xref: /openbmc/linux/lib/bitmap.c (revision 63dc02bd)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <asm/uaccess.h>
16 
17 /*
18  * bitmaps provide an array of bits, implemented using an an
19  * array of unsigned longs.  The number of valid bits in a
20  * given bitmap does _not_ need to be an exact multiple of
21  * BITS_PER_LONG.
22  *
23  * The possible unused bits in the last, partially used word
24  * of a bitmap are 'don't care'.  The implementation makes
25  * no particular effort to keep them zero.  It ensures that
26  * their value will not affect the results of any operation.
27  * The bitmap operations that return Boolean (bitmap_empty,
28  * for example) or scalar (bitmap_weight, for example) results
29  * carefully filter out these unused bits from impacting their
30  * results.
31  *
32  * These operations actually hold to a slightly stronger rule:
33  * if you don't input any bitmaps to these ops that have some
34  * unused bits set, then they won't output any set unused bits
35  * in output bitmaps.
36  *
37  * The byte ordering of bitmaps is more natural on little
38  * endian architectures.  See the big-endian headers
39  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40  * for the best explanations of this ordering.
41  */
42 
43 int __bitmap_empty(const unsigned long *bitmap, int bits)
44 {
45 	int k, lim = bits/BITS_PER_LONG;
46 	for (k = 0; k < lim; ++k)
47 		if (bitmap[k])
48 			return 0;
49 
50 	if (bits % BITS_PER_LONG)
51 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 			return 0;
53 
54 	return 1;
55 }
56 EXPORT_SYMBOL(__bitmap_empty);
57 
58 int __bitmap_full(const unsigned long *bitmap, int bits)
59 {
60 	int k, lim = bits/BITS_PER_LONG;
61 	for (k = 0; k < lim; ++k)
62 		if (~bitmap[k])
63 			return 0;
64 
65 	if (bits % BITS_PER_LONG)
66 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 			return 0;
68 
69 	return 1;
70 }
71 EXPORT_SYMBOL(__bitmap_full);
72 
73 int __bitmap_equal(const unsigned long *bitmap1,
74 		const unsigned long *bitmap2, int bits)
75 {
76 	int k, lim = bits/BITS_PER_LONG;
77 	for (k = 0; k < lim; ++k)
78 		if (bitmap1[k] != bitmap2[k])
79 			return 0;
80 
81 	if (bits % BITS_PER_LONG)
82 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 			return 0;
84 
85 	return 1;
86 }
87 EXPORT_SYMBOL(__bitmap_equal);
88 
89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
90 {
91 	int k, lim = bits/BITS_PER_LONG;
92 	for (k = 0; k < lim; ++k)
93 		dst[k] = ~src[k];
94 
95 	if (bits % BITS_PER_LONG)
96 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
97 }
98 EXPORT_SYMBOL(__bitmap_complement);
99 
100 /**
101  * __bitmap_shift_right - logical right shift of the bits in a bitmap
102  *   @dst : destination bitmap
103  *   @src : source bitmap
104  *   @shift : shift by this many bits
105  *   @bits : bitmap size, in bits
106  *
107  * Shifting right (dividing) means moving bits in the MS -> LS bit
108  * direction.  Zeros are fed into the vacated MS positions and the
109  * LS bits shifted off the bottom are lost.
110  */
111 void __bitmap_shift_right(unsigned long *dst,
112 			const unsigned long *src, int shift, int bits)
113 {
114 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 	unsigned long mask = (1UL << left) - 1;
117 	for (k = 0; off + k < lim; ++k) {
118 		unsigned long upper, lower;
119 
120 		/*
121 		 * If shift is not word aligned, take lower rem bits of
122 		 * word above and make them the top rem bits of result.
123 		 */
124 		if (!rem || off + k + 1 >= lim)
125 			upper = 0;
126 		else {
127 			upper = src[off + k + 1];
128 			if (off + k + 1 == lim - 1 && left)
129 				upper &= mask;
130 		}
131 		lower = src[off + k];
132 		if (left && off + k == lim - 1)
133 			lower &= mask;
134 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
135 		if (left && k == lim - 1)
136 			dst[k] &= mask;
137 	}
138 	if (off)
139 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
140 }
141 EXPORT_SYMBOL(__bitmap_shift_right);
142 
143 
144 /**
145  * __bitmap_shift_left - logical left shift of the bits in a bitmap
146  *   @dst : destination bitmap
147  *   @src : source bitmap
148  *   @shift : shift by this many bits
149  *   @bits : bitmap size, in bits
150  *
151  * Shifting left (multiplying) means moving bits in the LS -> MS
152  * direction.  Zeros are fed into the vacated LS bit positions
153  * and those MS bits shifted off the top are lost.
154  */
155 
156 void __bitmap_shift_left(unsigned long *dst,
157 			const unsigned long *src, int shift, int bits)
158 {
159 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
160 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
161 	for (k = lim - off - 1; k >= 0; --k) {
162 		unsigned long upper, lower;
163 
164 		/*
165 		 * If shift is not word aligned, take upper rem bits of
166 		 * word below and make them the bottom rem bits of result.
167 		 */
168 		if (rem && k > 0)
169 			lower = src[k - 1];
170 		else
171 			lower = 0;
172 		upper = src[k];
173 		if (left && k == lim - 1)
174 			upper &= (1UL << left) - 1;
175 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
176 		if (left && k + off == lim - 1)
177 			dst[k + off] &= (1UL << left) - 1;
178 	}
179 	if (off)
180 		memset(dst, 0, off*sizeof(unsigned long));
181 }
182 EXPORT_SYMBOL(__bitmap_shift_left);
183 
184 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
185 				const unsigned long *bitmap2, int bits)
186 {
187 	int k;
188 	int nr = BITS_TO_LONGS(bits);
189 	unsigned long result = 0;
190 
191 	for (k = 0; k < nr; k++)
192 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
193 	return result != 0;
194 }
195 EXPORT_SYMBOL(__bitmap_and);
196 
197 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
198 				const unsigned long *bitmap2, int bits)
199 {
200 	int k;
201 	int nr = BITS_TO_LONGS(bits);
202 
203 	for (k = 0; k < nr; k++)
204 		dst[k] = bitmap1[k] | bitmap2[k];
205 }
206 EXPORT_SYMBOL(__bitmap_or);
207 
208 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
209 				const unsigned long *bitmap2, int bits)
210 {
211 	int k;
212 	int nr = BITS_TO_LONGS(bits);
213 
214 	for (k = 0; k < nr; k++)
215 		dst[k] = bitmap1[k] ^ bitmap2[k];
216 }
217 EXPORT_SYMBOL(__bitmap_xor);
218 
219 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
220 				const unsigned long *bitmap2, int bits)
221 {
222 	int k;
223 	int nr = BITS_TO_LONGS(bits);
224 	unsigned long result = 0;
225 
226 	for (k = 0; k < nr; k++)
227 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
228 	return result != 0;
229 }
230 EXPORT_SYMBOL(__bitmap_andnot);
231 
232 int __bitmap_intersects(const unsigned long *bitmap1,
233 				const unsigned long *bitmap2, int bits)
234 {
235 	int k, lim = bits/BITS_PER_LONG;
236 	for (k = 0; k < lim; ++k)
237 		if (bitmap1[k] & bitmap2[k])
238 			return 1;
239 
240 	if (bits % BITS_PER_LONG)
241 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
242 			return 1;
243 	return 0;
244 }
245 EXPORT_SYMBOL(__bitmap_intersects);
246 
247 int __bitmap_subset(const unsigned long *bitmap1,
248 				const unsigned long *bitmap2, int bits)
249 {
250 	int k, lim = bits/BITS_PER_LONG;
251 	for (k = 0; k < lim; ++k)
252 		if (bitmap1[k] & ~bitmap2[k])
253 			return 0;
254 
255 	if (bits % BITS_PER_LONG)
256 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
257 			return 0;
258 	return 1;
259 }
260 EXPORT_SYMBOL(__bitmap_subset);
261 
262 int __bitmap_weight(const unsigned long *bitmap, int bits)
263 {
264 	int k, w = 0, lim = bits/BITS_PER_LONG;
265 
266 	for (k = 0; k < lim; k++)
267 		w += hweight_long(bitmap[k]);
268 
269 	if (bits % BITS_PER_LONG)
270 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
271 
272 	return w;
273 }
274 EXPORT_SYMBOL(__bitmap_weight);
275 
276 void bitmap_set(unsigned long *map, int start, int nr)
277 {
278 	unsigned long *p = map + BIT_WORD(start);
279 	const int size = start + nr;
280 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
281 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
282 
283 	while (nr - bits_to_set >= 0) {
284 		*p |= mask_to_set;
285 		nr -= bits_to_set;
286 		bits_to_set = BITS_PER_LONG;
287 		mask_to_set = ~0UL;
288 		p++;
289 	}
290 	if (nr) {
291 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
292 		*p |= mask_to_set;
293 	}
294 }
295 EXPORT_SYMBOL(bitmap_set);
296 
297 void bitmap_clear(unsigned long *map, int start, int nr)
298 {
299 	unsigned long *p = map + BIT_WORD(start);
300 	const int size = start + nr;
301 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
302 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
303 
304 	while (nr - bits_to_clear >= 0) {
305 		*p &= ~mask_to_clear;
306 		nr -= bits_to_clear;
307 		bits_to_clear = BITS_PER_LONG;
308 		mask_to_clear = ~0UL;
309 		p++;
310 	}
311 	if (nr) {
312 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
313 		*p &= ~mask_to_clear;
314 	}
315 }
316 EXPORT_SYMBOL(bitmap_clear);
317 
318 /*
319  * bitmap_find_next_zero_area - find a contiguous aligned zero area
320  * @map: The address to base the search on
321  * @size: The bitmap size in bits
322  * @start: The bitnumber to start searching at
323  * @nr: The number of zeroed bits we're looking for
324  * @align_mask: Alignment mask for zero area
325  *
326  * The @align_mask should be one less than a power of 2; the effect is that
327  * the bit offset of all zero areas this function finds is multiples of that
328  * power of 2. A @align_mask of 0 means no alignment is required.
329  */
330 unsigned long bitmap_find_next_zero_area(unsigned long *map,
331 					 unsigned long size,
332 					 unsigned long start,
333 					 unsigned int nr,
334 					 unsigned long align_mask)
335 {
336 	unsigned long index, end, i;
337 again:
338 	index = find_next_zero_bit(map, size, start);
339 
340 	/* Align allocation */
341 	index = __ALIGN_MASK(index, align_mask);
342 
343 	end = index + nr;
344 	if (end > size)
345 		return end;
346 	i = find_next_bit(map, end, index);
347 	if (i < end) {
348 		start = i + 1;
349 		goto again;
350 	}
351 	return index;
352 }
353 EXPORT_SYMBOL(bitmap_find_next_zero_area);
354 
355 /*
356  * Bitmap printing & parsing functions: first version by Bill Irwin,
357  * second version by Paul Jackson, third by Joe Korty.
358  */
359 
360 #define CHUNKSZ				32
361 #define nbits_to_hold_value(val)	fls(val)
362 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
363 
364 /**
365  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
366  * @buf: byte buffer into which string is placed
367  * @buflen: reserved size of @buf, in bytes
368  * @maskp: pointer to bitmap to convert
369  * @nmaskbits: size of bitmap, in bits
370  *
371  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
372  * comma-separated sets of eight digits per set.
373  */
374 int bitmap_scnprintf(char *buf, unsigned int buflen,
375 	const unsigned long *maskp, int nmaskbits)
376 {
377 	int i, word, bit, len = 0;
378 	unsigned long val;
379 	const char *sep = "";
380 	int chunksz;
381 	u32 chunkmask;
382 
383 	chunksz = nmaskbits & (CHUNKSZ - 1);
384 	if (chunksz == 0)
385 		chunksz = CHUNKSZ;
386 
387 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
388 	for (; i >= 0; i -= CHUNKSZ) {
389 		chunkmask = ((1ULL << chunksz) - 1);
390 		word = i / BITS_PER_LONG;
391 		bit = i % BITS_PER_LONG;
392 		val = (maskp[word] >> bit) & chunkmask;
393 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
394 			(chunksz+3)/4, val);
395 		chunksz = CHUNKSZ;
396 		sep = ",";
397 	}
398 	return len;
399 }
400 EXPORT_SYMBOL(bitmap_scnprintf);
401 
402 /**
403  * __bitmap_parse - convert an ASCII hex string into a bitmap.
404  * @buf: pointer to buffer containing string.
405  * @buflen: buffer size in bytes.  If string is smaller than this
406  *    then it must be terminated with a \0.
407  * @is_user: location of buffer, 0 indicates kernel space
408  * @maskp: pointer to bitmap array that will contain result.
409  * @nmaskbits: size of bitmap, in bits.
410  *
411  * Commas group hex digits into chunks.  Each chunk defines exactly 32
412  * bits of the resultant bitmask.  No chunk may specify a value larger
413  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
414  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
415  * characters and for grouping errors such as "1,,5", ",44", "," and "".
416  * Leading and trailing whitespace accepted, but not embedded whitespace.
417  */
418 int __bitmap_parse(const char *buf, unsigned int buflen,
419 		int is_user, unsigned long *maskp,
420 		int nmaskbits)
421 {
422 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
423 	u32 chunk;
424 	const char __user __force *ubuf = (const char __user __force *)buf;
425 
426 	bitmap_zero(maskp, nmaskbits);
427 
428 	nchunks = nbits = totaldigits = c = 0;
429 	do {
430 		chunk = ndigits = 0;
431 
432 		/* Get the next chunk of the bitmap */
433 		while (buflen) {
434 			old_c = c;
435 			if (is_user) {
436 				if (__get_user(c, ubuf++))
437 					return -EFAULT;
438 			}
439 			else
440 				c = *buf++;
441 			buflen--;
442 			if (isspace(c))
443 				continue;
444 
445 			/*
446 			 * If the last character was a space and the current
447 			 * character isn't '\0', we've got embedded whitespace.
448 			 * This is a no-no, so throw an error.
449 			 */
450 			if (totaldigits && c && isspace(old_c))
451 				return -EINVAL;
452 
453 			/* A '\0' or a ',' signal the end of the chunk */
454 			if (c == '\0' || c == ',')
455 				break;
456 
457 			if (!isxdigit(c))
458 				return -EINVAL;
459 
460 			/*
461 			 * Make sure there are at least 4 free bits in 'chunk'.
462 			 * If not, this hexdigit will overflow 'chunk', so
463 			 * throw an error.
464 			 */
465 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
466 				return -EOVERFLOW;
467 
468 			chunk = (chunk << 4) | hex_to_bin(c);
469 			ndigits++; totaldigits++;
470 		}
471 		if (ndigits == 0)
472 			return -EINVAL;
473 		if (nchunks == 0 && chunk == 0)
474 			continue;
475 
476 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
477 		*maskp |= chunk;
478 		nchunks++;
479 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
480 		if (nbits > nmaskbits)
481 			return -EOVERFLOW;
482 	} while (buflen && c == ',');
483 
484 	return 0;
485 }
486 EXPORT_SYMBOL(__bitmap_parse);
487 
488 /**
489  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
490  *
491  * @ubuf: pointer to user buffer containing string.
492  * @ulen: buffer size in bytes.  If string is smaller than this
493  *    then it must be terminated with a \0.
494  * @maskp: pointer to bitmap array that will contain result.
495  * @nmaskbits: size of bitmap, in bits.
496  *
497  * Wrapper for __bitmap_parse(), providing it with user buffer.
498  *
499  * We cannot have this as an inline function in bitmap.h because it needs
500  * linux/uaccess.h to get the access_ok() declaration and this causes
501  * cyclic dependencies.
502  */
503 int bitmap_parse_user(const char __user *ubuf,
504 			unsigned int ulen, unsigned long *maskp,
505 			int nmaskbits)
506 {
507 	if (!access_ok(VERIFY_READ, ubuf, ulen))
508 		return -EFAULT;
509 	return __bitmap_parse((const char __force *)ubuf,
510 				ulen, 1, maskp, nmaskbits);
511 
512 }
513 EXPORT_SYMBOL(bitmap_parse_user);
514 
515 /*
516  * bscnl_emit(buf, buflen, rbot, rtop, bp)
517  *
518  * Helper routine for bitmap_scnlistprintf().  Write decimal number
519  * or range to buf, suppressing output past buf+buflen, with optional
520  * comma-prefix.  Return len of what would be written to buf, if it
521  * all fit.
522  */
523 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
524 {
525 	if (len > 0)
526 		len += scnprintf(buf + len, buflen - len, ",");
527 	if (rbot == rtop)
528 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
529 	else
530 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
531 	return len;
532 }
533 
534 /**
535  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
536  * @buf: byte buffer into which string is placed
537  * @buflen: reserved size of @buf, in bytes
538  * @maskp: pointer to bitmap to convert
539  * @nmaskbits: size of bitmap, in bits
540  *
541  * Output format is a comma-separated list of decimal numbers and
542  * ranges.  Consecutively set bits are shown as two hyphen-separated
543  * decimal numbers, the smallest and largest bit numbers set in
544  * the range.  Output format is compatible with the format
545  * accepted as input by bitmap_parselist().
546  *
547  * The return value is the number of characters which would be
548  * generated for the given input, excluding the trailing '\0', as
549  * per ISO C99.
550  */
551 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
552 	const unsigned long *maskp, int nmaskbits)
553 {
554 	int len = 0;
555 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
556 	int cur, rbot, rtop;
557 
558 	if (buflen == 0)
559 		return 0;
560 	buf[0] = 0;
561 
562 	rbot = cur = find_first_bit(maskp, nmaskbits);
563 	while (cur < nmaskbits) {
564 		rtop = cur;
565 		cur = find_next_bit(maskp, nmaskbits, cur+1);
566 		if (cur >= nmaskbits || cur > rtop + 1) {
567 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
568 			rbot = cur;
569 		}
570 	}
571 	return len;
572 }
573 EXPORT_SYMBOL(bitmap_scnlistprintf);
574 
575 /**
576  * __bitmap_parselist - convert list format ASCII string to bitmap
577  * @buf: read nul-terminated user string from this buffer
578  * @buflen: buffer size in bytes.  If string is smaller than this
579  *    then it must be terminated with a \0.
580  * @is_user: location of buffer, 0 indicates kernel space
581  * @maskp: write resulting mask here
582  * @nmaskbits: number of bits in mask to be written
583  *
584  * Input format is a comma-separated list of decimal numbers and
585  * ranges.  Consecutively set bits are shown as two hyphen-separated
586  * decimal numbers, the smallest and largest bit numbers set in
587  * the range.
588  *
589  * Returns 0 on success, -errno on invalid input strings.
590  * Error values:
591  *    %-EINVAL: second number in range smaller than first
592  *    %-EINVAL: invalid character in string
593  *    %-ERANGE: bit number specified too large for mask
594  */
595 static int __bitmap_parselist(const char *buf, unsigned int buflen,
596 		int is_user, unsigned long *maskp,
597 		int nmaskbits)
598 {
599 	unsigned a, b;
600 	int c, old_c, totaldigits;
601 	const char __user __force *ubuf = (const char __user __force *)buf;
602 	int exp_digit, in_range;
603 
604 	totaldigits = c = 0;
605 	bitmap_zero(maskp, nmaskbits);
606 	do {
607 		exp_digit = 1;
608 		in_range = 0;
609 		a = b = 0;
610 
611 		/* Get the next cpu# or a range of cpu#'s */
612 		while (buflen) {
613 			old_c = c;
614 			if (is_user) {
615 				if (__get_user(c, ubuf++))
616 					return -EFAULT;
617 			} else
618 				c = *buf++;
619 			buflen--;
620 			if (isspace(c))
621 				continue;
622 
623 			/*
624 			 * If the last character was a space and the current
625 			 * character isn't '\0', we've got embedded whitespace.
626 			 * This is a no-no, so throw an error.
627 			 */
628 			if (totaldigits && c && isspace(old_c))
629 				return -EINVAL;
630 
631 			/* A '\0' or a ',' signal the end of a cpu# or range */
632 			if (c == '\0' || c == ',')
633 				break;
634 
635 			if (c == '-') {
636 				if (exp_digit || in_range)
637 					return -EINVAL;
638 				b = 0;
639 				in_range = 1;
640 				exp_digit = 1;
641 				continue;
642 			}
643 
644 			if (!isdigit(c))
645 				return -EINVAL;
646 
647 			b = b * 10 + (c - '0');
648 			if (!in_range)
649 				a = b;
650 			exp_digit = 0;
651 			totaldigits++;
652 		}
653 		if (!(a <= b))
654 			return -EINVAL;
655 		if (b >= nmaskbits)
656 			return -ERANGE;
657 		while (a <= b) {
658 			set_bit(a, maskp);
659 			a++;
660 		}
661 	} while (buflen && c == ',');
662 	return 0;
663 }
664 
665 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
666 {
667 	char *nl  = strchr(bp, '\n');
668 	int len;
669 
670 	if (nl)
671 		len = nl - bp;
672 	else
673 		len = strlen(bp);
674 
675 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
676 }
677 EXPORT_SYMBOL(bitmap_parselist);
678 
679 
680 /**
681  * bitmap_parselist_user()
682  *
683  * @ubuf: pointer to user buffer containing string.
684  * @ulen: buffer size in bytes.  If string is smaller than this
685  *    then it must be terminated with a \0.
686  * @maskp: pointer to bitmap array that will contain result.
687  * @nmaskbits: size of bitmap, in bits.
688  *
689  * Wrapper for bitmap_parselist(), providing it with user buffer.
690  *
691  * We cannot have this as an inline function in bitmap.h because it needs
692  * linux/uaccess.h to get the access_ok() declaration and this causes
693  * cyclic dependencies.
694  */
695 int bitmap_parselist_user(const char __user *ubuf,
696 			unsigned int ulen, unsigned long *maskp,
697 			int nmaskbits)
698 {
699 	if (!access_ok(VERIFY_READ, ubuf, ulen))
700 		return -EFAULT;
701 	return __bitmap_parselist((const char __force *)ubuf,
702 					ulen, 1, maskp, nmaskbits);
703 }
704 EXPORT_SYMBOL(bitmap_parselist_user);
705 
706 
707 /**
708  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
709  *	@buf: pointer to a bitmap
710  *	@pos: a bit position in @buf (0 <= @pos < @bits)
711  *	@bits: number of valid bit positions in @buf
712  *
713  * Map the bit at position @pos in @buf (of length @bits) to the
714  * ordinal of which set bit it is.  If it is not set or if @pos
715  * is not a valid bit position, map to -1.
716  *
717  * If for example, just bits 4 through 7 are set in @buf, then @pos
718  * values 4 through 7 will get mapped to 0 through 3, respectively,
719  * and other @pos values will get mapped to 0.  When @pos value 7
720  * gets mapped to (returns) @ord value 3 in this example, that means
721  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
722  *
723  * The bit positions 0 through @bits are valid positions in @buf.
724  */
725 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
726 {
727 	int i, ord;
728 
729 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
730 		return -1;
731 
732 	i = find_first_bit(buf, bits);
733 	ord = 0;
734 	while (i < pos) {
735 		i = find_next_bit(buf, bits, i + 1);
736 	     	ord++;
737 	}
738 	BUG_ON(i != pos);
739 
740 	return ord;
741 }
742 
743 /**
744  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
745  *	@buf: pointer to bitmap
746  *	@ord: ordinal bit position (n-th set bit, n >= 0)
747  *	@bits: number of valid bit positions in @buf
748  *
749  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
750  * Value of @ord should be in range 0 <= @ord < weight(buf), else
751  * results are undefined.
752  *
753  * If for example, just bits 4 through 7 are set in @buf, then @ord
754  * values 0 through 3 will get mapped to 4 through 7, respectively,
755  * and all other @ord values return undefined values.  When @ord value 3
756  * gets mapped to (returns) @pos value 7 in this example, that means
757  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
758  *
759  * The bit positions 0 through @bits are valid positions in @buf.
760  */
761 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
762 {
763 	int pos = 0;
764 
765 	if (ord >= 0 && ord < bits) {
766 		int i;
767 
768 		for (i = find_first_bit(buf, bits);
769 		     i < bits && ord > 0;
770 		     i = find_next_bit(buf, bits, i + 1))
771 	     		ord--;
772 		if (i < bits && ord == 0)
773 			pos = i;
774 	}
775 
776 	return pos;
777 }
778 
779 /**
780  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
781  *	@dst: remapped result
782  *	@src: subset to be remapped
783  *	@old: defines domain of map
784  *	@new: defines range of map
785  *	@bits: number of bits in each of these bitmaps
786  *
787  * Let @old and @new define a mapping of bit positions, such that
788  * whatever position is held by the n-th set bit in @old is mapped
789  * to the n-th set bit in @new.  In the more general case, allowing
790  * for the possibility that the weight 'w' of @new is less than the
791  * weight of @old, map the position of the n-th set bit in @old to
792  * the position of the m-th set bit in @new, where m == n % w.
793  *
794  * If either of the @old and @new bitmaps are empty, or if @src and
795  * @dst point to the same location, then this routine copies @src
796  * to @dst.
797  *
798  * The positions of unset bits in @old are mapped to themselves
799  * (the identify map).
800  *
801  * Apply the above specified mapping to @src, placing the result in
802  * @dst, clearing any bits previously set in @dst.
803  *
804  * For example, lets say that @old has bits 4 through 7 set, and
805  * @new has bits 12 through 15 set.  This defines the mapping of bit
806  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
807  * bit positions unchanged.  So if say @src comes into this routine
808  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
809  * 13 and 15 set.
810  */
811 void bitmap_remap(unsigned long *dst, const unsigned long *src,
812 		const unsigned long *old, const unsigned long *new,
813 		int bits)
814 {
815 	int oldbit, w;
816 
817 	if (dst == src)		/* following doesn't handle inplace remaps */
818 		return;
819 	bitmap_zero(dst, bits);
820 
821 	w = bitmap_weight(new, bits);
822 	for_each_set_bit(oldbit, src, bits) {
823 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
824 
825 		if (n < 0 || w == 0)
826 			set_bit(oldbit, dst);	/* identity map */
827 		else
828 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
829 	}
830 }
831 EXPORT_SYMBOL(bitmap_remap);
832 
833 /**
834  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
835  *	@oldbit: bit position to be mapped
836  *	@old: defines domain of map
837  *	@new: defines range of map
838  *	@bits: number of bits in each of these bitmaps
839  *
840  * Let @old and @new define a mapping of bit positions, such that
841  * whatever position is held by the n-th set bit in @old is mapped
842  * to the n-th set bit in @new.  In the more general case, allowing
843  * for the possibility that the weight 'w' of @new is less than the
844  * weight of @old, map the position of the n-th set bit in @old to
845  * the position of the m-th set bit in @new, where m == n % w.
846  *
847  * The positions of unset bits in @old are mapped to themselves
848  * (the identify map).
849  *
850  * Apply the above specified mapping to bit position @oldbit, returning
851  * the new bit position.
852  *
853  * For example, lets say that @old has bits 4 through 7 set, and
854  * @new has bits 12 through 15 set.  This defines the mapping of bit
855  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
856  * bit positions unchanged.  So if say @oldbit is 5, then this routine
857  * returns 13.
858  */
859 int bitmap_bitremap(int oldbit, const unsigned long *old,
860 				const unsigned long *new, int bits)
861 {
862 	int w = bitmap_weight(new, bits);
863 	int n = bitmap_pos_to_ord(old, oldbit, bits);
864 	if (n < 0 || w == 0)
865 		return oldbit;
866 	else
867 		return bitmap_ord_to_pos(new, n % w, bits);
868 }
869 EXPORT_SYMBOL(bitmap_bitremap);
870 
871 /**
872  * bitmap_onto - translate one bitmap relative to another
873  *	@dst: resulting translated bitmap
874  * 	@orig: original untranslated bitmap
875  * 	@relmap: bitmap relative to which translated
876  *	@bits: number of bits in each of these bitmaps
877  *
878  * Set the n-th bit of @dst iff there exists some m such that the
879  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
880  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
881  * (If you understood the previous sentence the first time your
882  * read it, you're overqualified for your current job.)
883  *
884  * In other words, @orig is mapped onto (surjectively) @dst,
885  * using the the map { <n, m> | the n-th bit of @relmap is the
886  * m-th set bit of @relmap }.
887  *
888  * Any set bits in @orig above bit number W, where W is the
889  * weight of (number of set bits in) @relmap are mapped nowhere.
890  * In particular, if for all bits m set in @orig, m >= W, then
891  * @dst will end up empty.  In situations where the possibility
892  * of such an empty result is not desired, one way to avoid it is
893  * to use the bitmap_fold() operator, below, to first fold the
894  * @orig bitmap over itself so that all its set bits x are in the
895  * range 0 <= x < W.  The bitmap_fold() operator does this by
896  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
897  *
898  * Example [1] for bitmap_onto():
899  *  Let's say @relmap has bits 30-39 set, and @orig has bits
900  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
901  *  @dst will have bits 31, 33, 35, 37 and 39 set.
902  *
903  *  When bit 0 is set in @orig, it means turn on the bit in
904  *  @dst corresponding to whatever is the first bit (if any)
905  *  that is turned on in @relmap.  Since bit 0 was off in the
906  *  above example, we leave off that bit (bit 30) in @dst.
907  *
908  *  When bit 1 is set in @orig (as in the above example), it
909  *  means turn on the bit in @dst corresponding to whatever
910  *  is the second bit that is turned on in @relmap.  The second
911  *  bit in @relmap that was turned on in the above example was
912  *  bit 31, so we turned on bit 31 in @dst.
913  *
914  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
915  *  because they were the 4th, 6th, 8th and 10th set bits
916  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
917  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
918  *
919  *  When bit 11 is set in @orig, it means turn on the bit in
920  *  @dst corresponding to whatever is the twelfth bit that is
921  *  turned on in @relmap.  In the above example, there were
922  *  only ten bits turned on in @relmap (30..39), so that bit
923  *  11 was set in @orig had no affect on @dst.
924  *
925  * Example [2] for bitmap_fold() + bitmap_onto():
926  *  Let's say @relmap has these ten bits set:
927  *		40 41 42 43 45 48 53 61 74 95
928  *  (for the curious, that's 40 plus the first ten terms of the
929  *  Fibonacci sequence.)
930  *
931  *  Further lets say we use the following code, invoking
932  *  bitmap_fold() then bitmap_onto, as suggested above to
933  *  avoid the possitility of an empty @dst result:
934  *
935  *	unsigned long *tmp;	// a temporary bitmap's bits
936  *
937  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
938  *	bitmap_onto(dst, tmp, relmap, bits);
939  *
940  *  Then this table shows what various values of @dst would be, for
941  *  various @orig's.  I list the zero-based positions of each set bit.
942  *  The tmp column shows the intermediate result, as computed by
943  *  using bitmap_fold() to fold the @orig bitmap modulo ten
944  *  (the weight of @relmap).
945  *
946  *      @orig           tmp            @dst
947  *      0                0             40
948  *      1                1             41
949  *      9                9             95
950  *      10               0             40 (*)
951  *      1 3 5 7          1 3 5 7       41 43 48 61
952  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
953  *      0 9 18 27        0 9 8 7       40 61 74 95
954  *      0 10 20 30       0             40
955  *      0 11 22 33       0 1 2 3       40 41 42 43
956  *      0 12 24 36       0 2 4 6       40 42 45 53
957  *      78 102 211       1 2 8         41 42 74 (*)
958  *
959  * (*) For these marked lines, if we hadn't first done bitmap_fold()
960  *     into tmp, then the @dst result would have been empty.
961  *
962  * If either of @orig or @relmap is empty (no set bits), then @dst
963  * will be returned empty.
964  *
965  * If (as explained above) the only set bits in @orig are in positions
966  * m where m >= W, (where W is the weight of @relmap) then @dst will
967  * once again be returned empty.
968  *
969  * All bits in @dst not set by the above rule are cleared.
970  */
971 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
972 			const unsigned long *relmap, int bits)
973 {
974 	int n, m;       	/* same meaning as in above comment */
975 
976 	if (dst == orig)	/* following doesn't handle inplace mappings */
977 		return;
978 	bitmap_zero(dst, bits);
979 
980 	/*
981 	 * The following code is a more efficient, but less
982 	 * obvious, equivalent to the loop:
983 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
984 	 *		n = bitmap_ord_to_pos(orig, m, bits);
985 	 *		if (test_bit(m, orig))
986 	 *			set_bit(n, dst);
987 	 *	}
988 	 */
989 
990 	m = 0;
991 	for_each_set_bit(n, relmap, bits) {
992 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
993 		if (test_bit(m, orig))
994 			set_bit(n, dst);
995 		m++;
996 	}
997 }
998 EXPORT_SYMBOL(bitmap_onto);
999 
1000 /**
1001  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1002  *	@dst: resulting smaller bitmap
1003  *	@orig: original larger bitmap
1004  *	@sz: specified size
1005  *	@bits: number of bits in each of these bitmaps
1006  *
1007  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1008  * Clear all other bits in @dst.  See further the comment and
1009  * Example [2] for bitmap_onto() for why and how to use this.
1010  */
1011 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1012 			int sz, int bits)
1013 {
1014 	int oldbit;
1015 
1016 	if (dst == orig)	/* following doesn't handle inplace mappings */
1017 		return;
1018 	bitmap_zero(dst, bits);
1019 
1020 	for_each_set_bit(oldbit, orig, bits)
1021 		set_bit(oldbit % sz, dst);
1022 }
1023 EXPORT_SYMBOL(bitmap_fold);
1024 
1025 /*
1026  * Common code for bitmap_*_region() routines.
1027  *	bitmap: array of unsigned longs corresponding to the bitmap
1028  *	pos: the beginning of the region
1029  *	order: region size (log base 2 of number of bits)
1030  *	reg_op: operation(s) to perform on that region of bitmap
1031  *
1032  * Can set, verify and/or release a region of bits in a bitmap,
1033  * depending on which combination of REG_OP_* flag bits is set.
1034  *
1035  * A region of a bitmap is a sequence of bits in the bitmap, of
1036  * some size '1 << order' (a power of two), aligned to that same
1037  * '1 << order' power of two.
1038  *
1039  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1040  * Returns 0 in all other cases and reg_ops.
1041  */
1042 
1043 enum {
1044 	REG_OP_ISFREE,		/* true if region is all zero bits */
1045 	REG_OP_ALLOC,		/* set all bits in region */
1046 	REG_OP_RELEASE,		/* clear all bits in region */
1047 };
1048 
1049 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1050 {
1051 	int nbits_reg;		/* number of bits in region */
1052 	int index;		/* index first long of region in bitmap */
1053 	int offset;		/* bit offset region in bitmap[index] */
1054 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1055 	int nbitsinlong;	/* num bits of region in each spanned long */
1056 	unsigned long mask;	/* bitmask for one long of region */
1057 	int i;			/* scans bitmap by longs */
1058 	int ret = 0;		/* return value */
1059 
1060 	/*
1061 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1062 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1063 	 */
1064 	nbits_reg = 1 << order;
1065 	index = pos / BITS_PER_LONG;
1066 	offset = pos - (index * BITS_PER_LONG);
1067 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1068 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1069 
1070 	/*
1071 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1072 	 * overflows if nbitsinlong == BITS_PER_LONG.
1073 	 */
1074 	mask = (1UL << (nbitsinlong - 1));
1075 	mask += mask - 1;
1076 	mask <<= offset;
1077 
1078 	switch (reg_op) {
1079 	case REG_OP_ISFREE:
1080 		for (i = 0; i < nlongs_reg; i++) {
1081 			if (bitmap[index + i] & mask)
1082 				goto done;
1083 		}
1084 		ret = 1;	/* all bits in region free (zero) */
1085 		break;
1086 
1087 	case REG_OP_ALLOC:
1088 		for (i = 0; i < nlongs_reg; i++)
1089 			bitmap[index + i] |= mask;
1090 		break;
1091 
1092 	case REG_OP_RELEASE:
1093 		for (i = 0; i < nlongs_reg; i++)
1094 			bitmap[index + i] &= ~mask;
1095 		break;
1096 	}
1097 done:
1098 	return ret;
1099 }
1100 
1101 /**
1102  * bitmap_find_free_region - find a contiguous aligned mem region
1103  *	@bitmap: array of unsigned longs corresponding to the bitmap
1104  *	@bits: number of bits in the bitmap
1105  *	@order: region size (log base 2 of number of bits) to find
1106  *
1107  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1108  * allocate them (set them to one).  Only consider regions of length
1109  * a power (@order) of two, aligned to that power of two, which
1110  * makes the search algorithm much faster.
1111  *
1112  * Return the bit offset in bitmap of the allocated region,
1113  * or -errno on failure.
1114  */
1115 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1116 {
1117 	int pos, end;		/* scans bitmap by regions of size order */
1118 
1119 	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1120 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1121 			continue;
1122 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1123 		return pos;
1124 	}
1125 	return -ENOMEM;
1126 }
1127 EXPORT_SYMBOL(bitmap_find_free_region);
1128 
1129 /**
1130  * bitmap_release_region - release allocated bitmap region
1131  *	@bitmap: array of unsigned longs corresponding to the bitmap
1132  *	@pos: beginning of bit region to release
1133  *	@order: region size (log base 2 of number of bits) to release
1134  *
1135  * This is the complement to __bitmap_find_free_region() and releases
1136  * the found region (by clearing it in the bitmap).
1137  *
1138  * No return value.
1139  */
1140 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1141 {
1142 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1143 }
1144 EXPORT_SYMBOL(bitmap_release_region);
1145 
1146 /**
1147  * bitmap_allocate_region - allocate bitmap region
1148  *	@bitmap: array of unsigned longs corresponding to the bitmap
1149  *	@pos: beginning of bit region to allocate
1150  *	@order: region size (log base 2 of number of bits) to allocate
1151  *
1152  * Allocate (set bits in) a specified region of a bitmap.
1153  *
1154  * Return 0 on success, or %-EBUSY if specified region wasn't
1155  * free (not all bits were zero).
1156  */
1157 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1158 {
1159 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1160 		return -EBUSY;
1161 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL(bitmap_allocate_region);
1165 
1166 /**
1167  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1168  * @dst:   destination buffer
1169  * @src:   bitmap to copy
1170  * @nbits: number of bits in the bitmap
1171  *
1172  * Require nbits % BITS_PER_LONG == 0.
1173  */
1174 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1175 {
1176 	unsigned long *d = dst;
1177 	int i;
1178 
1179 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1180 		if (BITS_PER_LONG == 64)
1181 			d[i] = cpu_to_le64(src[i]);
1182 		else
1183 			d[i] = cpu_to_le32(src[i]);
1184 	}
1185 }
1186 EXPORT_SYMBOL(bitmap_copy_le);
1187