1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 #include <linux/export.h> 7 #include <linux/thread_info.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/bitmap.h> 11 #include <linux/bitops.h> 12 #include <linux/bug.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/page.h> 20 21 #include "kstrtox.h" 22 23 /** 24 * DOC: bitmap introduction 25 * 26 * bitmaps provide an array of bits, implemented using an an 27 * array of unsigned longs. The number of valid bits in a 28 * given bitmap does _not_ need to be an exact multiple of 29 * BITS_PER_LONG. 30 * 31 * The possible unused bits in the last, partially used word 32 * of a bitmap are 'don't care'. The implementation makes 33 * no particular effort to keep them zero. It ensures that 34 * their value will not affect the results of any operation. 35 * The bitmap operations that return Boolean (bitmap_empty, 36 * for example) or scalar (bitmap_weight, for example) results 37 * carefully filter out these unused bits from impacting their 38 * results. 39 * 40 * The byte ordering of bitmaps is more natural on little 41 * endian architectures. See the big-endian headers 42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 43 * for the best explanations of this ordering. 44 */ 45 46 int __bitmap_equal(const unsigned long *bitmap1, 47 const unsigned long *bitmap2, unsigned int bits) 48 { 49 unsigned int k, lim = bits/BITS_PER_LONG; 50 for (k = 0; k < lim; ++k) 51 if (bitmap1[k] != bitmap2[k]) 52 return 0; 53 54 if (bits % BITS_PER_LONG) 55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 56 return 0; 57 58 return 1; 59 } 60 EXPORT_SYMBOL(__bitmap_equal); 61 62 bool __bitmap_or_equal(const unsigned long *bitmap1, 63 const unsigned long *bitmap2, 64 const unsigned long *bitmap3, 65 unsigned int bits) 66 { 67 unsigned int k, lim = bits / BITS_PER_LONG; 68 unsigned long tmp; 69 70 for (k = 0; k < lim; ++k) { 71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 72 return false; 73 } 74 75 if (!(bits % BITS_PER_LONG)) 76 return true; 77 78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 80 } 81 82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 83 { 84 unsigned int k, lim = BITS_TO_LONGS(bits); 85 for (k = 0; k < lim; ++k) 86 dst[k] = ~src[k]; 87 } 88 EXPORT_SYMBOL(__bitmap_complement); 89 90 /** 91 * __bitmap_shift_right - logical right shift of the bits in a bitmap 92 * @dst : destination bitmap 93 * @src : source bitmap 94 * @shift : shift by this many bits 95 * @nbits : bitmap size, in bits 96 * 97 * Shifting right (dividing) means moving bits in the MS -> LS bit 98 * direction. Zeros are fed into the vacated MS positions and the 99 * LS bits shifted off the bottom are lost. 100 */ 101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 102 unsigned shift, unsigned nbits) 103 { 104 unsigned k, lim = BITS_TO_LONGS(nbits); 105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 107 for (k = 0; off + k < lim; ++k) { 108 unsigned long upper, lower; 109 110 /* 111 * If shift is not word aligned, take lower rem bits of 112 * word above and make them the top rem bits of result. 113 */ 114 if (!rem || off + k + 1 >= lim) 115 upper = 0; 116 else { 117 upper = src[off + k + 1]; 118 if (off + k + 1 == lim - 1) 119 upper &= mask; 120 upper <<= (BITS_PER_LONG - rem); 121 } 122 lower = src[off + k]; 123 if (off + k == lim - 1) 124 lower &= mask; 125 lower >>= rem; 126 dst[k] = lower | upper; 127 } 128 if (off) 129 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 130 } 131 EXPORT_SYMBOL(__bitmap_shift_right); 132 133 134 /** 135 * __bitmap_shift_left - logical left shift of the bits in a bitmap 136 * @dst : destination bitmap 137 * @src : source bitmap 138 * @shift : shift by this many bits 139 * @nbits : bitmap size, in bits 140 * 141 * Shifting left (multiplying) means moving bits in the LS -> MS 142 * direction. Zeros are fed into the vacated LS bit positions 143 * and those MS bits shifted off the top are lost. 144 */ 145 146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 147 unsigned int shift, unsigned int nbits) 148 { 149 int k; 150 unsigned int lim = BITS_TO_LONGS(nbits); 151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 152 for (k = lim - off - 1; k >= 0; --k) { 153 unsigned long upper, lower; 154 155 /* 156 * If shift is not word aligned, take upper rem bits of 157 * word below and make them the bottom rem bits of result. 158 */ 159 if (rem && k > 0) 160 lower = src[k - 1] >> (BITS_PER_LONG - rem); 161 else 162 lower = 0; 163 upper = src[k] << rem; 164 dst[k + off] = lower | upper; 165 } 166 if (off) 167 memset(dst, 0, off*sizeof(unsigned long)); 168 } 169 EXPORT_SYMBOL(__bitmap_shift_left); 170 171 /** 172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 173 * @dst: destination bitmap, might overlap with src 174 * @src: source bitmap 175 * @first: start bit of region to be removed 176 * @cut: number of bits to remove 177 * @nbits: bitmap size, in bits 178 * 179 * Set the n-th bit of @dst iff the n-th bit of @src is set and 180 * n is less than @first, or the m-th bit of @src is set for any 181 * m such that @first <= n < nbits, and m = n + @cut. 182 * 183 * In pictures, example for a big-endian 32-bit architecture: 184 * 185 * @src: 186 * 31 63 187 * | | 188 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 189 * | | | | 190 * 16 14 0 32 191 * 192 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is: 193 * 194 * 31 63 195 * | | 196 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 197 * | | | 198 * 14 (bit 17 0 32 199 * from @src) 200 * 201 * Note that @dst and @src might overlap partially or entirely. 202 * 203 * This is implemented in the obvious way, with a shift and carry 204 * step for each moved bit. Optimisation is left as an exercise 205 * for the compiler. 206 */ 207 void bitmap_cut(unsigned long *dst, const unsigned long *src, 208 unsigned int first, unsigned int cut, unsigned int nbits) 209 { 210 unsigned int len = BITS_TO_LONGS(nbits); 211 unsigned long keep = 0, carry; 212 int i; 213 214 memmove(dst, src, len * sizeof(*dst)); 215 216 if (first % BITS_PER_LONG) { 217 keep = src[first / BITS_PER_LONG] & 218 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 219 } 220 221 while (cut--) { 222 for (i = first / BITS_PER_LONG; i < len; i++) { 223 if (i < len - 1) 224 carry = dst[i + 1] & 1UL; 225 else 226 carry = 0; 227 228 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 229 } 230 } 231 232 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 233 dst[first / BITS_PER_LONG] |= keep; 234 } 235 EXPORT_SYMBOL(bitmap_cut); 236 237 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 238 const unsigned long *bitmap2, unsigned int bits) 239 { 240 unsigned int k; 241 unsigned int lim = bits/BITS_PER_LONG; 242 unsigned long result = 0; 243 244 for (k = 0; k < lim; k++) 245 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 246 if (bits % BITS_PER_LONG) 247 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 248 BITMAP_LAST_WORD_MASK(bits)); 249 return result != 0; 250 } 251 EXPORT_SYMBOL(__bitmap_and); 252 253 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 254 const unsigned long *bitmap2, unsigned int bits) 255 { 256 unsigned int k; 257 unsigned int nr = BITS_TO_LONGS(bits); 258 259 for (k = 0; k < nr; k++) 260 dst[k] = bitmap1[k] | bitmap2[k]; 261 } 262 EXPORT_SYMBOL(__bitmap_or); 263 264 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 265 const unsigned long *bitmap2, unsigned int bits) 266 { 267 unsigned int k; 268 unsigned int nr = BITS_TO_LONGS(bits); 269 270 for (k = 0; k < nr; k++) 271 dst[k] = bitmap1[k] ^ bitmap2[k]; 272 } 273 EXPORT_SYMBOL(__bitmap_xor); 274 275 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 276 const unsigned long *bitmap2, unsigned int bits) 277 { 278 unsigned int k; 279 unsigned int lim = bits/BITS_PER_LONG; 280 unsigned long result = 0; 281 282 for (k = 0; k < lim; k++) 283 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 284 if (bits % BITS_PER_LONG) 285 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 286 BITMAP_LAST_WORD_MASK(bits)); 287 return result != 0; 288 } 289 EXPORT_SYMBOL(__bitmap_andnot); 290 291 void __bitmap_replace(unsigned long *dst, 292 const unsigned long *old, const unsigned long *new, 293 const unsigned long *mask, unsigned int nbits) 294 { 295 unsigned int k; 296 unsigned int nr = BITS_TO_LONGS(nbits); 297 298 for (k = 0; k < nr; k++) 299 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 300 } 301 EXPORT_SYMBOL(__bitmap_replace); 302 303 int __bitmap_intersects(const unsigned long *bitmap1, 304 const unsigned long *bitmap2, unsigned int bits) 305 { 306 unsigned int k, lim = bits/BITS_PER_LONG; 307 for (k = 0; k < lim; ++k) 308 if (bitmap1[k] & bitmap2[k]) 309 return 1; 310 311 if (bits % BITS_PER_LONG) 312 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 313 return 1; 314 return 0; 315 } 316 EXPORT_SYMBOL(__bitmap_intersects); 317 318 int __bitmap_subset(const unsigned long *bitmap1, 319 const unsigned long *bitmap2, unsigned int bits) 320 { 321 unsigned int k, lim = bits/BITS_PER_LONG; 322 for (k = 0; k < lim; ++k) 323 if (bitmap1[k] & ~bitmap2[k]) 324 return 0; 325 326 if (bits % BITS_PER_LONG) 327 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 328 return 0; 329 return 1; 330 } 331 EXPORT_SYMBOL(__bitmap_subset); 332 333 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 334 { 335 unsigned int k, lim = bits/BITS_PER_LONG; 336 int w = 0; 337 338 for (k = 0; k < lim; k++) 339 w += hweight_long(bitmap[k]); 340 341 if (bits % BITS_PER_LONG) 342 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 343 344 return w; 345 } 346 EXPORT_SYMBOL(__bitmap_weight); 347 348 void __bitmap_set(unsigned long *map, unsigned int start, int len) 349 { 350 unsigned long *p = map + BIT_WORD(start); 351 const unsigned int size = start + len; 352 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 353 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 354 355 while (len - bits_to_set >= 0) { 356 *p |= mask_to_set; 357 len -= bits_to_set; 358 bits_to_set = BITS_PER_LONG; 359 mask_to_set = ~0UL; 360 p++; 361 } 362 if (len) { 363 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 364 *p |= mask_to_set; 365 } 366 } 367 EXPORT_SYMBOL(__bitmap_set); 368 369 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 370 { 371 unsigned long *p = map + BIT_WORD(start); 372 const unsigned int size = start + len; 373 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 374 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 375 376 while (len - bits_to_clear >= 0) { 377 *p &= ~mask_to_clear; 378 len -= bits_to_clear; 379 bits_to_clear = BITS_PER_LONG; 380 mask_to_clear = ~0UL; 381 p++; 382 } 383 if (len) { 384 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 385 *p &= ~mask_to_clear; 386 } 387 } 388 EXPORT_SYMBOL(__bitmap_clear); 389 390 /** 391 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 392 * @map: The address to base the search on 393 * @size: The bitmap size in bits 394 * @start: The bitnumber to start searching at 395 * @nr: The number of zeroed bits we're looking for 396 * @align_mask: Alignment mask for zero area 397 * @align_offset: Alignment offset for zero area. 398 * 399 * The @align_mask should be one less than a power of 2; the effect is that 400 * the bit offset of all zero areas this function finds plus @align_offset 401 * is multiple of that power of 2. 402 */ 403 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 404 unsigned long size, 405 unsigned long start, 406 unsigned int nr, 407 unsigned long align_mask, 408 unsigned long align_offset) 409 { 410 unsigned long index, end, i; 411 again: 412 index = find_next_zero_bit(map, size, start); 413 414 /* Align allocation */ 415 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 416 417 end = index + nr; 418 if (end > size) 419 return end; 420 i = find_next_bit(map, end, index); 421 if (i < end) { 422 start = i + 1; 423 goto again; 424 } 425 return index; 426 } 427 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 428 429 /* 430 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 431 * second version by Paul Jackson, third by Joe Korty. 432 */ 433 434 /** 435 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 436 * 437 * @ubuf: pointer to user buffer containing string. 438 * @ulen: buffer size in bytes. If string is smaller than this 439 * then it must be terminated with a \0. 440 * @maskp: pointer to bitmap array that will contain result. 441 * @nmaskbits: size of bitmap, in bits. 442 */ 443 int bitmap_parse_user(const char __user *ubuf, 444 unsigned int ulen, unsigned long *maskp, 445 int nmaskbits) 446 { 447 char *buf; 448 int ret; 449 450 buf = memdup_user_nul(ubuf, ulen); 451 if (IS_ERR(buf)) 452 return PTR_ERR(buf); 453 454 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); 455 456 kfree(buf); 457 return ret; 458 } 459 EXPORT_SYMBOL(bitmap_parse_user); 460 461 /** 462 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 463 * @list: indicates whether the bitmap must be list 464 * @buf: page aligned buffer into which string is placed 465 * @maskp: pointer to bitmap to convert 466 * @nmaskbits: size of bitmap, in bits 467 * 468 * Output format is a comma-separated list of decimal numbers and 469 * ranges if list is specified or hex digits grouped into comma-separated 470 * sets of 8 digits/set. Returns the number of characters written to buf. 471 * 472 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 473 * area and that sufficient storage remains at @buf to accommodate the 474 * bitmap_print_to_pagebuf() output. Returns the number of characters 475 * actually printed to @buf, excluding terminating '\0'. 476 */ 477 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 478 int nmaskbits) 479 { 480 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 481 482 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 483 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 484 } 485 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 486 487 /* 488 * Region 9-38:4/10 describes the following bitmap structure: 489 * 0 9 12 18 38 490 * .........****......****......****...... 491 * ^ ^ ^ ^ 492 * start off group_len end 493 */ 494 struct region { 495 unsigned int start; 496 unsigned int off; 497 unsigned int group_len; 498 unsigned int end; 499 }; 500 501 static int bitmap_set_region(const struct region *r, 502 unsigned long *bitmap, int nbits) 503 { 504 unsigned int start; 505 506 if (r->end >= nbits) 507 return -ERANGE; 508 509 for (start = r->start; start <= r->end; start += r->group_len) 510 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 511 512 return 0; 513 } 514 515 static int bitmap_check_region(const struct region *r) 516 { 517 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 518 return -EINVAL; 519 520 return 0; 521 } 522 523 static const char *bitmap_getnum(const char *str, unsigned int *num) 524 { 525 unsigned long long n; 526 unsigned int len; 527 528 len = _parse_integer(str, 10, &n); 529 if (!len) 530 return ERR_PTR(-EINVAL); 531 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 532 return ERR_PTR(-EOVERFLOW); 533 534 *num = n; 535 return str + len; 536 } 537 538 static inline bool end_of_str(char c) 539 { 540 return c == '\0' || c == '\n'; 541 } 542 543 static inline bool __end_of_region(char c) 544 { 545 return isspace(c) || c == ','; 546 } 547 548 static inline bool end_of_region(char c) 549 { 550 return __end_of_region(c) || end_of_str(c); 551 } 552 553 /* 554 * The format allows commas and whitespases at the beginning 555 * of the region. 556 */ 557 static const char *bitmap_find_region(const char *str) 558 { 559 while (__end_of_region(*str)) 560 str++; 561 562 return end_of_str(*str) ? NULL : str; 563 } 564 565 static const char *bitmap_find_region_reverse(const char *start, const char *end) 566 { 567 while (start <= end && __end_of_region(*end)) 568 end--; 569 570 return end; 571 } 572 573 static const char *bitmap_parse_region(const char *str, struct region *r) 574 { 575 str = bitmap_getnum(str, &r->start); 576 if (IS_ERR(str)) 577 return str; 578 579 if (end_of_region(*str)) 580 goto no_end; 581 582 if (*str != '-') 583 return ERR_PTR(-EINVAL); 584 585 str = bitmap_getnum(str + 1, &r->end); 586 if (IS_ERR(str)) 587 return str; 588 589 if (end_of_region(*str)) 590 goto no_pattern; 591 592 if (*str != ':') 593 return ERR_PTR(-EINVAL); 594 595 str = bitmap_getnum(str + 1, &r->off); 596 if (IS_ERR(str)) 597 return str; 598 599 if (*str != '/') 600 return ERR_PTR(-EINVAL); 601 602 return bitmap_getnum(str + 1, &r->group_len); 603 604 no_end: 605 r->end = r->start; 606 no_pattern: 607 r->off = r->end + 1; 608 r->group_len = r->end + 1; 609 610 return end_of_str(*str) ? NULL : str; 611 } 612 613 /** 614 * bitmap_parselist - convert list format ASCII string to bitmap 615 * @buf: read user string from this buffer; must be terminated 616 * with a \0 or \n. 617 * @maskp: write resulting mask here 618 * @nmaskbits: number of bits in mask to be written 619 * 620 * Input format is a comma-separated list of decimal numbers and 621 * ranges. Consecutively set bits are shown as two hyphen-separated 622 * decimal numbers, the smallest and largest bit numbers set in 623 * the range. 624 * Optionally each range can be postfixed to denote that only parts of it 625 * should be set. The range will divided to groups of specific size. 626 * From each group will be used only defined amount of bits. 627 * Syntax: range:used_size/group_size 628 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 629 * 630 * Returns: 0 on success, -errno on invalid input strings. Error values: 631 * 632 * - ``-EINVAL``: wrong region format 633 * - ``-EINVAL``: invalid character in string 634 * - ``-ERANGE``: bit number specified too large for mask 635 * - ``-EOVERFLOW``: integer overflow in the input parameters 636 */ 637 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 638 { 639 struct region r; 640 long ret; 641 642 bitmap_zero(maskp, nmaskbits); 643 644 while (buf) { 645 buf = bitmap_find_region(buf); 646 if (buf == NULL) 647 return 0; 648 649 buf = bitmap_parse_region(buf, &r); 650 if (IS_ERR(buf)) 651 return PTR_ERR(buf); 652 653 ret = bitmap_check_region(&r); 654 if (ret) 655 return ret; 656 657 ret = bitmap_set_region(&r, maskp, nmaskbits); 658 if (ret) 659 return ret; 660 } 661 662 return 0; 663 } 664 EXPORT_SYMBOL(bitmap_parselist); 665 666 667 /** 668 * bitmap_parselist_user() 669 * 670 * @ubuf: pointer to user buffer containing string. 671 * @ulen: buffer size in bytes. If string is smaller than this 672 * then it must be terminated with a \0. 673 * @maskp: pointer to bitmap array that will contain result. 674 * @nmaskbits: size of bitmap, in bits. 675 * 676 * Wrapper for bitmap_parselist(), providing it with user buffer. 677 */ 678 int bitmap_parselist_user(const char __user *ubuf, 679 unsigned int ulen, unsigned long *maskp, 680 int nmaskbits) 681 { 682 char *buf; 683 int ret; 684 685 buf = memdup_user_nul(ubuf, ulen); 686 if (IS_ERR(buf)) 687 return PTR_ERR(buf); 688 689 ret = bitmap_parselist(buf, maskp, nmaskbits); 690 691 kfree(buf); 692 return ret; 693 } 694 EXPORT_SYMBOL(bitmap_parselist_user); 695 696 static const char *bitmap_get_x32_reverse(const char *start, 697 const char *end, u32 *num) 698 { 699 u32 ret = 0; 700 int c, i; 701 702 for (i = 0; i < 32; i += 4) { 703 c = hex_to_bin(*end--); 704 if (c < 0) 705 return ERR_PTR(-EINVAL); 706 707 ret |= c << i; 708 709 if (start > end || __end_of_region(*end)) 710 goto out; 711 } 712 713 if (hex_to_bin(*end--) >= 0) 714 return ERR_PTR(-EOVERFLOW); 715 out: 716 *num = ret; 717 return end; 718 } 719 720 /** 721 * bitmap_parse - convert an ASCII hex string into a bitmap. 722 * @start: pointer to buffer containing string. 723 * @buflen: buffer size in bytes. If string is smaller than this 724 * then it must be terminated with a \0 or \n. In that case, 725 * UINT_MAX may be provided instead of string length. 726 * @maskp: pointer to bitmap array that will contain result. 727 * @nmaskbits: size of bitmap, in bits. 728 * 729 * Commas group hex digits into chunks. Each chunk defines exactly 32 730 * bits of the resultant bitmask. No chunk may specify a value larger 731 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 732 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 733 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. 734 * Leading, embedded and trailing whitespace accepted. 735 */ 736 int bitmap_parse(const char *start, unsigned int buflen, 737 unsigned long *maskp, int nmaskbits) 738 { 739 const char *end = strnchrnul(start, buflen, '\n') - 1; 740 int chunks = BITS_TO_U32(nmaskbits); 741 u32 *bitmap = (u32 *)maskp; 742 int unset_bit; 743 744 while (1) { 745 end = bitmap_find_region_reverse(start, end); 746 if (start > end) 747 break; 748 749 if (!chunks--) 750 return -EOVERFLOW; 751 752 end = bitmap_get_x32_reverse(start, end, bitmap++); 753 if (IS_ERR(end)) 754 return PTR_ERR(end); 755 } 756 757 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; 758 if (unset_bit < nmaskbits) { 759 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); 760 return 0; 761 } 762 763 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) 764 return -EOVERFLOW; 765 766 return 0; 767 } 768 EXPORT_SYMBOL(bitmap_parse); 769 770 771 #ifdef CONFIG_NUMA 772 /** 773 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 774 * @buf: pointer to a bitmap 775 * @pos: a bit position in @buf (0 <= @pos < @nbits) 776 * @nbits: number of valid bit positions in @buf 777 * 778 * Map the bit at position @pos in @buf (of length @nbits) to the 779 * ordinal of which set bit it is. If it is not set or if @pos 780 * is not a valid bit position, map to -1. 781 * 782 * If for example, just bits 4 through 7 are set in @buf, then @pos 783 * values 4 through 7 will get mapped to 0 through 3, respectively, 784 * and other @pos values will get mapped to -1. When @pos value 7 785 * gets mapped to (returns) @ord value 3 in this example, that means 786 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 787 * 788 * The bit positions 0 through @bits are valid positions in @buf. 789 */ 790 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 791 { 792 if (pos >= nbits || !test_bit(pos, buf)) 793 return -1; 794 795 return __bitmap_weight(buf, pos); 796 } 797 798 /** 799 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 800 * @buf: pointer to bitmap 801 * @ord: ordinal bit position (n-th set bit, n >= 0) 802 * @nbits: number of valid bit positions in @buf 803 * 804 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 805 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 806 * >= weight(buf), returns @nbits. 807 * 808 * If for example, just bits 4 through 7 are set in @buf, then @ord 809 * values 0 through 3 will get mapped to 4 through 7, respectively, 810 * and all other @ord values returns @nbits. When @ord value 3 811 * gets mapped to (returns) @pos value 7 in this example, that means 812 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 813 * 814 * The bit positions 0 through @nbits-1 are valid positions in @buf. 815 */ 816 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 817 { 818 unsigned int pos; 819 820 for (pos = find_first_bit(buf, nbits); 821 pos < nbits && ord; 822 pos = find_next_bit(buf, nbits, pos + 1)) 823 ord--; 824 825 return pos; 826 } 827 828 /** 829 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 830 * @dst: remapped result 831 * @src: subset to be remapped 832 * @old: defines domain of map 833 * @new: defines range of map 834 * @nbits: number of bits in each of these bitmaps 835 * 836 * Let @old and @new define a mapping of bit positions, such that 837 * whatever position is held by the n-th set bit in @old is mapped 838 * to the n-th set bit in @new. In the more general case, allowing 839 * for the possibility that the weight 'w' of @new is less than the 840 * weight of @old, map the position of the n-th set bit in @old to 841 * the position of the m-th set bit in @new, where m == n % w. 842 * 843 * If either of the @old and @new bitmaps are empty, or if @src and 844 * @dst point to the same location, then this routine copies @src 845 * to @dst. 846 * 847 * The positions of unset bits in @old are mapped to themselves 848 * (the identify map). 849 * 850 * Apply the above specified mapping to @src, placing the result in 851 * @dst, clearing any bits previously set in @dst. 852 * 853 * For example, lets say that @old has bits 4 through 7 set, and 854 * @new has bits 12 through 15 set. This defines the mapping of bit 855 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 856 * bit positions unchanged. So if say @src comes into this routine 857 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 858 * 13 and 15 set. 859 */ 860 void bitmap_remap(unsigned long *dst, const unsigned long *src, 861 const unsigned long *old, const unsigned long *new, 862 unsigned int nbits) 863 { 864 unsigned int oldbit, w; 865 866 if (dst == src) /* following doesn't handle inplace remaps */ 867 return; 868 bitmap_zero(dst, nbits); 869 870 w = bitmap_weight(new, nbits); 871 for_each_set_bit(oldbit, src, nbits) { 872 int n = bitmap_pos_to_ord(old, oldbit, nbits); 873 874 if (n < 0 || w == 0) 875 set_bit(oldbit, dst); /* identity map */ 876 else 877 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 878 } 879 } 880 881 /** 882 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 883 * @oldbit: bit position to be mapped 884 * @old: defines domain of map 885 * @new: defines range of map 886 * @bits: number of bits in each of these bitmaps 887 * 888 * Let @old and @new define a mapping of bit positions, such that 889 * whatever position is held by the n-th set bit in @old is mapped 890 * to the n-th set bit in @new. In the more general case, allowing 891 * for the possibility that the weight 'w' of @new is less than the 892 * weight of @old, map the position of the n-th set bit in @old to 893 * the position of the m-th set bit in @new, where m == n % w. 894 * 895 * The positions of unset bits in @old are mapped to themselves 896 * (the identify map). 897 * 898 * Apply the above specified mapping to bit position @oldbit, returning 899 * the new bit position. 900 * 901 * For example, lets say that @old has bits 4 through 7 set, and 902 * @new has bits 12 through 15 set. This defines the mapping of bit 903 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 904 * bit positions unchanged. So if say @oldbit is 5, then this routine 905 * returns 13. 906 */ 907 int bitmap_bitremap(int oldbit, const unsigned long *old, 908 const unsigned long *new, int bits) 909 { 910 int w = bitmap_weight(new, bits); 911 int n = bitmap_pos_to_ord(old, oldbit, bits); 912 if (n < 0 || w == 0) 913 return oldbit; 914 else 915 return bitmap_ord_to_pos(new, n % w, bits); 916 } 917 918 /** 919 * bitmap_onto - translate one bitmap relative to another 920 * @dst: resulting translated bitmap 921 * @orig: original untranslated bitmap 922 * @relmap: bitmap relative to which translated 923 * @bits: number of bits in each of these bitmaps 924 * 925 * Set the n-th bit of @dst iff there exists some m such that the 926 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 927 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 928 * (If you understood the previous sentence the first time your 929 * read it, you're overqualified for your current job.) 930 * 931 * In other words, @orig is mapped onto (surjectively) @dst, 932 * using the map { <n, m> | the n-th bit of @relmap is the 933 * m-th set bit of @relmap }. 934 * 935 * Any set bits in @orig above bit number W, where W is the 936 * weight of (number of set bits in) @relmap are mapped nowhere. 937 * In particular, if for all bits m set in @orig, m >= W, then 938 * @dst will end up empty. In situations where the possibility 939 * of such an empty result is not desired, one way to avoid it is 940 * to use the bitmap_fold() operator, below, to first fold the 941 * @orig bitmap over itself so that all its set bits x are in the 942 * range 0 <= x < W. The bitmap_fold() operator does this by 943 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 944 * 945 * Example [1] for bitmap_onto(): 946 * Let's say @relmap has bits 30-39 set, and @orig has bits 947 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 948 * @dst will have bits 31, 33, 35, 37 and 39 set. 949 * 950 * When bit 0 is set in @orig, it means turn on the bit in 951 * @dst corresponding to whatever is the first bit (if any) 952 * that is turned on in @relmap. Since bit 0 was off in the 953 * above example, we leave off that bit (bit 30) in @dst. 954 * 955 * When bit 1 is set in @orig (as in the above example), it 956 * means turn on the bit in @dst corresponding to whatever 957 * is the second bit that is turned on in @relmap. The second 958 * bit in @relmap that was turned on in the above example was 959 * bit 31, so we turned on bit 31 in @dst. 960 * 961 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 962 * because they were the 4th, 6th, 8th and 10th set bits 963 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 964 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 965 * 966 * When bit 11 is set in @orig, it means turn on the bit in 967 * @dst corresponding to whatever is the twelfth bit that is 968 * turned on in @relmap. In the above example, there were 969 * only ten bits turned on in @relmap (30..39), so that bit 970 * 11 was set in @orig had no affect on @dst. 971 * 972 * Example [2] for bitmap_fold() + bitmap_onto(): 973 * Let's say @relmap has these ten bits set:: 974 * 975 * 40 41 42 43 45 48 53 61 74 95 976 * 977 * (for the curious, that's 40 plus the first ten terms of the 978 * Fibonacci sequence.) 979 * 980 * Further lets say we use the following code, invoking 981 * bitmap_fold() then bitmap_onto, as suggested above to 982 * avoid the possibility of an empty @dst result:: 983 * 984 * unsigned long *tmp; // a temporary bitmap's bits 985 * 986 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 987 * bitmap_onto(dst, tmp, relmap, bits); 988 * 989 * Then this table shows what various values of @dst would be, for 990 * various @orig's. I list the zero-based positions of each set bit. 991 * The tmp column shows the intermediate result, as computed by 992 * using bitmap_fold() to fold the @orig bitmap modulo ten 993 * (the weight of @relmap): 994 * 995 * =============== ============== ================= 996 * @orig tmp @dst 997 * 0 0 40 998 * 1 1 41 999 * 9 9 95 1000 * 10 0 40 [#f1]_ 1001 * 1 3 5 7 1 3 5 7 41 43 48 61 1002 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 1003 * 0 9 18 27 0 9 8 7 40 61 74 95 1004 * 0 10 20 30 0 40 1005 * 0 11 22 33 0 1 2 3 40 41 42 43 1006 * 0 12 24 36 0 2 4 6 40 42 45 53 1007 * 78 102 211 1 2 8 41 42 74 [#f1]_ 1008 * =============== ============== ================= 1009 * 1010 * .. [#f1] 1011 * 1012 * For these marked lines, if we hadn't first done bitmap_fold() 1013 * into tmp, then the @dst result would have been empty. 1014 * 1015 * If either of @orig or @relmap is empty (no set bits), then @dst 1016 * will be returned empty. 1017 * 1018 * If (as explained above) the only set bits in @orig are in positions 1019 * m where m >= W, (where W is the weight of @relmap) then @dst will 1020 * once again be returned empty. 1021 * 1022 * All bits in @dst not set by the above rule are cleared. 1023 */ 1024 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 1025 const unsigned long *relmap, unsigned int bits) 1026 { 1027 unsigned int n, m; /* same meaning as in above comment */ 1028 1029 if (dst == orig) /* following doesn't handle inplace mappings */ 1030 return; 1031 bitmap_zero(dst, bits); 1032 1033 /* 1034 * The following code is a more efficient, but less 1035 * obvious, equivalent to the loop: 1036 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 1037 * n = bitmap_ord_to_pos(orig, m, bits); 1038 * if (test_bit(m, orig)) 1039 * set_bit(n, dst); 1040 * } 1041 */ 1042 1043 m = 0; 1044 for_each_set_bit(n, relmap, bits) { 1045 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1046 if (test_bit(m, orig)) 1047 set_bit(n, dst); 1048 m++; 1049 } 1050 } 1051 1052 /** 1053 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1054 * @dst: resulting smaller bitmap 1055 * @orig: original larger bitmap 1056 * @sz: specified size 1057 * @nbits: number of bits in each of these bitmaps 1058 * 1059 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1060 * Clear all other bits in @dst. See further the comment and 1061 * Example [2] for bitmap_onto() for why and how to use this. 1062 */ 1063 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1064 unsigned int sz, unsigned int nbits) 1065 { 1066 unsigned int oldbit; 1067 1068 if (dst == orig) /* following doesn't handle inplace mappings */ 1069 return; 1070 bitmap_zero(dst, nbits); 1071 1072 for_each_set_bit(oldbit, orig, nbits) 1073 set_bit(oldbit % sz, dst); 1074 } 1075 #endif /* CONFIG_NUMA */ 1076 1077 /* 1078 * Common code for bitmap_*_region() routines. 1079 * bitmap: array of unsigned longs corresponding to the bitmap 1080 * pos: the beginning of the region 1081 * order: region size (log base 2 of number of bits) 1082 * reg_op: operation(s) to perform on that region of bitmap 1083 * 1084 * Can set, verify and/or release a region of bits in a bitmap, 1085 * depending on which combination of REG_OP_* flag bits is set. 1086 * 1087 * A region of a bitmap is a sequence of bits in the bitmap, of 1088 * some size '1 << order' (a power of two), aligned to that same 1089 * '1 << order' power of two. 1090 * 1091 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1092 * Returns 0 in all other cases and reg_ops. 1093 */ 1094 1095 enum { 1096 REG_OP_ISFREE, /* true if region is all zero bits */ 1097 REG_OP_ALLOC, /* set all bits in region */ 1098 REG_OP_RELEASE, /* clear all bits in region */ 1099 }; 1100 1101 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1102 { 1103 int nbits_reg; /* number of bits in region */ 1104 int index; /* index first long of region in bitmap */ 1105 int offset; /* bit offset region in bitmap[index] */ 1106 int nlongs_reg; /* num longs spanned by region in bitmap */ 1107 int nbitsinlong; /* num bits of region in each spanned long */ 1108 unsigned long mask; /* bitmask for one long of region */ 1109 int i; /* scans bitmap by longs */ 1110 int ret = 0; /* return value */ 1111 1112 /* 1113 * Either nlongs_reg == 1 (for small orders that fit in one long) 1114 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1115 */ 1116 nbits_reg = 1 << order; 1117 index = pos / BITS_PER_LONG; 1118 offset = pos - (index * BITS_PER_LONG); 1119 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1120 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1121 1122 /* 1123 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1124 * overflows if nbitsinlong == BITS_PER_LONG. 1125 */ 1126 mask = (1UL << (nbitsinlong - 1)); 1127 mask += mask - 1; 1128 mask <<= offset; 1129 1130 switch (reg_op) { 1131 case REG_OP_ISFREE: 1132 for (i = 0; i < nlongs_reg; i++) { 1133 if (bitmap[index + i] & mask) 1134 goto done; 1135 } 1136 ret = 1; /* all bits in region free (zero) */ 1137 break; 1138 1139 case REG_OP_ALLOC: 1140 for (i = 0; i < nlongs_reg; i++) 1141 bitmap[index + i] |= mask; 1142 break; 1143 1144 case REG_OP_RELEASE: 1145 for (i = 0; i < nlongs_reg; i++) 1146 bitmap[index + i] &= ~mask; 1147 break; 1148 } 1149 done: 1150 return ret; 1151 } 1152 1153 /** 1154 * bitmap_find_free_region - find a contiguous aligned mem region 1155 * @bitmap: array of unsigned longs corresponding to the bitmap 1156 * @bits: number of bits in the bitmap 1157 * @order: region size (log base 2 of number of bits) to find 1158 * 1159 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1160 * allocate them (set them to one). Only consider regions of length 1161 * a power (@order) of two, aligned to that power of two, which 1162 * makes the search algorithm much faster. 1163 * 1164 * Return the bit offset in bitmap of the allocated region, 1165 * or -errno on failure. 1166 */ 1167 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1168 { 1169 unsigned int pos, end; /* scans bitmap by regions of size order */ 1170 1171 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1172 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1173 continue; 1174 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1175 return pos; 1176 } 1177 return -ENOMEM; 1178 } 1179 EXPORT_SYMBOL(bitmap_find_free_region); 1180 1181 /** 1182 * bitmap_release_region - release allocated bitmap region 1183 * @bitmap: array of unsigned longs corresponding to the bitmap 1184 * @pos: beginning of bit region to release 1185 * @order: region size (log base 2 of number of bits) to release 1186 * 1187 * This is the complement to __bitmap_find_free_region() and releases 1188 * the found region (by clearing it in the bitmap). 1189 * 1190 * No return value. 1191 */ 1192 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1193 { 1194 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1195 } 1196 EXPORT_SYMBOL(bitmap_release_region); 1197 1198 /** 1199 * bitmap_allocate_region - allocate bitmap region 1200 * @bitmap: array of unsigned longs corresponding to the bitmap 1201 * @pos: beginning of bit region to allocate 1202 * @order: region size (log base 2 of number of bits) to allocate 1203 * 1204 * Allocate (set bits in) a specified region of a bitmap. 1205 * 1206 * Return 0 on success, or %-EBUSY if specified region wasn't 1207 * free (not all bits were zero). 1208 */ 1209 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1210 { 1211 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1212 return -EBUSY; 1213 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1214 } 1215 EXPORT_SYMBOL(bitmap_allocate_region); 1216 1217 /** 1218 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1219 * @dst: destination buffer 1220 * @src: bitmap to copy 1221 * @nbits: number of bits in the bitmap 1222 * 1223 * Require nbits % BITS_PER_LONG == 0. 1224 */ 1225 #ifdef __BIG_ENDIAN 1226 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1227 { 1228 unsigned int i; 1229 1230 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1231 if (BITS_PER_LONG == 64) 1232 dst[i] = cpu_to_le64(src[i]); 1233 else 1234 dst[i] = cpu_to_le32(src[i]); 1235 } 1236 } 1237 EXPORT_SYMBOL(bitmap_copy_le); 1238 #endif 1239 1240 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1241 { 1242 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1243 flags); 1244 } 1245 EXPORT_SYMBOL(bitmap_alloc); 1246 1247 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1248 { 1249 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1250 } 1251 EXPORT_SYMBOL(bitmap_zalloc); 1252 1253 void bitmap_free(const unsigned long *bitmap) 1254 { 1255 kfree(bitmap); 1256 } 1257 EXPORT_SYMBOL(bitmap_free); 1258 1259 #if BITS_PER_LONG == 64 1260 /** 1261 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1262 * @bitmap: array of unsigned longs, the destination bitmap 1263 * @buf: array of u32 (in host byte order), the source bitmap 1264 * @nbits: number of bits in @bitmap 1265 */ 1266 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1267 { 1268 unsigned int i, halfwords; 1269 1270 halfwords = DIV_ROUND_UP(nbits, 32); 1271 for (i = 0; i < halfwords; i++) { 1272 bitmap[i/2] = (unsigned long) buf[i]; 1273 if (++i < halfwords) 1274 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1275 } 1276 1277 /* Clear tail bits in last word beyond nbits. */ 1278 if (nbits % BITS_PER_LONG) 1279 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1280 } 1281 EXPORT_SYMBOL(bitmap_from_arr32); 1282 1283 /** 1284 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1285 * @buf: array of u32 (in host byte order), the dest bitmap 1286 * @bitmap: array of unsigned longs, the source bitmap 1287 * @nbits: number of bits in @bitmap 1288 */ 1289 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1290 { 1291 unsigned int i, halfwords; 1292 1293 halfwords = DIV_ROUND_UP(nbits, 32); 1294 for (i = 0; i < halfwords; i++) { 1295 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1296 if (++i < halfwords) 1297 buf[i] = (u32) (bitmap[i/2] >> 32); 1298 } 1299 1300 /* Clear tail bits in last element of array beyond nbits. */ 1301 if (nbits % BITS_PER_LONG) 1302 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1303 } 1304 EXPORT_SYMBOL(bitmap_to_arr32); 1305 1306 #endif 1307