS_PER_LONG)
199  		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
200  			   BITMAP_LAST_WORD_MASK(bits));
201  	return result != 0;
202  }
203  EXPORT_SYMBOL(__bitmap_andnot);
204  
205  int __bitmap_intersects(const unsigned long *bitmap1,
206  			const unsigned long *bitmap2, unsigned int bits)
207  {
208  	unsigned int k, lim = bits/BITS_PER_LONG;
209  	for (k = 0; k < lim; ++k)
210  		if (bitmap1[k] & bitmap2[k])
211  			return 1;
212  
213  	if (bits % BITS_PER_LONG)
214  		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
215  			return 1;
216  	return 0;
217  }
218  EXPORT_SYMBOL(__bitmap_intersects);
219  
220  int __bitmap_subset(const unsigned long *bitmap1,
221  		    const unsigned long *bitmap2, unsigned int bits)
222  {
223  	unsigned int k, lim = bits/BITS_PER_LONG;
224  	for (k = 0; k < lim; ++k)
225  		if (bitmap1[k] & ~bitmap2[k])
226  			return 0;
227  
228  	if (bits % BITS_PER_LONG)
229  		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
230  			return 0;
231  	return 1;
232  }
233  EXPORT_SYMBOL(__bitmap_subset);
234  
235  int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
236  {
237  	unsigned int k, lim = bits/BITS_PER_LONG;
238  	int w = 0;
239  
240  	for (k = 0; k < lim; k++)
241  		w += hweight_long(bitmap[k]);
242  
243  	if (bits % BITS_PER_LONG)
244  		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
245  
246  	return w;
247  }
248  EXPORT_SYMBOL(__bitmap_weight);
249  
250  void __bitmap_set(unsigned long *map, unsigned int start, int len)
251  {
252  	unsigned long *p = map + BIT_WORD(start);
253  	const unsigned int size = start + len;
254  	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
255  	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
256  
257  	while (len - bits_to_set >= 0) {
258  		*p |= mask_to_set;
259  		len -= bits_to_set;
260  		bits_to_set = BITS_PER_LONG;
261  		mask_to_set = ~0UL;
262  		p++;
263  	}
264  	if (len) {
265  		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
266  		*p |= mask_to_set;
267  	}
268  }
269  EXPORT_SYMBOL(__bitmap_set);
270  
271  void __bitmap_clear(unsigned long *map, unsigned int start, int len)
272  {
273  	unsigned long *p = map + BIT_WORD(start);
274  	const unsigned int size = start + len;
275  	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
276  	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
277  
278  	while (len - bits_to_clear >= 0) {
279  		*p &= ~mask_to_clear;
280  		len -= bits_to_clear;
281  		bits_to_clear = BITS_PER_LONG;
282  		mask_to_clear = ~0UL;
283  		p++;
284  	}
285  	if (len) {
286  		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
287  		*p &= ~mask_to_clear;
288  	}
289  }
290  EXPORT_SYMBOL(__bitmap_clear);
291  
292  /**
293   * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
294   * @map: The address to base the search on
295   * @size: The bitmap size in bits
296   * @start: The bitnumber to start searching at
297   * @nr: The number of zeroed bits we're looking for
298   * @align_mask: Alignment mask for zero area
299   * @align_offset: Alignment offset for zero area.
300   *
301   * The @align_mask should be one less than a power of 2; the effect is that
302   * the bit offset of all zero areas this function finds plus @align_offset
303   * is multiple of that power of 2.
304   */
305  unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
306  					     unsigned long size,
307  					     unsigned long start,
308  					     unsigned int nr,
309  					     unsigned long align_mask,
310  					     unsigned long align_offset)
311  {
312  	unsigned long index, end, i;
313  again:
314  	index = find_next_zero_bit(map, size, start);
315  
316  	/* Align allocation */
317  	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
318  
319  	end = index + nr;
320  	if (end > size)
321  		return end;
322  	i = find_next_bit(map, end, index);
323  	if (i < end) {
324  		start = i + 1;
325  		goto again;
326  	}
327  	return index;
328  }
329  EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
330  
331  /*
332   * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
333   * second version by Paul Jackson, third by Joe Korty.
334   */
335  
336  #define CHUNKSZ				32
337  #define nbits_to_hold_value(val)	fls(val)
338  #define BASEDEC 10		/* fancier cpuset lists input in decimal */
339  
340  /**
341   * __bitmap_parse - convert an ASCII hex string into a bitmap.
342   * @buf: pointer to buffer containing string.
343   * @buflen: buffer size in bytes.  If string is smaller than this
344   *    then it must be terminated with a \0.
345   * @is_user: location of buffer, 0 indicates kernel space
346   * @maskp: pointer to bitmap array that will contain result.
347   * @nmaskbits: size of bitmap, in bits.
348   *
349   * Commas group hex digits into chunks.  Each chunk defines exactly 32
350   * bits of the resultant bitmask.  No chunk may specify a value larger
351   * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
352   * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
353   * characters and for grouping errors such as "1,,5", ",44", "," and "".
354   * Leading and trailing whitespace accepted, but not embedded whitespace.
355   */
356  int __bitmap_parse(const char *buf, unsigned int buflen,
357  		int is_user, unsigned long *maskp,
358  		int nmaskbits)
359  {
360  	int c, old_c, totaldigits, ndigits, nchunks, nbits;
361  	u32 chunk;
362  	const char __user __force *ubuf = (const char __user __force *)buf;
363  
364  	bitmap_zero(maskp, nmaskbits);
365  
366  	nchunks = nbits = totaldigits = c = 0;
367  	do {
368  		chunk = 0;
369  		ndigits = totaldigits;
370  
371  		/* Get the next chunk of the bitmap */
372  		while (buflen) {
373  			old_c = c;
374  			if (is_user) {
375  				if (__get_user(c, ubuf++))
376  					return -EFAULT;
377  			}
378  			else
379  				c = *buf++;
380  			buflen--;
381  			if (isspace(c))
382  				continue;
383  
384  			/*
385  			 * If the last character was a space and the current
386  			 * character isn't '\0', we've got embedded whitespace.
387  			 * This is a no-no, so throw an error.
388  			 */
389  			if (totaldigits && c && isspace(old_c))
390  				return -EINVAL;
391  
392  			/* A '\0' or a ',' signal the end of the chunk */
393  			if (c == '\0' || c == ',')
394  				break;
395  
396  			if (!isxdigit(c))
397  				return -EINVAL;
398  
399  			/*
400  			 * Make sure there are at least 4 free bits in 'chunk'.
401  			 * If not, this hexdigit will overflow 'chunk', so
402  			 * throw an error.
403  			 */
404  			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
405  				return -EOVERFLOW;
406  
407  			chunk = (chunk << 4) | hex_to_bin(c);
408  			totaldigits++;
409  		}
410  		if (ndigits == totaldigits)
411  			return -EINVAL;
412  		if (nchunks == 0 && chunk == 0)
413  			continue;
414  
415  		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
416  		*maskp |= chunk;
417  		nchunks++;
418  		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
419  		if (nbits > nmaskbits)
420  			return -EOVERFLOW;
421  	} while (buflen && c == ',');
422  
423  	return 0;
424  }
425  EXPORT_SYMBOL(__bitmap_parse);
426  
427  /**
428   * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
429   *
430   * @ubuf: pointer to user buffer containing string.
431   * @ulen: buffer size in bytes.  If string is smaller than this
432   *    then it must be terminated with a \0.
433   * @maskp: pointer to bitmap array that will contain result.
434   * @nmaskbits: size of bitmap, in bits.
435   *
436   * Wrapper for __bitmap_parse(), providing it with user buffer.
437   *
438   * We cannot have this as an inline function in bitmap.h because it needs
439   * linux/uaccess.h to get the access_ok() declaration and this causes
440   * cyclic dependencies.
441   */
442  int bitmap_parse_user(const char __user *ubuf,
443  			unsigned int ulen, unsigned long *maskp,
444  			int nmaskbits)
445  {
446  	if (!access_ok(ubuf, ulen))
447  		return -EFAULT;
448  	return __bitmap_parse((const char __force *)ubuf,
449  				ulen, 1, maskp, nmaskbits);
450  
451  }
452  EXPORT_SYMBOL(bitmap_parse_user);
453  
454  /**
455   * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
456   * @list: indicates whether the bitmap must be list
457   * @buf: page aligned buffer into which string is placed
458   * @maskp: pointer to bitmap to convert
459   * @nmaskbits: size of bitmap, in bits
460   *
461   * Output format is a comma-separated list of decimal numbers and
462   * ranges if list is specified or hex digits grouped into comma-separated
463   * sets of 8 digits/set. Returns the number of characters written to buf.
464   *
465   * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
466   * area and that sufficient storage remains at @buf to accommodate the
467   * bitmap_print_to_pagebuf() output. Returns the number of characters
468   * actually printed to @buf, excluding terminating '\0'.
469   */
470  int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
471  			    int nmaskbits)
472  {
473  	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
474  
475  	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
476  		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
477  }
478  EXPORT_SYMBOL(bitmap_print_to_pagebuf);
479  
480  /*
481   * Region 9-38:4/10 describes the following bitmap structure:
482   * 0	   9  12    18			38
483   * .........****......****......****......
484   *	    ^  ^     ^			 ^
485   *      start  off   group_len	       end
486   */
487  struct region {
488  	unsigned int start;
489  	unsigned int off;
490  	unsigned int group_len;
491  	unsigned int end;
492  };
493  
494  static int bitmap_set_region(const struct region *r,
495  				unsigned long *bitmap, int nbits)
496  {
497  	unsigned int start;
498  
499  	if (r->end >= nbits)
500  		return -ERANGE;
501  
502  	for (start = r->start; start <= r->end; start += r->group_len)
503  		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
504  
505  	return 0;
506  }
507  
508  static int bitmap_check_region(const struct region *r)
509  {
510  	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
511  		return -EINVAL;
512  
513  	return 0;
514  }
515  
516  static const char *bitmap_getnum(const char *str, unsigned int *num)
517  {
518  	unsigned long long n;
519  	unsigned int len;
520  
521  	len = _parse_integer(str, 10, &n);
522  	if (!len)
523  		return ERR_PTR(-EINVAL);
524  	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
525  		return ERR_PTR(-EOVERFLOW);
526  
527  	*num = n;
528  	return str + len;
529  }
530  
531  static inline bool end_of_str(char c)
532  {
533  	return c == '\0' || c == '\n';
534  }
535  
536  static inline bool __end_of_region(char c)
537  {
538  	return isspace(c) || c == ',';
539  }
540  
541  static inline bool end_of_region(char c)
542  {
543  	return __end_of_region(c) || end_of_str(c);
544  }
545  
546  /*
547   * The format allows commas and whitespases at the beginning
548   * of the region.
549   */
550  static const char *bitmap_find_region(const char *str)
551  {
552  	while (__end_of_region(*str))
553  		str++;
554  
555  	return end_of_str(*str) ? NULL : str;
556  }
557  
558  static const char *bitmap_parse_region(const char *str, struct region *r)
559  {
560  	str = bitmap_getnum(str, &r->start);
561  	if (IS_ERR(str))
562  		return str;
563  
564  	if (end_of_region(*str))
565  		goto no_end;
566  
567  	if (*str != '-')
568  		return ERR_PTR(-EINVAL);
569  
570  	str = bitmap_getnum(str + 1, &r->end);
571  	if (IS_ERR(str))
572  		return str;
573  
574  	if (end_of_region(*str))
575  		goto no_pattern;
576  
577  	if (*str != ':')
578  		return ERR_PTR(-EINVAL);
579  
580  	str = bitmap_getnum(str + 1, &r->off);
581  	if (IS_ERR(str))
582  		return str;
583  
584  	if (*str != '/')
585  		return ERR_PTR(-EINVAL);
586  
587  	return bitmap_getnum(str + 1, &r->group_len);
588  
589  no_end:
590  	r->end = r->start;
591  no_pattern:
592  	r->off = r->end + 1;
593  	r->group_len = r->end + 1;
594  
595  	return end_of_str(*str) ? NULL : str;
596  }
597  
598  /**
599   * bitmap_parselist - convert list format ASCII string to bitmap
600   * @buf: read user string from this buffer; must be terminated
601   *    with a \0 or \n.
602   * @maskp: write resulting mask here
603   * @nmaskbits: number of bits in mask to be written
604   *
605   * Input format is a comma-separated list of decimal numbers and
606   * ranges.  Consecutively set bits are shown as two hyphen-separated
607   * decimal numbers, the smallest and largest bit numbers set in
608   * the range.
609   * Optionally each range can be postfixed to denote that only parts of it
610   * should be set. The range will divided to groups of specific size.
611   * From each group will be used only defined amount of bits.
612   * Syntax: range:used_size/group_size
613   * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
614   *
615   * Returns: 0 on success, -errno on invalid input strings. Error values:
616   *
617   *   - ``-EINVAL``: wrong region format
618   *   - ``-EINVAL``: invalid character in string
619   *   - ``-ERANGE``: bit number specified too large for mask
620   *   - ``-EOVERFLOW``: integer overflow in the input parameters
621   */
622  int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
623  {
624  	struct region r;
625  	long ret;
626  
627  	bitmap_zero(maskp, nmaskbits);
628  
629  	while (buf) {
630  		buf = bitmap_find_region(buf);
631  		if (buf == NULL)
632  			return 0;
633  
634  		buf = bitmap_parse_region(buf, &r);
635  		if (IS_ERR(buf))
636  			return PTR_ERR(buf);
637  
638  		ret = bitmap_check_region(&r);
639  		if (ret)
640  			return ret;
641  
642  		ret = bitmap_set_region(&r, maskp, nmaskbits);
643  		if (ret)
644  			return ret;
645  	}
646  
647  	return 0;
648  }
649  EXPORT_SYMBOL(bitmap_parselist);
650  
651  
652  /**
653   * bitmap_parselist_user()
654   *
655   * @ubuf: pointer to user buffer containing string.
656   * @ulen: buffer size in bytes.  If string is smaller than this
657   *    then it must be terminated with a \0.
658   * @maskp: pointer to bitmap array that will contain result.
659   * @nmaskbits: size of bitmap, in bits.
660   *
661   * Wrapper for bitmap_parselist(), providing it with user buffer.
662   */
663  int bitmap_parselist_user(const char __user *ubuf,
664  			unsigned int ulen, unsigned long *maskp,
665  			int nmaskbits)
666  {
667  	char *buf;
668  	int ret;
669  
670  	buf = memdup_user_nul(ubuf, ulen);
671  	if (IS_ERR(buf))
672  		return PTR_ERR(buf);
673  
674  	ret = bitmap_parselist(buf, maskp, nmaskbits);
675  
676  	kfree(buf);
677  	return ret;
678  }
679  EXPORT_SYMBOL(bitmap_parselist_user);
680  
681  
682  #ifdef CONFIG_NUMA
683  /**
684   * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
685   *	@buf: pointer to a bitmap
686   *	@pos: a bit position in @buf (0 <= @pos < @nbits)
687   *	@nbits: number of valid bit positions in @buf
688   *
689   * Map the bit at position @pos in @buf (of length @nbits) to the
690   * ordinal of which set bit it is.  If it is not set or if @pos
691   * is not a valid bit position, map to -1.
692   *
693   * If for example, just bits 4 through 7 are set in @buf, then @pos
694   * values 4 through 7 will get mapped to 0 through 3, respectively,
695   * and other @pos values will get mapped to -1.  When @pos value 7
696   * gets mapped to (returns) @ord value 3 in this example, that means
697   * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
698   *
699   * The bit positions 0 through @bits are valid positions in @buf.
700   */
701  static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
702  {
703  	if (pos >= nbits || !test_bit(pos, buf))
704  		return -1;
705  
706  	return __bitmap_weight(buf, pos);
707  }
708  
709  /**
710   * bitmap_ord_to_pos - find position of n-th set bit in bitmap
711   *	@buf: pointer to bitmap
712   *	@ord: ordinal bit position (n-th set bit, n >= 0)
713   *	@nbits: number of valid bit positions in @buf
714   *
715   * Map the ordinal offset of bit @ord in @buf to its position in @buf.
716   * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
717   * >= weight(buf), returns @nbits.
718   *
719   * If for example, just bits 4 through 7 are set in @buf, then @ord
720   * values 0 through 3 will get mapped to 4 through 7, respectively,
721   * and all other @ord values returns @nbits.  When @ord value 3
722   * gets mapped to (returns) @pos value 7 in this example, that means
723   * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
724   *
725   * The bit positions 0 through @nbits-1 are valid positions in @buf.
726   */
727  unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
728  {
729  	unsigned int pos;
730  
731  	for (pos = find_first_bit(buf, nbits);
732  	     pos < nbits && ord;
733  	     pos = find_next_bit(buf, nbits, pos + 1))
734  		ord--;
735  
736  	return pos;
737  }
738  
739  /**
740   * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
741   *	@dst: remapped result
742   *	@src: subset to be remapped
743   *	@old: defines domain of map
744   *	@new: defines range of map
745   *	@nbits: number of bits in each of these bitmaps
746   *
747   * Let @old and @new define a mapping of bit positions, such that
748   * whatever position is held by the n-th set bit in @old is mapped
749   * to the n-th set bit in @new.  In the more general case, allowing
750   * for the possibility that the weight 'w' of @new is less than the
751   * weight of @old, map the position of the n-th set bit in @old to
752   * the position of the m-th set bit in @new, where m == n % w.
753   *
754   * If either of the @old and @new bitmaps are empty, or if @src and
755   * @dst point to the same location, then this routine copies @src
756   * to @dst.
757   *
758   * The positions of unset bits in @old are mapped to themselves
759   * (the identify map).
760   *
761   * Apply the above specified mapping to @src, placing the result in
762   * @dst, clearing any bits previously set in @dst.
763   *
764   * For example, lets say that @old has bits 4 through 7 set, and
765   * @new has bits 12 through 15 set.  This defines the mapping of bit
766   * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
767   * bit positions unchanged.  So if say @src comes into this routine
768   * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
769   * 13 and 15 set.
770   */
771  void bitmap_remap(unsigned long *dst, const unsigned long *src,
772  		const unsigned long *old, const unsigned long *new,
773  		unsigned int nbits)
774  {
775  	unsigned int oldbit, w;
776  
777  	if (dst == src)		/* following doesn't handle inplace remaps */
778  		return;
779  	bitmap_zero(dst, nbits);
780  
781  	w = bitmap_weight(new, nbits);
782  	for_each_set_bit(oldbit, src, nbits) {
783  		int n = bitmap_pos_to_ord(old, oldbit, nbits);
784  
785  		if (n < 0 || w == 0)
786  			set_bit(oldbit, dst);	/* identity map */
787  		else
788  			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
789  	}
790  }
791  
792  /**
793   * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
794   *	@oldbit: bit position to be mapped
795   *	@old: defines domain of map
796   *	@new: defines range of map
797   *	@bits: number of bits in each of these bitmaps
798   *
799   * Let @old and @new define a mapping of bit positions, such that
800   * whatever position is held by the n-th set bit in @old is mapped
801   * to the n-th set bit in @new.  In the more general case, allowing
802   * for the possibility that the weight 'w' of @new is less than the
803   * weight of @old, map the position of the n-th set bit in @old to
804   * the position of the m-th set bit in @new, where m == n % w.
805   *
806   * The positions of unset bits in @old are mapped to themselves
807   * (the identify map).
808   *
809   * Apply the above specified mapping to bit position @oldbit, returning
810   * the new bit position.
811   *
812   * For example, lets say that @old has bits 4 through 7 set, and
813   * @new has bits 12 through 15 set.  This defines the mapping of bit
814   * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
815   * bit positions unchanged.  So if say @oldbit is 5, then this routine
816   * returns 13.
817   */
818  int bitmap_bitremap(int oldbit, const unsigned long *old,
819  				const unsigned long *new, int bits)
820  {
821  	int w = bitmap_weight(new, bits);
822  	int n = bitmap_pos_to_ord(old, oldbit, bits);
823  	if (n < 0 || w == 0)
824  		return oldbit;
825  	else
826  		return bitmap_ord_to_pos(new, n % w, bits);
827  }
828  
829  /**
830   * bitmap_onto - translate one bitmap relative to another
831   *	@dst: resulting translated bitmap
832   * 	@orig: original untranslated bitmap
833   * 	@relmap: bitmap relative to which translated
834   *	@bits: number of bits in each of these bitmaps
835   *
836   * Set the n-th bit of @dst iff there exists some m such that the
837   * n-th bit of @relmap is set, the m-th bit of @orig is set, and
838   * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
839   * (If you understood the previous sentence the first time your
840   * read it, you're overqualified for your current job.)
841   *
842   * In other words, @orig is mapped onto (surjectively) @dst,
843   * using the map { <n, m> | the n-th bit of @relmap is the
844   * m-th set bit of @relmap }.
845   *
846   * Any set bits in @orig above bit number W, where W is the
847   * weight of (number of set bits in) @relmap are mapped nowhere.
848   * In particular, if for all bits m set in @orig, m >= W, then
849   * @dst will end up empty.  In situations where the possibility
850   * of such an empty result is not desired, one way to avoid it is
851   * to use the bitmap_fold() operator, below, to first fold the
852   * @orig bitmap over itself so that all its set bits x are in the
853   * range 0 <= x < W.  The bitmap_fold() operator does this by
854   * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
855   *
856   * Example [1] for bitmap_onto():
857   *  Let's say @relmap has bits 30-39 set, and @orig has bits
858   *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
859   *  @dst will have bits 31, 33, 35, 37 and 39 set.
860   *
861   *  When bit 0 is set in @orig, it means turn on the bit in
862   *  @dst corresponding to whatever is the first bit (if any)
863   *  that is turned on in @relmap.  Since bit 0 was off in the
864   *  above example, we leave off that bit (bit 30) in @dst.
865   *
866   *  When bit 1 is set in @orig (as in the above example), it
867   *  means turn on the bit in @dst corresponding to whatever
868   *  is the second bit that is turned on in @relmap.  The second
869   *  bit in @relmap that was turned on in the above example was
870   *  bit 31, so we turned on bit 31 in @dst.
871   *
872   *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
873   *  because they were the 4th, 6th, 8th and 10th set bits
874   *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
875   *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
876   *
877   *  When bit 11 is set in @orig, it means turn on the bit in
878   *  @dst corresponding to whatever is the twelfth bit that is
879   *  turned on in @relmap.  In the above example, there were
880   *  only ten bits turned on in @relmap (30..39), so that bit
881   *  11 was set in @orig had no affect on @dst.
882   *
883   * Example [2] for bitmap_fold() + bitmap_onto():
884   *  Let's say @relmap has these ten bits set::
885   *
886   *		40 41 42 43 45 48 53 61 74 95
887   *
888   *  (for the curious, that's 40 plus the first ten terms of the
889   *  Fibonacci sequence.)
890   *
891   *  Further lets say we use the following code, invoking
892   *  bitmap_fold() then bitmap_onto, as suggested above to
893   *  avoid the possibility of an empty @dst result::
894   *
895   *	unsigned long *tmp;	// a temporary bitmap's bits
896   *
897   *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
898   *	bitmap_onto(dst, tmp, relmap, bits);
899   *
900   *  Then this table shows what various values of @dst would be, for
901   *  various @orig's.  I list the zero-based positions of each set bit.
902   *  The tmp column shows the intermediate result, as computed by
903   *  using bitmap_fold() to fold the @orig bitmap modulo ten
904   *  (the weight of @relmap):
905   *
906   *      =============== ============== =================
907   *      @orig           tmp            @dst
908   *      0                0             40
909   *      1                1             41
910   *      9                9             95
911   *      10               0             40 [#f1]_
912   *      1 3 5 7          1 3 5 7       41 43 48 61
913   *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
914   *      0 9 18 27        0 9 8 7       40 61 74 95
915   *      0 10 20 30       0             40
916   *      0 11 22 33       0 1 2 3       40 41 42 43
917   *      0 12 24 36       0 2 4 6       40 42 45 53
918   *      78 102 211       1 2 8         41 42 74 [#f1]_
919   *      =============== ============== =================
920   *
921   * .. [#f1]
922   *
923   *     For these marked lines, if we hadn't first done bitmap_fold()
924   *     into tmp, then the @dst result would have been empty.
925   *
926   * If either of @orig or @relmap is empty (no set bits), then @dst
927   * will be returned empty.
928   *
929   * If (as explained above) the only set bits in @orig are in positions
930   * m where m >= W, (where W is the weight of @relmap) then @dst will
931   * once again be returned empty.
932   *
933   * All bits in @dst not set by the above rule are cleared.
934   */
935  void bitmap_onto(unsigned long *dst, const unsigned long *orig,
936  			const unsigned long *relmap, unsigned int bits)
937  {
938  	unsigned int n, m;	/* same meaning as in above comment */
939  
940  	if (dst == orig)	/* following doesn't handle inplace mappings */
941  		return;
942  	bitmap_zero(dst, bits);
943  
944  	/*
945  	 * The following code is a more efficient, but less
946  	 * obvious, equivalent to the loop:
947  	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
948  	 *		n = bitmap_ord_to_pos(orig, m, bits);
949  	 *		if (test_bit(m, orig))
950  	 *			set_bit(n, dst);
951  	 *	}
952  	 */
953  
954  	m = 0;
955  	for_each_set_bit(n, relmap, bits) {
956  		/* m == bitmap_pos_to_ord(relmap, n, bits) */
957  		if (test_bit(m, orig))
958  			set_bit(n, dst);
959  		m++;
960  	}
961  }
962  
963  /**
964   * bitmap_fold - fold larger bitmap into smaller, modulo specified size
965   *	@dst: resulting smaller bitmap
966   *	@orig: original larger bitmap
967   *	@sz: specified size
968   *	@nbits: number of bits in each of these bitmaps
969   *
970   * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
971   * Clear all other bits in @dst.  See further the comment and
972   * Example [2] for bitmap_onto() for why and how to use this.
973   */
974  void bitmap_fold(unsigned long *dst, const unsigned long *orig,
975  			unsigned int sz, unsigned int nbits)
976  {
977  	unsigned int oldbit;
978  
979  	if (dst == orig)	/* following doesn't handle inplace mappings */
980  		return;
981  	bitmap_zero(dst, nbits);
982  
983  	for_each_set_bit(oldbit, orig, nbits)
984  		set_bit(oldbit % sz, dst);
985  }
986  #endif /* CONFIG_NUMA */
987  
988  /*
989   * Common code for bitmap_*_region() routines.
990   *	bitmap: array of unsigned longs corresponding to the bitmap
991   *	pos: the beginning of the region
992   *	order: region size (log base 2 of number of bits)
993   *	reg_op: operation(s) to perform on that region of bitmap
994   *
995   * Can set, verify and/or release a region of bits in a bitmap,
996   * depending on which combination of REG_OP_* flag bits is set.
997   *
998   * A region of a bitmap is a sequence of bits in the bitmap, of
999   * some size '1 << order' (a power of two), aligned to that same
1000   * '1 << order' power of two.
1001   *
1002   * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1003   * Returns 0 in all other cases and reg_ops.
1004   */
1005  
1006  enum {
1007  	REG_OP_ISFREE,		/* true if region is all zero bits */
1008  	REG_OP_ALLOC,		/* set all bits in region */
1009  	REG_OP_RELEASE,		/* clear all bits in region */
1010  };
1011  
1012  static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1013  {
1014  	int nbits_reg;		/* number of bits in region */
1015  	int index;		/* index first long of region in bitmap */
1016  	int offset;		/* bit offset region in bitmap[index] */
1017  	int nlongs_reg;		/* num longs spanned by region in bitmap */
1018  	int nbitsinlong;	/* num bits of region in each spanned long */
1019  	unsigned long mask;	/* bitmask for one long of region */
1020  	int i;			/* scans bitmap by longs */
1021  	int ret = 0;		/* return value */
1022  
1023  	/*
1024  	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1025  	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1026  	 */
1027  	nbits_reg = 1 << order;
1028  	index = pos / BITS_PER_LONG;
1029  	offset = pos - (index * BITS_PER_LONG);
1030  	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1031  	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1032  
1033  	/*
1034  	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1035  	 * overflows if nbitsinlong == BITS_PER_LONG.
1036  	 */
1037  	mask = (1UL << (nbitsinlong - 1));
1038  	mask += mask - 1;
1039  	mask <<= offset;
1040  
1041  	switch (reg_op) {
1042  	case REG_OP_ISFREE:
1043  		for (i = 0; i < nlongs_reg; i++) {
1044  			if (bitmap[index + i] & mask)
1045  				goto done;
1046  		}
1047  		ret = 1;	/* all bits in region free (zero) */
1048  		break;
1049  
1050  	case REG_OP_ALLOC:
1051  		for (i = 0; i < nlongs_reg; i++)
1052  			bitmap[index + i] |= mask;
1053  		break;
1054  
1055  	case REG_OP_RELEASE:
1056  		for (i = 0; i < nlongs_reg; i++)
1057  			bitmap[index + i] &= ~mask;
1058  		break;
1059  	}
1060  done:
1061  	return ret;
1062  }
1063  
1064  /**
1065   * bitmap_find_free_region - find a contiguous aligned mem region
1066   *	@bitmap: array of unsigned longs corresponding to the bitmap
1067   *	@bits: number of bits in the bitmap
1068   *	@order: region size (log base 2 of number of bits) to find
1069   *
1070   * Find a region of free (zero) bits in a @bitmap of @bits bits and
1071   * allocate them (set them to one).  Only consider regions of length
1072   * a power (@order) of two, aligned to that power of two, which
1073   * makes the search algorithm much faster.
1074   *
1075   * Return the bit offset in bitmap of the allocated region,
1076   * or -errno on failure.
1077   */
1078  int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1079  {
1080  	unsigned int pos, end;		/* scans bitmap by regions of size order */
1081  
1082  	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1083  		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1084  			continue;
1085  		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1086  		return pos;
1087  	}
1088  	return -ENOMEM;
1089  }
1090  EXPORT_SYMBOL(bitmap_find_free_region);
1091  
1092  /**
1093   * bitmap_release_region - release allocated bitmap region
1094   *	@bitmap: array of unsigned longs corresponding to the bitmap
1095   *	@pos: beginning of bit region to release
1096   *	@order: region size (log base 2 of number of bits) to release
1097   *
1098   * This is the complement to __bitmap_find_free_region() and releases
1099   * the found region (by clearing it in the bitmap).
1100   *
1101   * No return value.
1102   */
1103  void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1104  {
1105  	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1106  }
1107  EXPORT_SYMBOL(bitmap_release_region);
1108  
1109  /**
1110   * bitmap_allocate_region - allocate bitmap region
1111   *	@bitmap: array of unsigned longs corresponding to the bitmap
1112   *	@pos: beginning of bit region to allocate
1113   *	@order: region size (log base 2 of number of bits) to allocate
1114   *
1115   * Allocate (set bits in) a specified region of a bitmap.
1116   *
1117   * Return 0 on success, or %-EBUSY if specified region wasn't
1118   * free (not all bits were zero).
1119   */
1120  int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1121  {
1122  	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1123  		return -EBUSY;
1124  	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1125  }
1126  EXPORT_SYMBOL(bitmap_allocate_region);
1127  
1128  /**
1129   * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1130   * @dst:   destination buffer
1131   * @src:   bitmap to copy
1132   * @nbits: number of bits in the bitmap
1133   *
1134   * Require nbits % BITS_PER_LONG == 0.
1135   */
1136  #ifdef __BIG_ENDIAN
1137  void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1138  {
1139  	unsigned int i;
1140  
1141  	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1142  		if (BITS_PER_LONG == 64)
1143  			dst[i] = cpu_to_le64(src[i]);
1144  		else
1145  			dst[i] = cpu_to_le32(src[i]);
1146  	}
1147  }
1148  EXPORT_SYMBOL(bitmap_copy_le);
1149  #endif
1150  
1151  unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1152  {
1153  	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1154  			     flags);
1155  }
1156  EXPORT_SYMBOL(bitmap_alloc);
1157  
1158  unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1159  {
1160  	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1161  }
1162  EXPORT_SYMBOL(bitmap_zalloc);
1163  
1164  void bitmap_free(const unsigned long *bitmap)
1165  {
1166  	kfree(bitmap);
1167  }
1168  EXPORT_SYMBOL(bitmap_free);
1169  
1170  #if BITS_PER_LONG == 64
1171  /**
1172   * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1173   *	@bitmap: array of unsigned longs, the destination bitmap
1174   *	@buf: array of u32 (in host byte order), the source bitmap
1175   *	@nbits: number of bits in @bitmap
1176   */
1177  void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1178  {
1179  	unsigned int i, halfwords;
1180  
1181  	halfwords = DIV_ROUND_UP(nbits, 32);
1182  	for (i = 0; i < halfwords; i++) {
1183  		bitmap[i/2] = (unsigned long) buf[i];
1184  		if (++i < halfwords)
1185  			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1186  	}
1187  
1188  	/* Clear tail bits in last word beyond nbits. */
1189  	if (nbits % BITS_PER_LONG)
1190  		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1191  }
1192  EXPORT_SYMBOL(bitmap_from_arr32);
1193  
1194  /**
1195   * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1196   *	@buf: array of u32 (in host byte order), the dest bitmap
1197   *	@bitmap: array of unsigned longs, the source bitmap
1198   *	@nbits: number of bits in @bitmap
1199   */
1200  void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1201  {
1202  	unsigned int i, halfwords;
1203  
1204  	halfwords = DIV_ROUND_UP(nbits, 32);
1205  	for (i = 0; i < halfwords; i++) {
1206  		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1207  		if (++i < halfwords)
1208  			buf[i] = (u32) (bitmap[i/2] >> 32);
1209  	}
1210  
1211  	/* Clear tail bits in last element of array beyond nbits. */
1212  	if (nbits % BITS_PER_LONG)
1213  		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1214  }
1215  EXPORT_SYMBOL(bitmap_to_arr32);
1216  
1217  #endif
1218