1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 #include <asm/uaccess.h> 16 17 /* 18 * bitmaps provide an array of bits, implemented using an an 19 * array of unsigned longs. The number of valid bits in a 20 * given bitmap does _not_ need to be an exact multiple of 21 * BITS_PER_LONG. 22 * 23 * The possible unused bits in the last, partially used word 24 * of a bitmap are 'don't care'. The implementation makes 25 * no particular effort to keep them zero. It ensures that 26 * their value will not affect the results of any operation. 27 * The bitmap operations that return Boolean (bitmap_empty, 28 * for example) or scalar (bitmap_weight, for example) results 29 * carefully filter out these unused bits from impacting their 30 * results. 31 * 32 * These operations actually hold to a slightly stronger rule: 33 * if you don't input any bitmaps to these ops that have some 34 * unused bits set, then they won't output any set unused bits 35 * in output bitmaps. 36 * 37 * The byte ordering of bitmaps is more natural on little 38 * endian architectures. See the big-endian headers 39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 40 * for the best explanations of this ordering. 41 */ 42 43 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits) 44 { 45 unsigned int k, lim = bits/BITS_PER_LONG; 46 for (k = 0; k < lim; ++k) 47 if (bitmap[k]) 48 return 0; 49 50 if (bits % BITS_PER_LONG) 51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 52 return 0; 53 54 return 1; 55 } 56 EXPORT_SYMBOL(__bitmap_empty); 57 58 int __bitmap_full(const unsigned long *bitmap, unsigned int bits) 59 { 60 unsigned int k, lim = bits/BITS_PER_LONG; 61 for (k = 0; k < lim; ++k) 62 if (~bitmap[k]) 63 return 0; 64 65 if (bits % BITS_PER_LONG) 66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 67 return 0; 68 69 return 1; 70 } 71 EXPORT_SYMBOL(__bitmap_full); 72 73 int __bitmap_equal(const unsigned long *bitmap1, 74 const unsigned long *bitmap2, unsigned int bits) 75 { 76 unsigned int k, lim = bits/BITS_PER_LONG; 77 for (k = 0; k < lim; ++k) 78 if (bitmap1[k] != bitmap2[k]) 79 return 0; 80 81 if (bits % BITS_PER_LONG) 82 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 83 return 0; 84 85 return 1; 86 } 87 EXPORT_SYMBOL(__bitmap_equal); 88 89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 90 { 91 unsigned int k, lim = bits/BITS_PER_LONG; 92 for (k = 0; k < lim; ++k) 93 dst[k] = ~src[k]; 94 95 if (bits % BITS_PER_LONG) 96 dst[k] = ~src[k]; 97 } 98 EXPORT_SYMBOL(__bitmap_complement); 99 100 /** 101 * __bitmap_shift_right - logical right shift of the bits in a bitmap 102 * @dst : destination bitmap 103 * @src : source bitmap 104 * @shift : shift by this many bits 105 * @bits : bitmap size, in bits 106 * 107 * Shifting right (dividing) means moving bits in the MS -> LS bit 108 * direction. Zeros are fed into the vacated MS positions and the 109 * LS bits shifted off the bottom are lost. 110 */ 111 void __bitmap_shift_right(unsigned long *dst, 112 const unsigned long *src, int shift, int bits) 113 { 114 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 115 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 116 unsigned long mask = (1UL << left) - 1; 117 for (k = 0; off + k < lim; ++k) { 118 unsigned long upper, lower; 119 120 /* 121 * If shift is not word aligned, take lower rem bits of 122 * word above and make them the top rem bits of result. 123 */ 124 if (!rem || off + k + 1 >= lim) 125 upper = 0; 126 else { 127 upper = src[off + k + 1]; 128 if (off + k + 1 == lim - 1 && left) 129 upper &= mask; 130 } 131 lower = src[off + k]; 132 if (left && off + k == lim - 1) 133 lower &= mask; 134 dst[k] = lower >> rem; 135 if (rem) 136 dst[k] |= upper << (BITS_PER_LONG - rem); 137 if (left && k == lim - 1) 138 dst[k] &= mask; 139 } 140 if (off) 141 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 142 } 143 EXPORT_SYMBOL(__bitmap_shift_right); 144 145 146 /** 147 * __bitmap_shift_left - logical left shift of the bits in a bitmap 148 * @dst : destination bitmap 149 * @src : source bitmap 150 * @shift : shift by this many bits 151 * @bits : bitmap size, in bits 152 * 153 * Shifting left (multiplying) means moving bits in the LS -> MS 154 * direction. Zeros are fed into the vacated LS bit positions 155 * and those MS bits shifted off the top are lost. 156 */ 157 158 void __bitmap_shift_left(unsigned long *dst, 159 const unsigned long *src, int shift, int bits) 160 { 161 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 162 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 163 for (k = lim - off - 1; k >= 0; --k) { 164 unsigned long upper, lower; 165 166 /* 167 * If shift is not word aligned, take upper rem bits of 168 * word below and make them the bottom rem bits of result. 169 */ 170 if (rem && k > 0) 171 lower = src[k - 1]; 172 else 173 lower = 0; 174 upper = src[k]; 175 if (left && k == lim - 1) 176 upper &= (1UL << left) - 1; 177 dst[k + off] = upper << rem; 178 if (rem) 179 dst[k + off] |= lower >> (BITS_PER_LONG - rem); 180 if (left && k + off == lim - 1) 181 dst[k + off] &= (1UL << left) - 1; 182 } 183 if (off) 184 memset(dst, 0, off*sizeof(unsigned long)); 185 } 186 EXPORT_SYMBOL(__bitmap_shift_left); 187 188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 189 const unsigned long *bitmap2, unsigned int bits) 190 { 191 unsigned int k; 192 unsigned int lim = bits/BITS_PER_LONG; 193 unsigned long result = 0; 194 195 for (k = 0; k < lim; k++) 196 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 197 if (bits % BITS_PER_LONG) 198 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 199 BITMAP_LAST_WORD_MASK(bits)); 200 return result != 0; 201 } 202 EXPORT_SYMBOL(__bitmap_and); 203 204 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 205 const unsigned long *bitmap2, unsigned int bits) 206 { 207 unsigned int k; 208 unsigned int nr = BITS_TO_LONGS(bits); 209 210 for (k = 0; k < nr; k++) 211 dst[k] = bitmap1[k] | bitmap2[k]; 212 } 213 EXPORT_SYMBOL(__bitmap_or); 214 215 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 216 const unsigned long *bitmap2, unsigned int bits) 217 { 218 unsigned int k; 219 unsigned int nr = BITS_TO_LONGS(bits); 220 221 for (k = 0; k < nr; k++) 222 dst[k] = bitmap1[k] ^ bitmap2[k]; 223 } 224 EXPORT_SYMBOL(__bitmap_xor); 225 226 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 227 const unsigned long *bitmap2, unsigned int bits) 228 { 229 unsigned int k; 230 unsigned int lim = bits/BITS_PER_LONG; 231 unsigned long result = 0; 232 233 for (k = 0; k < lim; k++) 234 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 235 if (bits % BITS_PER_LONG) 236 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 237 BITMAP_LAST_WORD_MASK(bits)); 238 return result != 0; 239 } 240 EXPORT_SYMBOL(__bitmap_andnot); 241 242 int __bitmap_intersects(const unsigned long *bitmap1, 243 const unsigned long *bitmap2, unsigned int bits) 244 { 245 unsigned int k, lim = bits/BITS_PER_LONG; 246 for (k = 0; k < lim; ++k) 247 if (bitmap1[k] & bitmap2[k]) 248 return 1; 249 250 if (bits % BITS_PER_LONG) 251 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 252 return 1; 253 return 0; 254 } 255 EXPORT_SYMBOL(__bitmap_intersects); 256 257 int __bitmap_subset(const unsigned long *bitmap1, 258 const unsigned long *bitmap2, unsigned int bits) 259 { 260 unsigned int k, lim = bits/BITS_PER_LONG; 261 for (k = 0; k < lim; ++k) 262 if (bitmap1[k] & ~bitmap2[k]) 263 return 0; 264 265 if (bits % BITS_PER_LONG) 266 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 267 return 0; 268 return 1; 269 } 270 EXPORT_SYMBOL(__bitmap_subset); 271 272 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 273 { 274 unsigned int k, lim = bits/BITS_PER_LONG; 275 int w = 0; 276 277 for (k = 0; k < lim; k++) 278 w += hweight_long(bitmap[k]); 279 280 if (bits % BITS_PER_LONG) 281 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 282 283 return w; 284 } 285 EXPORT_SYMBOL(__bitmap_weight); 286 287 void bitmap_set(unsigned long *map, unsigned int start, int len) 288 { 289 unsigned long *p = map + BIT_WORD(start); 290 const unsigned int size = start + len; 291 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 292 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 293 294 while (len - bits_to_set >= 0) { 295 *p |= mask_to_set; 296 len -= bits_to_set; 297 bits_to_set = BITS_PER_LONG; 298 mask_to_set = ~0UL; 299 p++; 300 } 301 if (len) { 302 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 303 *p |= mask_to_set; 304 } 305 } 306 EXPORT_SYMBOL(bitmap_set); 307 308 void bitmap_clear(unsigned long *map, unsigned int start, int len) 309 { 310 unsigned long *p = map + BIT_WORD(start); 311 const unsigned int size = start + len; 312 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 313 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 314 315 while (len - bits_to_clear >= 0) { 316 *p &= ~mask_to_clear; 317 len -= bits_to_clear; 318 bits_to_clear = BITS_PER_LONG; 319 mask_to_clear = ~0UL; 320 p++; 321 } 322 if (len) { 323 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 324 *p &= ~mask_to_clear; 325 } 326 } 327 EXPORT_SYMBOL(bitmap_clear); 328 329 /* 330 * bitmap_find_next_zero_area - find a contiguous aligned zero area 331 * @map: The address to base the search on 332 * @size: The bitmap size in bits 333 * @start: The bitnumber to start searching at 334 * @nr: The number of zeroed bits we're looking for 335 * @align_mask: Alignment mask for zero area 336 * 337 * The @align_mask should be one less than a power of 2; the effect is that 338 * the bit offset of all zero areas this function finds is multiples of that 339 * power of 2. A @align_mask of 0 means no alignment is required. 340 */ 341 unsigned long bitmap_find_next_zero_area(unsigned long *map, 342 unsigned long size, 343 unsigned long start, 344 unsigned int nr, 345 unsigned long align_mask) 346 { 347 unsigned long index, end, i; 348 again: 349 index = find_next_zero_bit(map, size, start); 350 351 /* Align allocation */ 352 index = __ALIGN_MASK(index, align_mask); 353 354 end = index + nr; 355 if (end > size) 356 return end; 357 i = find_next_bit(map, end, index); 358 if (i < end) { 359 start = i + 1; 360 goto again; 361 } 362 return index; 363 } 364 EXPORT_SYMBOL(bitmap_find_next_zero_area); 365 366 /* 367 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 368 * second version by Paul Jackson, third by Joe Korty. 369 */ 370 371 #define CHUNKSZ 32 372 #define nbits_to_hold_value(val) fls(val) 373 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 374 375 /** 376 * bitmap_scnprintf - convert bitmap to an ASCII hex string. 377 * @buf: byte buffer into which string is placed 378 * @buflen: reserved size of @buf, in bytes 379 * @maskp: pointer to bitmap to convert 380 * @nmaskbits: size of bitmap, in bits 381 * 382 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into 383 * comma-separated sets of eight digits per set. Returns the number of 384 * characters which were written to *buf, excluding the trailing \0. 385 */ 386 int bitmap_scnprintf(char *buf, unsigned int buflen, 387 const unsigned long *maskp, int nmaskbits) 388 { 389 int i, word, bit, len = 0; 390 unsigned long val; 391 const char *sep = ""; 392 int chunksz; 393 u32 chunkmask; 394 395 chunksz = nmaskbits & (CHUNKSZ - 1); 396 if (chunksz == 0) 397 chunksz = CHUNKSZ; 398 399 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; 400 for (; i >= 0; i -= CHUNKSZ) { 401 chunkmask = ((1ULL << chunksz) - 1); 402 word = i / BITS_PER_LONG; 403 bit = i % BITS_PER_LONG; 404 val = (maskp[word] >> bit) & chunkmask; 405 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, 406 (chunksz+3)/4, val); 407 chunksz = CHUNKSZ; 408 sep = ","; 409 } 410 return len; 411 } 412 EXPORT_SYMBOL(bitmap_scnprintf); 413 414 /** 415 * __bitmap_parse - convert an ASCII hex string into a bitmap. 416 * @buf: pointer to buffer containing string. 417 * @buflen: buffer size in bytes. If string is smaller than this 418 * then it must be terminated with a \0. 419 * @is_user: location of buffer, 0 indicates kernel space 420 * @maskp: pointer to bitmap array that will contain result. 421 * @nmaskbits: size of bitmap, in bits. 422 * 423 * Commas group hex digits into chunks. Each chunk defines exactly 32 424 * bits of the resultant bitmask. No chunk may specify a value larger 425 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 426 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 427 * characters and for grouping errors such as "1,,5", ",44", "," and "". 428 * Leading and trailing whitespace accepted, but not embedded whitespace. 429 */ 430 int __bitmap_parse(const char *buf, unsigned int buflen, 431 int is_user, unsigned long *maskp, 432 int nmaskbits) 433 { 434 int c, old_c, totaldigits, ndigits, nchunks, nbits; 435 u32 chunk; 436 const char __user __force *ubuf = (const char __user __force *)buf; 437 438 bitmap_zero(maskp, nmaskbits); 439 440 nchunks = nbits = totaldigits = c = 0; 441 do { 442 chunk = ndigits = 0; 443 444 /* Get the next chunk of the bitmap */ 445 while (buflen) { 446 old_c = c; 447 if (is_user) { 448 if (__get_user(c, ubuf++)) 449 return -EFAULT; 450 } 451 else 452 c = *buf++; 453 buflen--; 454 if (isspace(c)) 455 continue; 456 457 /* 458 * If the last character was a space and the current 459 * character isn't '\0', we've got embedded whitespace. 460 * This is a no-no, so throw an error. 461 */ 462 if (totaldigits && c && isspace(old_c)) 463 return -EINVAL; 464 465 /* A '\0' or a ',' signal the end of the chunk */ 466 if (c == '\0' || c == ',') 467 break; 468 469 if (!isxdigit(c)) 470 return -EINVAL; 471 472 /* 473 * Make sure there are at least 4 free bits in 'chunk'. 474 * If not, this hexdigit will overflow 'chunk', so 475 * throw an error. 476 */ 477 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 478 return -EOVERFLOW; 479 480 chunk = (chunk << 4) | hex_to_bin(c); 481 ndigits++; totaldigits++; 482 } 483 if (ndigits == 0) 484 return -EINVAL; 485 if (nchunks == 0 && chunk == 0) 486 continue; 487 488 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 489 *maskp |= chunk; 490 nchunks++; 491 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 492 if (nbits > nmaskbits) 493 return -EOVERFLOW; 494 } while (buflen && c == ','); 495 496 return 0; 497 } 498 EXPORT_SYMBOL(__bitmap_parse); 499 500 /** 501 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 502 * 503 * @ubuf: pointer to user buffer containing string. 504 * @ulen: buffer size in bytes. If string is smaller than this 505 * then it must be terminated with a \0. 506 * @maskp: pointer to bitmap array that will contain result. 507 * @nmaskbits: size of bitmap, in bits. 508 * 509 * Wrapper for __bitmap_parse(), providing it with user buffer. 510 * 511 * We cannot have this as an inline function in bitmap.h because it needs 512 * linux/uaccess.h to get the access_ok() declaration and this causes 513 * cyclic dependencies. 514 */ 515 int bitmap_parse_user(const char __user *ubuf, 516 unsigned int ulen, unsigned long *maskp, 517 int nmaskbits) 518 { 519 if (!access_ok(VERIFY_READ, ubuf, ulen)) 520 return -EFAULT; 521 return __bitmap_parse((const char __force *)ubuf, 522 ulen, 1, maskp, nmaskbits); 523 524 } 525 EXPORT_SYMBOL(bitmap_parse_user); 526 527 /* 528 * bscnl_emit(buf, buflen, rbot, rtop, bp) 529 * 530 * Helper routine for bitmap_scnlistprintf(). Write decimal number 531 * or range to buf, suppressing output past buf+buflen, with optional 532 * comma-prefix. Return len of what was written to *buf, excluding the 533 * trailing \0. 534 */ 535 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) 536 { 537 if (len > 0) 538 len += scnprintf(buf + len, buflen - len, ","); 539 if (rbot == rtop) 540 len += scnprintf(buf + len, buflen - len, "%d", rbot); 541 else 542 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); 543 return len; 544 } 545 546 /** 547 * bitmap_scnlistprintf - convert bitmap to list format ASCII string 548 * @buf: byte buffer into which string is placed 549 * @buflen: reserved size of @buf, in bytes 550 * @maskp: pointer to bitmap to convert 551 * @nmaskbits: size of bitmap, in bits 552 * 553 * Output format is a comma-separated list of decimal numbers and 554 * ranges. Consecutively set bits are shown as two hyphen-separated 555 * decimal numbers, the smallest and largest bit numbers set in 556 * the range. Output format is compatible with the format 557 * accepted as input by bitmap_parselist(). 558 * 559 * The return value is the number of characters which were written to *buf 560 * excluding the trailing '\0', as per ISO C99's scnprintf. 561 */ 562 int bitmap_scnlistprintf(char *buf, unsigned int buflen, 563 const unsigned long *maskp, int nmaskbits) 564 { 565 int len = 0; 566 /* current bit is 'cur', most recently seen range is [rbot, rtop] */ 567 int cur, rbot, rtop; 568 569 if (buflen == 0) 570 return 0; 571 buf[0] = 0; 572 573 rbot = cur = find_first_bit(maskp, nmaskbits); 574 while (cur < nmaskbits) { 575 rtop = cur; 576 cur = find_next_bit(maskp, nmaskbits, cur+1); 577 if (cur >= nmaskbits || cur > rtop + 1) { 578 len = bscnl_emit(buf, buflen, rbot, rtop, len); 579 rbot = cur; 580 } 581 } 582 return len; 583 } 584 EXPORT_SYMBOL(bitmap_scnlistprintf); 585 586 /** 587 * __bitmap_parselist - convert list format ASCII string to bitmap 588 * @buf: read nul-terminated user string from this buffer 589 * @buflen: buffer size in bytes. If string is smaller than this 590 * then it must be terminated with a \0. 591 * @is_user: location of buffer, 0 indicates kernel space 592 * @maskp: write resulting mask here 593 * @nmaskbits: number of bits in mask to be written 594 * 595 * Input format is a comma-separated list of decimal numbers and 596 * ranges. Consecutively set bits are shown as two hyphen-separated 597 * decimal numbers, the smallest and largest bit numbers set in 598 * the range. 599 * 600 * Returns 0 on success, -errno on invalid input strings. 601 * Error values: 602 * %-EINVAL: second number in range smaller than first 603 * %-EINVAL: invalid character in string 604 * %-ERANGE: bit number specified too large for mask 605 */ 606 static int __bitmap_parselist(const char *buf, unsigned int buflen, 607 int is_user, unsigned long *maskp, 608 int nmaskbits) 609 { 610 unsigned a, b; 611 int c, old_c, totaldigits; 612 const char __user __force *ubuf = (const char __user __force *)buf; 613 int exp_digit, in_range; 614 615 totaldigits = c = 0; 616 bitmap_zero(maskp, nmaskbits); 617 do { 618 exp_digit = 1; 619 in_range = 0; 620 a = b = 0; 621 622 /* Get the next cpu# or a range of cpu#'s */ 623 while (buflen) { 624 old_c = c; 625 if (is_user) { 626 if (__get_user(c, ubuf++)) 627 return -EFAULT; 628 } else 629 c = *buf++; 630 buflen--; 631 if (isspace(c)) 632 continue; 633 634 /* 635 * If the last character was a space and the current 636 * character isn't '\0', we've got embedded whitespace. 637 * This is a no-no, so throw an error. 638 */ 639 if (totaldigits && c && isspace(old_c)) 640 return -EINVAL; 641 642 /* A '\0' or a ',' signal the end of a cpu# or range */ 643 if (c == '\0' || c == ',') 644 break; 645 646 if (c == '-') { 647 if (exp_digit || in_range) 648 return -EINVAL; 649 b = 0; 650 in_range = 1; 651 exp_digit = 1; 652 continue; 653 } 654 655 if (!isdigit(c)) 656 return -EINVAL; 657 658 b = b * 10 + (c - '0'); 659 if (!in_range) 660 a = b; 661 exp_digit = 0; 662 totaldigits++; 663 } 664 if (!(a <= b)) 665 return -EINVAL; 666 if (b >= nmaskbits) 667 return -ERANGE; 668 while (a <= b) { 669 set_bit(a, maskp); 670 a++; 671 } 672 } while (buflen && c == ','); 673 return 0; 674 } 675 676 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 677 { 678 char *nl = strchrnul(bp, '\n'); 679 int len = nl - bp; 680 681 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 682 } 683 EXPORT_SYMBOL(bitmap_parselist); 684 685 686 /** 687 * bitmap_parselist_user() 688 * 689 * @ubuf: pointer to user buffer containing string. 690 * @ulen: buffer size in bytes. If string is smaller than this 691 * then it must be terminated with a \0. 692 * @maskp: pointer to bitmap array that will contain result. 693 * @nmaskbits: size of bitmap, in bits. 694 * 695 * Wrapper for bitmap_parselist(), providing it with user buffer. 696 * 697 * We cannot have this as an inline function in bitmap.h because it needs 698 * linux/uaccess.h to get the access_ok() declaration and this causes 699 * cyclic dependencies. 700 */ 701 int bitmap_parselist_user(const char __user *ubuf, 702 unsigned int ulen, unsigned long *maskp, 703 int nmaskbits) 704 { 705 if (!access_ok(VERIFY_READ, ubuf, ulen)) 706 return -EFAULT; 707 return __bitmap_parselist((const char __force *)ubuf, 708 ulen, 1, maskp, nmaskbits); 709 } 710 EXPORT_SYMBOL(bitmap_parselist_user); 711 712 713 /** 714 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 715 * @buf: pointer to a bitmap 716 * @pos: a bit position in @buf (0 <= @pos < @bits) 717 * @bits: number of valid bit positions in @buf 718 * 719 * Map the bit at position @pos in @buf (of length @bits) to the 720 * ordinal of which set bit it is. If it is not set or if @pos 721 * is not a valid bit position, map to -1. 722 * 723 * If for example, just bits 4 through 7 are set in @buf, then @pos 724 * values 4 through 7 will get mapped to 0 through 3, respectively, 725 * and other @pos values will get mapped to -1. When @pos value 7 726 * gets mapped to (returns) @ord value 3 in this example, that means 727 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 728 * 729 * The bit positions 0 through @bits are valid positions in @buf. 730 */ 731 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) 732 { 733 int i, ord; 734 735 if (pos < 0 || pos >= bits || !test_bit(pos, buf)) 736 return -1; 737 738 i = find_first_bit(buf, bits); 739 ord = 0; 740 while (i < pos) { 741 i = find_next_bit(buf, bits, i + 1); 742 ord++; 743 } 744 BUG_ON(i != pos); 745 746 return ord; 747 } 748 749 /** 750 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 751 * @buf: pointer to bitmap 752 * @ord: ordinal bit position (n-th set bit, n >= 0) 753 * @bits: number of valid bit positions in @buf 754 * 755 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 756 * Value of @ord should be in range 0 <= @ord < weight(buf), else 757 * results are undefined. 758 * 759 * If for example, just bits 4 through 7 are set in @buf, then @ord 760 * values 0 through 3 will get mapped to 4 through 7, respectively, 761 * and all other @ord values return undefined values. When @ord value 3 762 * gets mapped to (returns) @pos value 7 in this example, that means 763 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 764 * 765 * The bit positions 0 through @bits are valid positions in @buf. 766 */ 767 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) 768 { 769 int pos = 0; 770 771 if (ord >= 0 && ord < bits) { 772 int i; 773 774 for (i = find_first_bit(buf, bits); 775 i < bits && ord > 0; 776 i = find_next_bit(buf, bits, i + 1)) 777 ord--; 778 if (i < bits && ord == 0) 779 pos = i; 780 } 781 782 return pos; 783 } 784 785 /** 786 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 787 * @dst: remapped result 788 * @src: subset to be remapped 789 * @old: defines domain of map 790 * @new: defines range of map 791 * @bits: number of bits in each of these bitmaps 792 * 793 * Let @old and @new define a mapping of bit positions, such that 794 * whatever position is held by the n-th set bit in @old is mapped 795 * to the n-th set bit in @new. In the more general case, allowing 796 * for the possibility that the weight 'w' of @new is less than the 797 * weight of @old, map the position of the n-th set bit in @old to 798 * the position of the m-th set bit in @new, where m == n % w. 799 * 800 * If either of the @old and @new bitmaps are empty, or if @src and 801 * @dst point to the same location, then this routine copies @src 802 * to @dst. 803 * 804 * The positions of unset bits in @old are mapped to themselves 805 * (the identify map). 806 * 807 * Apply the above specified mapping to @src, placing the result in 808 * @dst, clearing any bits previously set in @dst. 809 * 810 * For example, lets say that @old has bits 4 through 7 set, and 811 * @new has bits 12 through 15 set. This defines the mapping of bit 812 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 813 * bit positions unchanged. So if say @src comes into this routine 814 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 815 * 13 and 15 set. 816 */ 817 void bitmap_remap(unsigned long *dst, const unsigned long *src, 818 const unsigned long *old, const unsigned long *new, 819 int bits) 820 { 821 int oldbit, w; 822 823 if (dst == src) /* following doesn't handle inplace remaps */ 824 return; 825 bitmap_zero(dst, bits); 826 827 w = bitmap_weight(new, bits); 828 for_each_set_bit(oldbit, src, bits) { 829 int n = bitmap_pos_to_ord(old, oldbit, bits); 830 831 if (n < 0 || w == 0) 832 set_bit(oldbit, dst); /* identity map */ 833 else 834 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); 835 } 836 } 837 EXPORT_SYMBOL(bitmap_remap); 838 839 /** 840 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 841 * @oldbit: bit position to be mapped 842 * @old: defines domain of map 843 * @new: defines range of map 844 * @bits: number of bits in each of these bitmaps 845 * 846 * Let @old and @new define a mapping of bit positions, such that 847 * whatever position is held by the n-th set bit in @old is mapped 848 * to the n-th set bit in @new. In the more general case, allowing 849 * for the possibility that the weight 'w' of @new is less than the 850 * weight of @old, map the position of the n-th set bit in @old to 851 * the position of the m-th set bit in @new, where m == n % w. 852 * 853 * The positions of unset bits in @old are mapped to themselves 854 * (the identify map). 855 * 856 * Apply the above specified mapping to bit position @oldbit, returning 857 * the new bit position. 858 * 859 * For example, lets say that @old has bits 4 through 7 set, and 860 * @new has bits 12 through 15 set. This defines the mapping of bit 861 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 862 * bit positions unchanged. So if say @oldbit is 5, then this routine 863 * returns 13. 864 */ 865 int bitmap_bitremap(int oldbit, const unsigned long *old, 866 const unsigned long *new, int bits) 867 { 868 int w = bitmap_weight(new, bits); 869 int n = bitmap_pos_to_ord(old, oldbit, bits); 870 if (n < 0 || w == 0) 871 return oldbit; 872 else 873 return bitmap_ord_to_pos(new, n % w, bits); 874 } 875 EXPORT_SYMBOL(bitmap_bitremap); 876 877 /** 878 * bitmap_onto - translate one bitmap relative to another 879 * @dst: resulting translated bitmap 880 * @orig: original untranslated bitmap 881 * @relmap: bitmap relative to which translated 882 * @bits: number of bits in each of these bitmaps 883 * 884 * Set the n-th bit of @dst iff there exists some m such that the 885 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 886 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 887 * (If you understood the previous sentence the first time your 888 * read it, you're overqualified for your current job.) 889 * 890 * In other words, @orig is mapped onto (surjectively) @dst, 891 * using the map { <n, m> | the n-th bit of @relmap is the 892 * m-th set bit of @relmap }. 893 * 894 * Any set bits in @orig above bit number W, where W is the 895 * weight of (number of set bits in) @relmap are mapped nowhere. 896 * In particular, if for all bits m set in @orig, m >= W, then 897 * @dst will end up empty. In situations where the possibility 898 * of such an empty result is not desired, one way to avoid it is 899 * to use the bitmap_fold() operator, below, to first fold the 900 * @orig bitmap over itself so that all its set bits x are in the 901 * range 0 <= x < W. The bitmap_fold() operator does this by 902 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 903 * 904 * Example [1] for bitmap_onto(): 905 * Let's say @relmap has bits 30-39 set, and @orig has bits 906 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 907 * @dst will have bits 31, 33, 35, 37 and 39 set. 908 * 909 * When bit 0 is set in @orig, it means turn on the bit in 910 * @dst corresponding to whatever is the first bit (if any) 911 * that is turned on in @relmap. Since bit 0 was off in the 912 * above example, we leave off that bit (bit 30) in @dst. 913 * 914 * When bit 1 is set in @orig (as in the above example), it 915 * means turn on the bit in @dst corresponding to whatever 916 * is the second bit that is turned on in @relmap. The second 917 * bit in @relmap that was turned on in the above example was 918 * bit 31, so we turned on bit 31 in @dst. 919 * 920 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 921 * because they were the 4th, 6th, 8th and 10th set bits 922 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 923 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 924 * 925 * When bit 11 is set in @orig, it means turn on the bit in 926 * @dst corresponding to whatever is the twelfth bit that is 927 * turned on in @relmap. In the above example, there were 928 * only ten bits turned on in @relmap (30..39), so that bit 929 * 11 was set in @orig had no affect on @dst. 930 * 931 * Example [2] for bitmap_fold() + bitmap_onto(): 932 * Let's say @relmap has these ten bits set: 933 * 40 41 42 43 45 48 53 61 74 95 934 * (for the curious, that's 40 plus the first ten terms of the 935 * Fibonacci sequence.) 936 * 937 * Further lets say we use the following code, invoking 938 * bitmap_fold() then bitmap_onto, as suggested above to 939 * avoid the possibility of an empty @dst result: 940 * 941 * unsigned long *tmp; // a temporary bitmap's bits 942 * 943 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 944 * bitmap_onto(dst, tmp, relmap, bits); 945 * 946 * Then this table shows what various values of @dst would be, for 947 * various @orig's. I list the zero-based positions of each set bit. 948 * The tmp column shows the intermediate result, as computed by 949 * using bitmap_fold() to fold the @orig bitmap modulo ten 950 * (the weight of @relmap). 951 * 952 * @orig tmp @dst 953 * 0 0 40 954 * 1 1 41 955 * 9 9 95 956 * 10 0 40 (*) 957 * 1 3 5 7 1 3 5 7 41 43 48 61 958 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 959 * 0 9 18 27 0 9 8 7 40 61 74 95 960 * 0 10 20 30 0 40 961 * 0 11 22 33 0 1 2 3 40 41 42 43 962 * 0 12 24 36 0 2 4 6 40 42 45 53 963 * 78 102 211 1 2 8 41 42 74 (*) 964 * 965 * (*) For these marked lines, if we hadn't first done bitmap_fold() 966 * into tmp, then the @dst result would have been empty. 967 * 968 * If either of @orig or @relmap is empty (no set bits), then @dst 969 * will be returned empty. 970 * 971 * If (as explained above) the only set bits in @orig are in positions 972 * m where m >= W, (where W is the weight of @relmap) then @dst will 973 * once again be returned empty. 974 * 975 * All bits in @dst not set by the above rule are cleared. 976 */ 977 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 978 const unsigned long *relmap, int bits) 979 { 980 int n, m; /* same meaning as in above comment */ 981 982 if (dst == orig) /* following doesn't handle inplace mappings */ 983 return; 984 bitmap_zero(dst, bits); 985 986 /* 987 * The following code is a more efficient, but less 988 * obvious, equivalent to the loop: 989 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 990 * n = bitmap_ord_to_pos(orig, m, bits); 991 * if (test_bit(m, orig)) 992 * set_bit(n, dst); 993 * } 994 */ 995 996 m = 0; 997 for_each_set_bit(n, relmap, bits) { 998 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 999 if (test_bit(m, orig)) 1000 set_bit(n, dst); 1001 m++; 1002 } 1003 } 1004 EXPORT_SYMBOL(bitmap_onto); 1005 1006 /** 1007 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1008 * @dst: resulting smaller bitmap 1009 * @orig: original larger bitmap 1010 * @sz: specified size 1011 * @bits: number of bits in each of these bitmaps 1012 * 1013 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1014 * Clear all other bits in @dst. See further the comment and 1015 * Example [2] for bitmap_onto() for why and how to use this. 1016 */ 1017 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1018 int sz, int bits) 1019 { 1020 int oldbit; 1021 1022 if (dst == orig) /* following doesn't handle inplace mappings */ 1023 return; 1024 bitmap_zero(dst, bits); 1025 1026 for_each_set_bit(oldbit, orig, bits) 1027 set_bit(oldbit % sz, dst); 1028 } 1029 EXPORT_SYMBOL(bitmap_fold); 1030 1031 /* 1032 * Common code for bitmap_*_region() routines. 1033 * bitmap: array of unsigned longs corresponding to the bitmap 1034 * pos: the beginning of the region 1035 * order: region size (log base 2 of number of bits) 1036 * reg_op: operation(s) to perform on that region of bitmap 1037 * 1038 * Can set, verify and/or release a region of bits in a bitmap, 1039 * depending on which combination of REG_OP_* flag bits is set. 1040 * 1041 * A region of a bitmap is a sequence of bits in the bitmap, of 1042 * some size '1 << order' (a power of two), aligned to that same 1043 * '1 << order' power of two. 1044 * 1045 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1046 * Returns 0 in all other cases and reg_ops. 1047 */ 1048 1049 enum { 1050 REG_OP_ISFREE, /* true if region is all zero bits */ 1051 REG_OP_ALLOC, /* set all bits in region */ 1052 REG_OP_RELEASE, /* clear all bits in region */ 1053 }; 1054 1055 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1056 { 1057 int nbits_reg; /* number of bits in region */ 1058 int index; /* index first long of region in bitmap */ 1059 int offset; /* bit offset region in bitmap[index] */ 1060 int nlongs_reg; /* num longs spanned by region in bitmap */ 1061 int nbitsinlong; /* num bits of region in each spanned long */ 1062 unsigned long mask; /* bitmask for one long of region */ 1063 int i; /* scans bitmap by longs */ 1064 int ret = 0; /* return value */ 1065 1066 /* 1067 * Either nlongs_reg == 1 (for small orders that fit in one long) 1068 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1069 */ 1070 nbits_reg = 1 << order; 1071 index = pos / BITS_PER_LONG; 1072 offset = pos - (index * BITS_PER_LONG); 1073 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1074 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1075 1076 /* 1077 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1078 * overflows if nbitsinlong == BITS_PER_LONG. 1079 */ 1080 mask = (1UL << (nbitsinlong - 1)); 1081 mask += mask - 1; 1082 mask <<= offset; 1083 1084 switch (reg_op) { 1085 case REG_OP_ISFREE: 1086 for (i = 0; i < nlongs_reg; i++) { 1087 if (bitmap[index + i] & mask) 1088 goto done; 1089 } 1090 ret = 1; /* all bits in region free (zero) */ 1091 break; 1092 1093 case REG_OP_ALLOC: 1094 for (i = 0; i < nlongs_reg; i++) 1095 bitmap[index + i] |= mask; 1096 break; 1097 1098 case REG_OP_RELEASE: 1099 for (i = 0; i < nlongs_reg; i++) 1100 bitmap[index + i] &= ~mask; 1101 break; 1102 } 1103 done: 1104 return ret; 1105 } 1106 1107 /** 1108 * bitmap_find_free_region - find a contiguous aligned mem region 1109 * @bitmap: array of unsigned longs corresponding to the bitmap 1110 * @bits: number of bits in the bitmap 1111 * @order: region size (log base 2 of number of bits) to find 1112 * 1113 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1114 * allocate them (set them to one). Only consider regions of length 1115 * a power (@order) of two, aligned to that power of two, which 1116 * makes the search algorithm much faster. 1117 * 1118 * Return the bit offset in bitmap of the allocated region, 1119 * or -errno on failure. 1120 */ 1121 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1122 { 1123 unsigned int pos, end; /* scans bitmap by regions of size order */ 1124 1125 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1126 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1127 continue; 1128 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1129 return pos; 1130 } 1131 return -ENOMEM; 1132 } 1133 EXPORT_SYMBOL(bitmap_find_free_region); 1134 1135 /** 1136 * bitmap_release_region - release allocated bitmap region 1137 * @bitmap: array of unsigned longs corresponding to the bitmap 1138 * @pos: beginning of bit region to release 1139 * @order: region size (log base 2 of number of bits) to release 1140 * 1141 * This is the complement to __bitmap_find_free_region() and releases 1142 * the found region (by clearing it in the bitmap). 1143 * 1144 * No return value. 1145 */ 1146 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1147 { 1148 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1149 } 1150 EXPORT_SYMBOL(bitmap_release_region); 1151 1152 /** 1153 * bitmap_allocate_region - allocate bitmap region 1154 * @bitmap: array of unsigned longs corresponding to the bitmap 1155 * @pos: beginning of bit region to allocate 1156 * @order: region size (log base 2 of number of bits) to allocate 1157 * 1158 * Allocate (set bits in) a specified region of a bitmap. 1159 * 1160 * Return 0 on success, or %-EBUSY if specified region wasn't 1161 * free (not all bits were zero). 1162 */ 1163 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1164 { 1165 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1166 return -EBUSY; 1167 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1168 } 1169 EXPORT_SYMBOL(bitmap_allocate_region); 1170 1171 /** 1172 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1173 * @dst: destination buffer 1174 * @src: bitmap to copy 1175 * @nbits: number of bits in the bitmap 1176 * 1177 * Require nbits % BITS_PER_LONG == 0. 1178 */ 1179 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) 1180 { 1181 unsigned long *d = dst; 1182 int i; 1183 1184 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1185 if (BITS_PER_LONG == 64) 1186 d[i] = cpu_to_le64(src[i]); 1187 else 1188 d[i] = cpu_to_le32(src[i]); 1189 } 1190 } 1191 EXPORT_SYMBOL(bitmap_copy_le); 1192