xref: /openbmc/linux/lib/bitmap.c (revision 6aa7de05)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/page.h>
20 
21 /*
22  * bitmaps provide an array of bits, implemented using an an
23  * array of unsigned longs.  The number of valid bits in a
24  * given bitmap does _not_ need to be an exact multiple of
25  * BITS_PER_LONG.
26  *
27  * The possible unused bits in the last, partially used word
28  * of a bitmap are 'don't care'.  The implementation makes
29  * no particular effort to keep them zero.  It ensures that
30  * their value will not affect the results of any operation.
31  * The bitmap operations that return Boolean (bitmap_empty,
32  * for example) or scalar (bitmap_weight, for example) results
33  * carefully filter out these unused bits from impacting their
34  * results.
35  *
36  * These operations actually hold to a slightly stronger rule:
37  * if you don't input any bitmaps to these ops that have some
38  * unused bits set, then they won't output any set unused bits
39  * in output bitmaps.
40  *
41  * The byte ordering of bitmaps is more natural on little
42  * endian architectures.  See the big-endian headers
43  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
44  * for the best explanations of this ordering.
45  */
46 
47 int __bitmap_equal(const unsigned long *bitmap1,
48 		const unsigned long *bitmap2, unsigned int bits)
49 {
50 	unsigned int k, lim = bits/BITS_PER_LONG;
51 	for (k = 0; k < lim; ++k)
52 		if (bitmap1[k] != bitmap2[k])
53 			return 0;
54 
55 	if (bits % BITS_PER_LONG)
56 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
57 			return 0;
58 
59 	return 1;
60 }
61 EXPORT_SYMBOL(__bitmap_equal);
62 
63 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
64 {
65 	unsigned int k, lim = bits/BITS_PER_LONG;
66 	for (k = 0; k < lim; ++k)
67 		dst[k] = ~src[k];
68 
69 	if (bits % BITS_PER_LONG)
70 		dst[k] = ~src[k];
71 }
72 EXPORT_SYMBOL(__bitmap_complement);
73 
74 /**
75  * __bitmap_shift_right - logical right shift of the bits in a bitmap
76  *   @dst : destination bitmap
77  *   @src : source bitmap
78  *   @shift : shift by this many bits
79  *   @nbits : bitmap size, in bits
80  *
81  * Shifting right (dividing) means moving bits in the MS -> LS bit
82  * direction.  Zeros are fed into the vacated MS positions and the
83  * LS bits shifted off the bottom are lost.
84  */
85 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
86 			unsigned shift, unsigned nbits)
87 {
88 	unsigned k, lim = BITS_TO_LONGS(nbits);
89 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
90 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
91 	for (k = 0; off + k < lim; ++k) {
92 		unsigned long upper, lower;
93 
94 		/*
95 		 * If shift is not word aligned, take lower rem bits of
96 		 * word above and make them the top rem bits of result.
97 		 */
98 		if (!rem || off + k + 1 >= lim)
99 			upper = 0;
100 		else {
101 			upper = src[off + k + 1];
102 			if (off + k + 1 == lim - 1)
103 				upper &= mask;
104 			upper <<= (BITS_PER_LONG - rem);
105 		}
106 		lower = src[off + k];
107 		if (off + k == lim - 1)
108 			lower &= mask;
109 		lower >>= rem;
110 		dst[k] = lower | upper;
111 	}
112 	if (off)
113 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
114 }
115 EXPORT_SYMBOL(__bitmap_shift_right);
116 
117 
118 /**
119  * __bitmap_shift_left - logical left shift of the bits in a bitmap
120  *   @dst : destination bitmap
121  *   @src : source bitmap
122  *   @shift : shift by this many bits
123  *   @nbits : bitmap size, in bits
124  *
125  * Shifting left (multiplying) means moving bits in the LS -> MS
126  * direction.  Zeros are fed into the vacated LS bit positions
127  * and those MS bits shifted off the top are lost.
128  */
129 
130 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
131 			unsigned int shift, unsigned int nbits)
132 {
133 	int k;
134 	unsigned int lim = BITS_TO_LONGS(nbits);
135 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
136 	for (k = lim - off - 1; k >= 0; --k) {
137 		unsigned long upper, lower;
138 
139 		/*
140 		 * If shift is not word aligned, take upper rem bits of
141 		 * word below and make them the bottom rem bits of result.
142 		 */
143 		if (rem && k > 0)
144 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
145 		else
146 			lower = 0;
147 		upper = src[k] << rem;
148 		dst[k + off] = lower | upper;
149 	}
150 	if (off)
151 		memset(dst, 0, off*sizeof(unsigned long));
152 }
153 EXPORT_SYMBOL(__bitmap_shift_left);
154 
155 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
156 				const unsigned long *bitmap2, unsigned int bits)
157 {
158 	unsigned int k;
159 	unsigned int lim = bits/BITS_PER_LONG;
160 	unsigned long result = 0;
161 
162 	for (k = 0; k < lim; k++)
163 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
164 	if (bits % BITS_PER_LONG)
165 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
166 			   BITMAP_LAST_WORD_MASK(bits));
167 	return result != 0;
168 }
169 EXPORT_SYMBOL(__bitmap_and);
170 
171 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
172 				const unsigned long *bitmap2, unsigned int bits)
173 {
174 	unsigned int k;
175 	unsigned int nr = BITS_TO_LONGS(bits);
176 
177 	for (k = 0; k < nr; k++)
178 		dst[k] = bitmap1[k] | bitmap2[k];
179 }
180 EXPORT_SYMBOL(__bitmap_or);
181 
182 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, unsigned int bits)
184 {
185 	unsigned int k;
186 	unsigned int nr = BITS_TO_LONGS(bits);
187 
188 	for (k = 0; k < nr; k++)
189 		dst[k] = bitmap1[k] ^ bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_xor);
192 
193 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
194 				const unsigned long *bitmap2, unsigned int bits)
195 {
196 	unsigned int k;
197 	unsigned int lim = bits/BITS_PER_LONG;
198 	unsigned long result = 0;
199 
200 	for (k = 0; k < lim; k++)
201 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
202 	if (bits % BITS_PER_LONG)
203 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
204 			   BITMAP_LAST_WORD_MASK(bits));
205 	return result != 0;
206 }
207 EXPORT_SYMBOL(__bitmap_andnot);
208 
209 int __bitmap_intersects(const unsigned long *bitmap1,
210 			const unsigned long *bitmap2, unsigned int bits)
211 {
212 	unsigned int k, lim = bits/BITS_PER_LONG;
213 	for (k = 0; k < lim; ++k)
214 		if (bitmap1[k] & bitmap2[k])
215 			return 1;
216 
217 	if (bits % BITS_PER_LONG)
218 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
219 			return 1;
220 	return 0;
221 }
222 EXPORT_SYMBOL(__bitmap_intersects);
223 
224 int __bitmap_subset(const unsigned long *bitmap1,
225 		    const unsigned long *bitmap2, unsigned int bits)
226 {
227 	unsigned int k, lim = bits/BITS_PER_LONG;
228 	for (k = 0; k < lim; ++k)
229 		if (bitmap1[k] & ~bitmap2[k])
230 			return 0;
231 
232 	if (bits % BITS_PER_LONG)
233 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
234 			return 0;
235 	return 1;
236 }
237 EXPORT_SYMBOL(__bitmap_subset);
238 
239 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
240 {
241 	unsigned int k, lim = bits/BITS_PER_LONG;
242 	int w = 0;
243 
244 	for (k = 0; k < lim; k++)
245 		w += hweight_long(bitmap[k]);
246 
247 	if (bits % BITS_PER_LONG)
248 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
249 
250 	return w;
251 }
252 EXPORT_SYMBOL(__bitmap_weight);
253 
254 void __bitmap_set(unsigned long *map, unsigned int start, int len)
255 {
256 	unsigned long *p = map + BIT_WORD(start);
257 	const unsigned int size = start + len;
258 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
259 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
260 
261 	while (len - bits_to_set >= 0) {
262 		*p |= mask_to_set;
263 		len -= bits_to_set;
264 		bits_to_set = BITS_PER_LONG;
265 		mask_to_set = ~0UL;
266 		p++;
267 	}
268 	if (len) {
269 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
270 		*p |= mask_to_set;
271 	}
272 }
273 EXPORT_SYMBOL(__bitmap_set);
274 
275 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
276 {
277 	unsigned long *p = map + BIT_WORD(start);
278 	const unsigned int size = start + len;
279 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
280 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
281 
282 	while (len - bits_to_clear >= 0) {
283 		*p &= ~mask_to_clear;
284 		len -= bits_to_clear;
285 		bits_to_clear = BITS_PER_LONG;
286 		mask_to_clear = ~0UL;
287 		p++;
288 	}
289 	if (len) {
290 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
291 		*p &= ~mask_to_clear;
292 	}
293 }
294 EXPORT_SYMBOL(__bitmap_clear);
295 
296 /**
297  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
298  * @map: The address to base the search on
299  * @size: The bitmap size in bits
300  * @start: The bitnumber to start searching at
301  * @nr: The number of zeroed bits we're looking for
302  * @align_mask: Alignment mask for zero area
303  * @align_offset: Alignment offset for zero area.
304  *
305  * The @align_mask should be one less than a power of 2; the effect is that
306  * the bit offset of all zero areas this function finds plus @align_offset
307  * is multiple of that power of 2.
308  */
309 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
310 					     unsigned long size,
311 					     unsigned long start,
312 					     unsigned int nr,
313 					     unsigned long align_mask,
314 					     unsigned long align_offset)
315 {
316 	unsigned long index, end, i;
317 again:
318 	index = find_next_zero_bit(map, size, start);
319 
320 	/* Align allocation */
321 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
322 
323 	end = index + nr;
324 	if (end > size)
325 		return end;
326 	i = find_next_bit(map, end, index);
327 	if (i < end) {
328 		start = i + 1;
329 		goto again;
330 	}
331 	return index;
332 }
333 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
334 
335 /*
336  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
337  * second version by Paul Jackson, third by Joe Korty.
338  */
339 
340 #define CHUNKSZ				32
341 #define nbits_to_hold_value(val)	fls(val)
342 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
343 
344 /**
345  * __bitmap_parse - convert an ASCII hex string into a bitmap.
346  * @buf: pointer to buffer containing string.
347  * @buflen: buffer size in bytes.  If string is smaller than this
348  *    then it must be terminated with a \0.
349  * @is_user: location of buffer, 0 indicates kernel space
350  * @maskp: pointer to bitmap array that will contain result.
351  * @nmaskbits: size of bitmap, in bits.
352  *
353  * Commas group hex digits into chunks.  Each chunk defines exactly 32
354  * bits of the resultant bitmask.  No chunk may specify a value larger
355  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
356  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
357  * characters and for grouping errors such as "1,,5", ",44", "," and "".
358  * Leading and trailing whitespace accepted, but not embedded whitespace.
359  */
360 int __bitmap_parse(const char *buf, unsigned int buflen,
361 		int is_user, unsigned long *maskp,
362 		int nmaskbits)
363 {
364 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
365 	u32 chunk;
366 	const char __user __force *ubuf = (const char __user __force *)buf;
367 
368 	bitmap_zero(maskp, nmaskbits);
369 
370 	nchunks = nbits = totaldigits = c = 0;
371 	do {
372 		chunk = 0;
373 		ndigits = totaldigits;
374 
375 		/* Get the next chunk of the bitmap */
376 		while (buflen) {
377 			old_c = c;
378 			if (is_user) {
379 				if (__get_user(c, ubuf++))
380 					return -EFAULT;
381 			}
382 			else
383 				c = *buf++;
384 			buflen--;
385 			if (isspace(c))
386 				continue;
387 
388 			/*
389 			 * If the last character was a space and the current
390 			 * character isn't '\0', we've got embedded whitespace.
391 			 * This is a no-no, so throw an error.
392 			 */
393 			if (totaldigits && c && isspace(old_c))
394 				return -EINVAL;
395 
396 			/* A '\0' or a ',' signal the end of the chunk */
397 			if (c == '\0' || c == ',')
398 				break;
399 
400 			if (!isxdigit(c))
401 				return -EINVAL;
402 
403 			/*
404 			 * Make sure there are at least 4 free bits in 'chunk'.
405 			 * If not, this hexdigit will overflow 'chunk', so
406 			 * throw an error.
407 			 */
408 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
409 				return -EOVERFLOW;
410 
411 			chunk = (chunk << 4) | hex_to_bin(c);
412 			totaldigits++;
413 		}
414 		if (ndigits == totaldigits)
415 			return -EINVAL;
416 		if (nchunks == 0 && chunk == 0)
417 			continue;
418 
419 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
420 		*maskp |= chunk;
421 		nchunks++;
422 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
423 		if (nbits > nmaskbits)
424 			return -EOVERFLOW;
425 	} while (buflen && c == ',');
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL(__bitmap_parse);
430 
431 /**
432  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
433  *
434  * @ubuf: pointer to user buffer containing string.
435  * @ulen: buffer size in bytes.  If string is smaller than this
436  *    then it must be terminated with a \0.
437  * @maskp: pointer to bitmap array that will contain result.
438  * @nmaskbits: size of bitmap, in bits.
439  *
440  * Wrapper for __bitmap_parse(), providing it with user buffer.
441  *
442  * We cannot have this as an inline function in bitmap.h because it needs
443  * linux/uaccess.h to get the access_ok() declaration and this causes
444  * cyclic dependencies.
445  */
446 int bitmap_parse_user(const char __user *ubuf,
447 			unsigned int ulen, unsigned long *maskp,
448 			int nmaskbits)
449 {
450 	if (!access_ok(VERIFY_READ, ubuf, ulen))
451 		return -EFAULT;
452 	return __bitmap_parse((const char __force *)ubuf,
453 				ulen, 1, maskp, nmaskbits);
454 
455 }
456 EXPORT_SYMBOL(bitmap_parse_user);
457 
458 /**
459  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
460  * @list: indicates whether the bitmap must be list
461  * @buf: page aligned buffer into which string is placed
462  * @maskp: pointer to bitmap to convert
463  * @nmaskbits: size of bitmap, in bits
464  *
465  * Output format is a comma-separated list of decimal numbers and
466  * ranges if list is specified or hex digits grouped into comma-separated
467  * sets of 8 digits/set. Returns the number of characters written to buf.
468  *
469  * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
470  * sufficient storage remains at @buf to accommodate the
471  * bitmap_print_to_pagebuf() output.
472  */
473 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
474 			    int nmaskbits)
475 {
476 	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
477 	int n = 0;
478 
479 	if (len > 1)
480 		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
481 			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
482 	return n;
483 }
484 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
485 
486 /**
487  * __bitmap_parselist - convert list format ASCII string to bitmap
488  * @buf: read nul-terminated user string from this buffer
489  * @buflen: buffer size in bytes.  If string is smaller than this
490  *    then it must be terminated with a \0.
491  * @is_user: location of buffer, 0 indicates kernel space
492  * @maskp: write resulting mask here
493  * @nmaskbits: number of bits in mask to be written
494  *
495  * Input format is a comma-separated list of decimal numbers and
496  * ranges.  Consecutively set bits are shown as two hyphen-separated
497  * decimal numbers, the smallest and largest bit numbers set in
498  * the range.
499  * Optionally each range can be postfixed to denote that only parts of it
500  * should be set. The range will divided to groups of specific size.
501  * From each group will be used only defined amount of bits.
502  * Syntax: range:used_size/group_size
503  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
504  *
505  * Returns: 0 on success, -errno on invalid input strings. Error values:
506  *
507  *   - ``-EINVAL``: second number in range smaller than first
508  *   - ``-EINVAL``: invalid character in string
509  *   - ``-ERANGE``: bit number specified too large for mask
510  */
511 static int __bitmap_parselist(const char *buf, unsigned int buflen,
512 		int is_user, unsigned long *maskp,
513 		int nmaskbits)
514 {
515 	unsigned int a, b, old_a, old_b;
516 	unsigned int group_size, used_size, off;
517 	int c, old_c, totaldigits, ndigits;
518 	const char __user __force *ubuf = (const char __user __force *)buf;
519 	int at_start, in_range, in_partial_range;
520 
521 	totaldigits = c = 0;
522 	old_a = old_b = 0;
523 	group_size = used_size = 0;
524 	bitmap_zero(maskp, nmaskbits);
525 	do {
526 		at_start = 1;
527 		in_range = 0;
528 		in_partial_range = 0;
529 		a = b = 0;
530 		ndigits = totaldigits;
531 
532 		/* Get the next cpu# or a range of cpu#'s */
533 		while (buflen) {
534 			old_c = c;
535 			if (is_user) {
536 				if (__get_user(c, ubuf++))
537 					return -EFAULT;
538 			} else
539 				c = *buf++;
540 			buflen--;
541 			if (isspace(c))
542 				continue;
543 
544 			/* A '\0' or a ',' signal the end of a cpu# or range */
545 			if (c == '\0' || c == ',')
546 				break;
547 			/*
548 			* whitespaces between digits are not allowed,
549 			* but it's ok if whitespaces are on head or tail.
550 			* when old_c is whilespace,
551 			* if totaldigits == ndigits, whitespace is on head.
552 			* if whitespace is on tail, it should not run here.
553 			* as c was ',' or '\0',
554 			* the last code line has broken the current loop.
555 			*/
556 			if ((totaldigits != ndigits) && isspace(old_c))
557 				return -EINVAL;
558 
559 			if (c == '/') {
560 				used_size = a;
561 				at_start = 1;
562 				in_range = 0;
563 				a = b = 0;
564 				continue;
565 			}
566 
567 			if (c == ':') {
568 				old_a = a;
569 				old_b = b;
570 				at_start = 1;
571 				in_range = 0;
572 				in_partial_range = 1;
573 				a = b = 0;
574 				continue;
575 			}
576 
577 			if (c == '-') {
578 				if (at_start || in_range)
579 					return -EINVAL;
580 				b = 0;
581 				in_range = 1;
582 				at_start = 1;
583 				continue;
584 			}
585 
586 			if (!isdigit(c))
587 				return -EINVAL;
588 
589 			b = b * 10 + (c - '0');
590 			if (!in_range)
591 				a = b;
592 			at_start = 0;
593 			totaldigits++;
594 		}
595 		if (ndigits == totaldigits)
596 			continue;
597 		if (in_partial_range) {
598 			group_size = a;
599 			a = old_a;
600 			b = old_b;
601 			old_a = old_b = 0;
602 		} else {
603 			used_size = group_size = b - a + 1;
604 		}
605 		/* if no digit is after '-', it's wrong*/
606 		if (at_start && in_range)
607 			return -EINVAL;
608 		if (!(a <= b) || !(used_size <= group_size))
609 			return -EINVAL;
610 		if (b >= nmaskbits)
611 			return -ERANGE;
612 		while (a <= b) {
613 			off = min(b - a + 1, used_size);
614 			bitmap_set(maskp, a, off);
615 			a += group_size;
616 		}
617 	} while (buflen && c == ',');
618 	return 0;
619 }
620 
621 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
622 {
623 	char *nl  = strchrnul(bp, '\n');
624 	int len = nl - bp;
625 
626 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
627 }
628 EXPORT_SYMBOL(bitmap_parselist);
629 
630 
631 /**
632  * bitmap_parselist_user()
633  *
634  * @ubuf: pointer to user buffer containing string.
635  * @ulen: buffer size in bytes.  If string is smaller than this
636  *    then it must be terminated with a \0.
637  * @maskp: pointer to bitmap array that will contain result.
638  * @nmaskbits: size of bitmap, in bits.
639  *
640  * Wrapper for bitmap_parselist(), providing it with user buffer.
641  *
642  * We cannot have this as an inline function in bitmap.h because it needs
643  * linux/uaccess.h to get the access_ok() declaration and this causes
644  * cyclic dependencies.
645  */
646 int bitmap_parselist_user(const char __user *ubuf,
647 			unsigned int ulen, unsigned long *maskp,
648 			int nmaskbits)
649 {
650 	if (!access_ok(VERIFY_READ, ubuf, ulen))
651 		return -EFAULT;
652 	return __bitmap_parselist((const char __force *)ubuf,
653 					ulen, 1, maskp, nmaskbits);
654 }
655 EXPORT_SYMBOL(bitmap_parselist_user);
656 
657 
658 /**
659  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
660  *	@buf: pointer to a bitmap
661  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
662  *	@nbits: number of valid bit positions in @buf
663  *
664  * Map the bit at position @pos in @buf (of length @nbits) to the
665  * ordinal of which set bit it is.  If it is not set or if @pos
666  * is not a valid bit position, map to -1.
667  *
668  * If for example, just bits 4 through 7 are set in @buf, then @pos
669  * values 4 through 7 will get mapped to 0 through 3, respectively,
670  * and other @pos values will get mapped to -1.  When @pos value 7
671  * gets mapped to (returns) @ord value 3 in this example, that means
672  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
673  *
674  * The bit positions 0 through @bits are valid positions in @buf.
675  */
676 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
677 {
678 	if (pos >= nbits || !test_bit(pos, buf))
679 		return -1;
680 
681 	return __bitmap_weight(buf, pos);
682 }
683 
684 /**
685  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
686  *	@buf: pointer to bitmap
687  *	@ord: ordinal bit position (n-th set bit, n >= 0)
688  *	@nbits: number of valid bit positions in @buf
689  *
690  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
691  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
692  * >= weight(buf), returns @nbits.
693  *
694  * If for example, just bits 4 through 7 are set in @buf, then @ord
695  * values 0 through 3 will get mapped to 4 through 7, respectively,
696  * and all other @ord values returns @nbits.  When @ord value 3
697  * gets mapped to (returns) @pos value 7 in this example, that means
698  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
699  *
700  * The bit positions 0 through @nbits-1 are valid positions in @buf.
701  */
702 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
703 {
704 	unsigned int pos;
705 
706 	for (pos = find_first_bit(buf, nbits);
707 	     pos < nbits && ord;
708 	     pos = find_next_bit(buf, nbits, pos + 1))
709 		ord--;
710 
711 	return pos;
712 }
713 
714 /**
715  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
716  *	@dst: remapped result
717  *	@src: subset to be remapped
718  *	@old: defines domain of map
719  *	@new: defines range of map
720  *	@nbits: number of bits in each of these bitmaps
721  *
722  * Let @old and @new define a mapping of bit positions, such that
723  * whatever position is held by the n-th set bit in @old is mapped
724  * to the n-th set bit in @new.  In the more general case, allowing
725  * for the possibility that the weight 'w' of @new is less than the
726  * weight of @old, map the position of the n-th set bit in @old to
727  * the position of the m-th set bit in @new, where m == n % w.
728  *
729  * If either of the @old and @new bitmaps are empty, or if @src and
730  * @dst point to the same location, then this routine copies @src
731  * to @dst.
732  *
733  * The positions of unset bits in @old are mapped to themselves
734  * (the identify map).
735  *
736  * Apply the above specified mapping to @src, placing the result in
737  * @dst, clearing any bits previously set in @dst.
738  *
739  * For example, lets say that @old has bits 4 through 7 set, and
740  * @new has bits 12 through 15 set.  This defines the mapping of bit
741  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
742  * bit positions unchanged.  So if say @src comes into this routine
743  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
744  * 13 and 15 set.
745  */
746 void bitmap_remap(unsigned long *dst, const unsigned long *src,
747 		const unsigned long *old, const unsigned long *new,
748 		unsigned int nbits)
749 {
750 	unsigned int oldbit, w;
751 
752 	if (dst == src)		/* following doesn't handle inplace remaps */
753 		return;
754 	bitmap_zero(dst, nbits);
755 
756 	w = bitmap_weight(new, nbits);
757 	for_each_set_bit(oldbit, src, nbits) {
758 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
759 
760 		if (n < 0 || w == 0)
761 			set_bit(oldbit, dst);	/* identity map */
762 		else
763 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
764 	}
765 }
766 EXPORT_SYMBOL(bitmap_remap);
767 
768 /**
769  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
770  *	@oldbit: bit position to be mapped
771  *	@old: defines domain of map
772  *	@new: defines range of map
773  *	@bits: number of bits in each of these bitmaps
774  *
775  * Let @old and @new define a mapping of bit positions, such that
776  * whatever position is held by the n-th set bit in @old is mapped
777  * to the n-th set bit in @new.  In the more general case, allowing
778  * for the possibility that the weight 'w' of @new is less than the
779  * weight of @old, map the position of the n-th set bit in @old to
780  * the position of the m-th set bit in @new, where m == n % w.
781  *
782  * The positions of unset bits in @old are mapped to themselves
783  * (the identify map).
784  *
785  * Apply the above specified mapping to bit position @oldbit, returning
786  * the new bit position.
787  *
788  * For example, lets say that @old has bits 4 through 7 set, and
789  * @new has bits 12 through 15 set.  This defines the mapping of bit
790  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
791  * bit positions unchanged.  So if say @oldbit is 5, then this routine
792  * returns 13.
793  */
794 int bitmap_bitremap(int oldbit, const unsigned long *old,
795 				const unsigned long *new, int bits)
796 {
797 	int w = bitmap_weight(new, bits);
798 	int n = bitmap_pos_to_ord(old, oldbit, bits);
799 	if (n < 0 || w == 0)
800 		return oldbit;
801 	else
802 		return bitmap_ord_to_pos(new, n % w, bits);
803 }
804 EXPORT_SYMBOL(bitmap_bitremap);
805 
806 /**
807  * bitmap_onto - translate one bitmap relative to another
808  *	@dst: resulting translated bitmap
809  * 	@orig: original untranslated bitmap
810  * 	@relmap: bitmap relative to which translated
811  *	@bits: number of bits in each of these bitmaps
812  *
813  * Set the n-th bit of @dst iff there exists some m such that the
814  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
815  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
816  * (If you understood the previous sentence the first time your
817  * read it, you're overqualified for your current job.)
818  *
819  * In other words, @orig is mapped onto (surjectively) @dst,
820  * using the map { <n, m> | the n-th bit of @relmap is the
821  * m-th set bit of @relmap }.
822  *
823  * Any set bits in @orig above bit number W, where W is the
824  * weight of (number of set bits in) @relmap are mapped nowhere.
825  * In particular, if for all bits m set in @orig, m >= W, then
826  * @dst will end up empty.  In situations where the possibility
827  * of such an empty result is not desired, one way to avoid it is
828  * to use the bitmap_fold() operator, below, to first fold the
829  * @orig bitmap over itself so that all its set bits x are in the
830  * range 0 <= x < W.  The bitmap_fold() operator does this by
831  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
832  *
833  * Example [1] for bitmap_onto():
834  *  Let's say @relmap has bits 30-39 set, and @orig has bits
835  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
836  *  @dst will have bits 31, 33, 35, 37 and 39 set.
837  *
838  *  When bit 0 is set in @orig, it means turn on the bit in
839  *  @dst corresponding to whatever is the first bit (if any)
840  *  that is turned on in @relmap.  Since bit 0 was off in the
841  *  above example, we leave off that bit (bit 30) in @dst.
842  *
843  *  When bit 1 is set in @orig (as in the above example), it
844  *  means turn on the bit in @dst corresponding to whatever
845  *  is the second bit that is turned on in @relmap.  The second
846  *  bit in @relmap that was turned on in the above example was
847  *  bit 31, so we turned on bit 31 in @dst.
848  *
849  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
850  *  because they were the 4th, 6th, 8th and 10th set bits
851  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
852  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
853  *
854  *  When bit 11 is set in @orig, it means turn on the bit in
855  *  @dst corresponding to whatever is the twelfth bit that is
856  *  turned on in @relmap.  In the above example, there were
857  *  only ten bits turned on in @relmap (30..39), so that bit
858  *  11 was set in @orig had no affect on @dst.
859  *
860  * Example [2] for bitmap_fold() + bitmap_onto():
861  *  Let's say @relmap has these ten bits set::
862  *
863  *		40 41 42 43 45 48 53 61 74 95
864  *
865  *  (for the curious, that's 40 plus the first ten terms of the
866  *  Fibonacci sequence.)
867  *
868  *  Further lets say we use the following code, invoking
869  *  bitmap_fold() then bitmap_onto, as suggested above to
870  *  avoid the possibility of an empty @dst result::
871  *
872  *	unsigned long *tmp;	// a temporary bitmap's bits
873  *
874  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
875  *	bitmap_onto(dst, tmp, relmap, bits);
876  *
877  *  Then this table shows what various values of @dst would be, for
878  *  various @orig's.  I list the zero-based positions of each set bit.
879  *  The tmp column shows the intermediate result, as computed by
880  *  using bitmap_fold() to fold the @orig bitmap modulo ten
881  *  (the weight of @relmap):
882  *
883  *      =============== ============== =================
884  *      @orig           tmp            @dst
885  *      0                0             40
886  *      1                1             41
887  *      9                9             95
888  *      10               0             40 [#f1]_
889  *      1 3 5 7          1 3 5 7       41 43 48 61
890  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
891  *      0 9 18 27        0 9 8 7       40 61 74 95
892  *      0 10 20 30       0             40
893  *      0 11 22 33       0 1 2 3       40 41 42 43
894  *      0 12 24 36       0 2 4 6       40 42 45 53
895  *      78 102 211       1 2 8         41 42 74 [#f1]_
896  *      =============== ============== =================
897  *
898  * .. [#f1]
899  *
900  *     For these marked lines, if we hadn't first done bitmap_fold()
901  *     into tmp, then the @dst result would have been empty.
902  *
903  * If either of @orig or @relmap is empty (no set bits), then @dst
904  * will be returned empty.
905  *
906  * If (as explained above) the only set bits in @orig are in positions
907  * m where m >= W, (where W is the weight of @relmap) then @dst will
908  * once again be returned empty.
909  *
910  * All bits in @dst not set by the above rule are cleared.
911  */
912 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
913 			const unsigned long *relmap, unsigned int bits)
914 {
915 	unsigned int n, m;	/* same meaning as in above comment */
916 
917 	if (dst == orig)	/* following doesn't handle inplace mappings */
918 		return;
919 	bitmap_zero(dst, bits);
920 
921 	/*
922 	 * The following code is a more efficient, but less
923 	 * obvious, equivalent to the loop:
924 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
925 	 *		n = bitmap_ord_to_pos(orig, m, bits);
926 	 *		if (test_bit(m, orig))
927 	 *			set_bit(n, dst);
928 	 *	}
929 	 */
930 
931 	m = 0;
932 	for_each_set_bit(n, relmap, bits) {
933 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
934 		if (test_bit(m, orig))
935 			set_bit(n, dst);
936 		m++;
937 	}
938 }
939 EXPORT_SYMBOL(bitmap_onto);
940 
941 /**
942  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
943  *	@dst: resulting smaller bitmap
944  *	@orig: original larger bitmap
945  *	@sz: specified size
946  *	@nbits: number of bits in each of these bitmaps
947  *
948  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
949  * Clear all other bits in @dst.  See further the comment and
950  * Example [2] for bitmap_onto() for why and how to use this.
951  */
952 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
953 			unsigned int sz, unsigned int nbits)
954 {
955 	unsigned int oldbit;
956 
957 	if (dst == orig)	/* following doesn't handle inplace mappings */
958 		return;
959 	bitmap_zero(dst, nbits);
960 
961 	for_each_set_bit(oldbit, orig, nbits)
962 		set_bit(oldbit % sz, dst);
963 }
964 EXPORT_SYMBOL(bitmap_fold);
965 
966 /*
967  * Common code for bitmap_*_region() routines.
968  *	bitmap: array of unsigned longs corresponding to the bitmap
969  *	pos: the beginning of the region
970  *	order: region size (log base 2 of number of bits)
971  *	reg_op: operation(s) to perform on that region of bitmap
972  *
973  * Can set, verify and/or release a region of bits in a bitmap,
974  * depending on which combination of REG_OP_* flag bits is set.
975  *
976  * A region of a bitmap is a sequence of bits in the bitmap, of
977  * some size '1 << order' (a power of two), aligned to that same
978  * '1 << order' power of two.
979  *
980  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
981  * Returns 0 in all other cases and reg_ops.
982  */
983 
984 enum {
985 	REG_OP_ISFREE,		/* true if region is all zero bits */
986 	REG_OP_ALLOC,		/* set all bits in region */
987 	REG_OP_RELEASE,		/* clear all bits in region */
988 };
989 
990 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
991 {
992 	int nbits_reg;		/* number of bits in region */
993 	int index;		/* index first long of region in bitmap */
994 	int offset;		/* bit offset region in bitmap[index] */
995 	int nlongs_reg;		/* num longs spanned by region in bitmap */
996 	int nbitsinlong;	/* num bits of region in each spanned long */
997 	unsigned long mask;	/* bitmask for one long of region */
998 	int i;			/* scans bitmap by longs */
999 	int ret = 0;		/* return value */
1000 
1001 	/*
1002 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1003 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1004 	 */
1005 	nbits_reg = 1 << order;
1006 	index = pos / BITS_PER_LONG;
1007 	offset = pos - (index * BITS_PER_LONG);
1008 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1009 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1010 
1011 	/*
1012 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1013 	 * overflows if nbitsinlong == BITS_PER_LONG.
1014 	 */
1015 	mask = (1UL << (nbitsinlong - 1));
1016 	mask += mask - 1;
1017 	mask <<= offset;
1018 
1019 	switch (reg_op) {
1020 	case REG_OP_ISFREE:
1021 		for (i = 0; i < nlongs_reg; i++) {
1022 			if (bitmap[index + i] & mask)
1023 				goto done;
1024 		}
1025 		ret = 1;	/* all bits in region free (zero) */
1026 		break;
1027 
1028 	case REG_OP_ALLOC:
1029 		for (i = 0; i < nlongs_reg; i++)
1030 			bitmap[index + i] |= mask;
1031 		break;
1032 
1033 	case REG_OP_RELEASE:
1034 		for (i = 0; i < nlongs_reg; i++)
1035 			bitmap[index + i] &= ~mask;
1036 		break;
1037 	}
1038 done:
1039 	return ret;
1040 }
1041 
1042 /**
1043  * bitmap_find_free_region - find a contiguous aligned mem region
1044  *	@bitmap: array of unsigned longs corresponding to the bitmap
1045  *	@bits: number of bits in the bitmap
1046  *	@order: region size (log base 2 of number of bits) to find
1047  *
1048  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1049  * allocate them (set them to one).  Only consider regions of length
1050  * a power (@order) of two, aligned to that power of two, which
1051  * makes the search algorithm much faster.
1052  *
1053  * Return the bit offset in bitmap of the allocated region,
1054  * or -errno on failure.
1055  */
1056 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1057 {
1058 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1059 
1060 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1061 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1062 			continue;
1063 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1064 		return pos;
1065 	}
1066 	return -ENOMEM;
1067 }
1068 EXPORT_SYMBOL(bitmap_find_free_region);
1069 
1070 /**
1071  * bitmap_release_region - release allocated bitmap region
1072  *	@bitmap: array of unsigned longs corresponding to the bitmap
1073  *	@pos: beginning of bit region to release
1074  *	@order: region size (log base 2 of number of bits) to release
1075  *
1076  * This is the complement to __bitmap_find_free_region() and releases
1077  * the found region (by clearing it in the bitmap).
1078  *
1079  * No return value.
1080  */
1081 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1082 {
1083 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1084 }
1085 EXPORT_SYMBOL(bitmap_release_region);
1086 
1087 /**
1088  * bitmap_allocate_region - allocate bitmap region
1089  *	@bitmap: array of unsigned longs corresponding to the bitmap
1090  *	@pos: beginning of bit region to allocate
1091  *	@order: region size (log base 2 of number of bits) to allocate
1092  *
1093  * Allocate (set bits in) a specified region of a bitmap.
1094  *
1095  * Return 0 on success, or %-EBUSY if specified region wasn't
1096  * free (not all bits were zero).
1097  */
1098 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1099 {
1100 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1101 		return -EBUSY;
1102 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1103 }
1104 EXPORT_SYMBOL(bitmap_allocate_region);
1105 
1106 /**
1107  * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1108  *	@bitmap: array of unsigned longs, the destination bitmap, non NULL
1109  *	@nbits: number of bits in @bitmap
1110  *	@buf: array of u32 (in host byte order), the source bitmap, non NULL
1111  *	@nwords: number of u32 words in @buf
1112  *
1113  * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1114  * bits between nword and nbits in @bitmap (if any) are cleared. In
1115  * last word of @bitmap, the bits beyond nbits (if any) are kept
1116  * unchanged.
1117  *
1118  * Return the number of bits effectively copied.
1119  */
1120 unsigned int
1121 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1122 		     const u32 *buf, unsigned int nwords)
1123 {
1124 	unsigned int dst_idx, src_idx;
1125 
1126 	for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1127 		unsigned long part = 0;
1128 
1129 		if (src_idx < nwords)
1130 			part = buf[src_idx++];
1131 
1132 #if BITS_PER_LONG == 64
1133 		if (src_idx < nwords)
1134 			part |= ((unsigned long) buf[src_idx++]) << 32;
1135 #endif
1136 
1137 		if (dst_idx < nbits/BITS_PER_LONG)
1138 			bitmap[dst_idx] = part;
1139 		else {
1140 			unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1141 
1142 			bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1143 				| (part & mask);
1144 		}
1145 	}
1146 
1147 	return min_t(unsigned int, nbits, 32*nwords);
1148 }
1149 EXPORT_SYMBOL(bitmap_from_u32array);
1150 
1151 /**
1152  * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1153  *	@buf: array of u32 (in host byte order), the dest bitmap, non NULL
1154  *	@nwords: number of u32 words in @buf
1155  *	@bitmap: array of unsigned longs, the source bitmap, non NULL
1156  *	@nbits: number of bits in @bitmap
1157  *
1158  * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1159  * bits after nbits in @buf (if any) are cleared.
1160  *
1161  * Return the number of bits effectively copied.
1162  */
1163 unsigned int
1164 bitmap_to_u32array(u32 *buf, unsigned int nwords,
1165 		   const unsigned long *bitmap, unsigned int nbits)
1166 {
1167 	unsigned int dst_idx = 0, src_idx = 0;
1168 
1169 	while (dst_idx < nwords) {
1170 		unsigned long part = 0;
1171 
1172 		if (src_idx < BITS_TO_LONGS(nbits)) {
1173 			part = bitmap[src_idx];
1174 			if (src_idx >= nbits/BITS_PER_LONG)
1175 				part &= BITMAP_LAST_WORD_MASK(nbits);
1176 			src_idx++;
1177 		}
1178 
1179 		buf[dst_idx++] = part & 0xffffffffUL;
1180 
1181 #if BITS_PER_LONG == 64
1182 		if (dst_idx < nwords) {
1183 			part >>= 32;
1184 			buf[dst_idx++] = part & 0xffffffffUL;
1185 		}
1186 #endif
1187 	}
1188 
1189 	return min_t(unsigned int, nbits, 32*nwords);
1190 }
1191 EXPORT_SYMBOL(bitmap_to_u32array);
1192 
1193 /**
1194  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1195  * @dst:   destination buffer
1196  * @src:   bitmap to copy
1197  * @nbits: number of bits in the bitmap
1198  *
1199  * Require nbits % BITS_PER_LONG == 0.
1200  */
1201 #ifdef __BIG_ENDIAN
1202 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1203 {
1204 	unsigned int i;
1205 
1206 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1207 		if (BITS_PER_LONG == 64)
1208 			dst[i] = cpu_to_le64(src[i]);
1209 		else
1210 			dst[i] = cpu_to_le32(src[i]);
1211 	}
1212 }
1213 EXPORT_SYMBOL(bitmap_copy_le);
1214 #endif
1215