xref: /openbmc/linux/lib/bitmap.c (revision 5f2fb52fac15a8a8e10ce020dd532504a8abfc4e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/page.h>
20 
21 #include "kstrtox.h"
22 
23 /**
24  * DOC: bitmap introduction
25  *
26  * bitmaps provide an array of bits, implemented using an an
27  * array of unsigned longs.  The number of valid bits in a
28  * given bitmap does _not_ need to be an exact multiple of
29  * BITS_PER_LONG.
30  *
31  * The possible unused bits in the last, partially used word
32  * of a bitmap are 'don't care'.  The implementation makes
33  * no particular effort to keep them zero.  It ensures that
34  * their value will not affect the results of any operation.
35  * The bitmap operations that return Boolean (bitmap_empty,
36  * for example) or scalar (bitmap_weight, for example) results
37  * carefully filter out these unused bits from impacting their
38  * results.
39  *
40  * The byte ordering of bitmaps is more natural on little
41  * endian architectures.  See the big-endian headers
42  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43  * for the best explanations of this ordering.
44  */
45 
46 int __bitmap_equal(const unsigned long *bitmap1,
47 		const unsigned long *bitmap2, unsigned int bits)
48 {
49 	unsigned int k, lim = bits/BITS_PER_LONG;
50 	for (k = 0; k < lim; ++k)
51 		if (bitmap1[k] != bitmap2[k])
52 			return 0;
53 
54 	if (bits % BITS_PER_LONG)
55 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 			return 0;
57 
58 	return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61 
62 bool __bitmap_or_equal(const unsigned long *bitmap1,
63 		       const unsigned long *bitmap2,
64 		       const unsigned long *bitmap3,
65 		       unsigned int bits)
66 {
67 	unsigned int k, lim = bits / BITS_PER_LONG;
68 	unsigned long tmp;
69 
70 	for (k = 0; k < lim; ++k) {
71 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 			return false;
73 	}
74 
75 	if (!(bits % BITS_PER_LONG))
76 		return true;
77 
78 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80 }
81 
82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
83 {
84 	unsigned int k, lim = BITS_TO_LONGS(bits);
85 	for (k = 0; k < lim; ++k)
86 		dst[k] = ~src[k];
87 }
88 EXPORT_SYMBOL(__bitmap_complement);
89 
90 /**
91  * __bitmap_shift_right - logical right shift of the bits in a bitmap
92  *   @dst : destination bitmap
93  *   @src : source bitmap
94  *   @shift : shift by this many bits
95  *   @nbits : bitmap size, in bits
96  *
97  * Shifting right (dividing) means moving bits in the MS -> LS bit
98  * direction.  Zeros are fed into the vacated MS positions and the
99  * LS bits shifted off the bottom are lost.
100  */
101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 			unsigned shift, unsigned nbits)
103 {
104 	unsigned k, lim = BITS_TO_LONGS(nbits);
105 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
107 	for (k = 0; off + k < lim; ++k) {
108 		unsigned long upper, lower;
109 
110 		/*
111 		 * If shift is not word aligned, take lower rem bits of
112 		 * word above and make them the top rem bits of result.
113 		 */
114 		if (!rem || off + k + 1 >= lim)
115 			upper = 0;
116 		else {
117 			upper = src[off + k + 1];
118 			if (off + k + 1 == lim - 1)
119 				upper &= mask;
120 			upper <<= (BITS_PER_LONG - rem);
121 		}
122 		lower = src[off + k];
123 		if (off + k == lim - 1)
124 			lower &= mask;
125 		lower >>= rem;
126 		dst[k] = lower | upper;
127 	}
128 	if (off)
129 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130 }
131 EXPORT_SYMBOL(__bitmap_shift_right);
132 
133 
134 /**
135  * __bitmap_shift_left - logical left shift of the bits in a bitmap
136  *   @dst : destination bitmap
137  *   @src : source bitmap
138  *   @shift : shift by this many bits
139  *   @nbits : bitmap size, in bits
140  *
141  * Shifting left (multiplying) means moving bits in the LS -> MS
142  * direction.  Zeros are fed into the vacated LS bit positions
143  * and those MS bits shifted off the top are lost.
144  */
145 
146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 			unsigned int shift, unsigned int nbits)
148 {
149 	int k;
150 	unsigned int lim = BITS_TO_LONGS(nbits);
151 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
152 	for (k = lim - off - 1; k >= 0; --k) {
153 		unsigned long upper, lower;
154 
155 		/*
156 		 * If shift is not word aligned, take upper rem bits of
157 		 * word below and make them the bottom rem bits of result.
158 		 */
159 		if (rem && k > 0)
160 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
161 		else
162 			lower = 0;
163 		upper = src[k] << rem;
164 		dst[k + off] = lower | upper;
165 	}
166 	if (off)
167 		memset(dst, 0, off*sizeof(unsigned long));
168 }
169 EXPORT_SYMBOL(__bitmap_shift_left);
170 
171 /**
172  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173  * @dst: destination bitmap, might overlap with src
174  * @src: source bitmap
175  * @first: start bit of region to be removed
176  * @cut: number of bits to remove
177  * @nbits: bitmap size, in bits
178  *
179  * Set the n-th bit of @dst iff the n-th bit of @src is set and
180  * n is less than @first, or the m-th bit of @src is set for any
181  * m such that @first <= n < nbits, and m = n + @cut.
182  *
183  * In pictures, example for a big-endian 32-bit architecture:
184  *
185  * @src:
186  * 31                                   63
187  * |                                    |
188  * 10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
189  *                 |  |              |                                    |
190  *                16  14             0                                   32
191  *
192  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:
193  *
194  * 31                                   63
195  * |                                    |
196  * 10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
197  *                    |              |                                    |
198  *                    14 (bit 17     0                                   32
199  *                        from @src)
200  *
201  * Note that @dst and @src might overlap partially or entirely.
202  *
203  * This is implemented in the obvious way, with a shift and carry
204  * step for each moved bit. Optimisation is left as an exercise
205  * for the compiler.
206  */
207 void bitmap_cut(unsigned long *dst, const unsigned long *src,
208 		unsigned int first, unsigned int cut, unsigned int nbits)
209 {
210 	unsigned int len = BITS_TO_LONGS(nbits);
211 	unsigned long keep = 0, carry;
212 	int i;
213 
214 	memmove(dst, src, len * sizeof(*dst));
215 
216 	if (first % BITS_PER_LONG) {
217 		keep = src[first / BITS_PER_LONG] &
218 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
219 	}
220 
221 	while (cut--) {
222 		for (i = first / BITS_PER_LONG; i < len; i++) {
223 			if (i < len - 1)
224 				carry = dst[i + 1] & 1UL;
225 			else
226 				carry = 0;
227 
228 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
229 		}
230 	}
231 
232 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
233 	dst[first / BITS_PER_LONG] |= keep;
234 }
235 EXPORT_SYMBOL(bitmap_cut);
236 
237 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
238 				const unsigned long *bitmap2, unsigned int bits)
239 {
240 	unsigned int k;
241 	unsigned int lim = bits/BITS_PER_LONG;
242 	unsigned long result = 0;
243 
244 	for (k = 0; k < lim; k++)
245 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
246 	if (bits % BITS_PER_LONG)
247 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
248 			   BITMAP_LAST_WORD_MASK(bits));
249 	return result != 0;
250 }
251 EXPORT_SYMBOL(__bitmap_and);
252 
253 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
254 				const unsigned long *bitmap2, unsigned int bits)
255 {
256 	unsigned int k;
257 	unsigned int nr = BITS_TO_LONGS(bits);
258 
259 	for (k = 0; k < nr; k++)
260 		dst[k] = bitmap1[k] | bitmap2[k];
261 }
262 EXPORT_SYMBOL(__bitmap_or);
263 
264 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
265 				const unsigned long *bitmap2, unsigned int bits)
266 {
267 	unsigned int k;
268 	unsigned int nr = BITS_TO_LONGS(bits);
269 
270 	for (k = 0; k < nr; k++)
271 		dst[k] = bitmap1[k] ^ bitmap2[k];
272 }
273 EXPORT_SYMBOL(__bitmap_xor);
274 
275 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
276 				const unsigned long *bitmap2, unsigned int bits)
277 {
278 	unsigned int k;
279 	unsigned int lim = bits/BITS_PER_LONG;
280 	unsigned long result = 0;
281 
282 	for (k = 0; k < lim; k++)
283 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
284 	if (bits % BITS_PER_LONG)
285 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
286 			   BITMAP_LAST_WORD_MASK(bits));
287 	return result != 0;
288 }
289 EXPORT_SYMBOL(__bitmap_andnot);
290 
291 void __bitmap_replace(unsigned long *dst,
292 		      const unsigned long *old, const unsigned long *new,
293 		      const unsigned long *mask, unsigned int nbits)
294 {
295 	unsigned int k;
296 	unsigned int nr = BITS_TO_LONGS(nbits);
297 
298 	for (k = 0; k < nr; k++)
299 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
300 }
301 EXPORT_SYMBOL(__bitmap_replace);
302 
303 int __bitmap_intersects(const unsigned long *bitmap1,
304 			const unsigned long *bitmap2, unsigned int bits)
305 {
306 	unsigned int k, lim = bits/BITS_PER_LONG;
307 	for (k = 0; k < lim; ++k)
308 		if (bitmap1[k] & bitmap2[k])
309 			return 1;
310 
311 	if (bits % BITS_PER_LONG)
312 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
313 			return 1;
314 	return 0;
315 }
316 EXPORT_SYMBOL(__bitmap_intersects);
317 
318 int __bitmap_subset(const unsigned long *bitmap1,
319 		    const unsigned long *bitmap2, unsigned int bits)
320 {
321 	unsigned int k, lim = bits/BITS_PER_LONG;
322 	for (k = 0; k < lim; ++k)
323 		if (bitmap1[k] & ~bitmap2[k])
324 			return 0;
325 
326 	if (bits % BITS_PER_LONG)
327 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
328 			return 0;
329 	return 1;
330 }
331 EXPORT_SYMBOL(__bitmap_subset);
332 
333 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
334 {
335 	unsigned int k, lim = bits/BITS_PER_LONG;
336 	int w = 0;
337 
338 	for (k = 0; k < lim; k++)
339 		w += hweight_long(bitmap[k]);
340 
341 	if (bits % BITS_PER_LONG)
342 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
343 
344 	return w;
345 }
346 EXPORT_SYMBOL(__bitmap_weight);
347 
348 void __bitmap_set(unsigned long *map, unsigned int start, int len)
349 {
350 	unsigned long *p = map + BIT_WORD(start);
351 	const unsigned int size = start + len;
352 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
353 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
354 
355 	while (len - bits_to_set >= 0) {
356 		*p |= mask_to_set;
357 		len -= bits_to_set;
358 		bits_to_set = BITS_PER_LONG;
359 		mask_to_set = ~0UL;
360 		p++;
361 	}
362 	if (len) {
363 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
364 		*p |= mask_to_set;
365 	}
366 }
367 EXPORT_SYMBOL(__bitmap_set);
368 
369 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
370 {
371 	unsigned long *p = map + BIT_WORD(start);
372 	const unsigned int size = start + len;
373 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
374 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
375 
376 	while (len - bits_to_clear >= 0) {
377 		*p &= ~mask_to_clear;
378 		len -= bits_to_clear;
379 		bits_to_clear = BITS_PER_LONG;
380 		mask_to_clear = ~0UL;
381 		p++;
382 	}
383 	if (len) {
384 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
385 		*p &= ~mask_to_clear;
386 	}
387 }
388 EXPORT_SYMBOL(__bitmap_clear);
389 
390 /**
391  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
392  * @map: The address to base the search on
393  * @size: The bitmap size in bits
394  * @start: The bitnumber to start searching at
395  * @nr: The number of zeroed bits we're looking for
396  * @align_mask: Alignment mask for zero area
397  * @align_offset: Alignment offset for zero area.
398  *
399  * The @align_mask should be one less than a power of 2; the effect is that
400  * the bit offset of all zero areas this function finds plus @align_offset
401  * is multiple of that power of 2.
402  */
403 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
404 					     unsigned long size,
405 					     unsigned long start,
406 					     unsigned int nr,
407 					     unsigned long align_mask,
408 					     unsigned long align_offset)
409 {
410 	unsigned long index, end, i;
411 again:
412 	index = find_next_zero_bit(map, size, start);
413 
414 	/* Align allocation */
415 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
416 
417 	end = index + nr;
418 	if (end > size)
419 		return end;
420 	i = find_next_bit(map, end, index);
421 	if (i < end) {
422 		start = i + 1;
423 		goto again;
424 	}
425 	return index;
426 }
427 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
428 
429 /*
430  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
431  * second version by Paul Jackson, third by Joe Korty.
432  */
433 
434 #define CHUNKSZ				32
435 #define nbits_to_hold_value(val)	fls(val)
436 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
437 
438 /**
439  * __bitmap_parse - convert an ASCII hex string into a bitmap.
440  * @buf: pointer to buffer containing string.
441  * @buflen: buffer size in bytes.  If string is smaller than this
442  *    then it must be terminated with a \0.
443  * @is_user: location of buffer, 0 indicates kernel space
444  * @maskp: pointer to bitmap array that will contain result.
445  * @nmaskbits: size of bitmap, in bits.
446  *
447  * Commas group hex digits into chunks.  Each chunk defines exactly 32
448  * bits of the resultant bitmask.  No chunk may specify a value larger
449  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
450  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
451  * characters and for grouping errors such as "1,,5", ",44", "," and "".
452  * Leading and trailing whitespace accepted, but not embedded whitespace.
453  */
454 int __bitmap_parse(const char *buf, unsigned int buflen,
455 		int is_user, unsigned long *maskp,
456 		int nmaskbits)
457 {
458 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
459 	u32 chunk;
460 	const char __user __force *ubuf = (const char __user __force *)buf;
461 
462 	bitmap_zero(maskp, nmaskbits);
463 
464 	nchunks = nbits = totaldigits = c = 0;
465 	do {
466 		chunk = 0;
467 		ndigits = totaldigits;
468 
469 		/* Get the next chunk of the bitmap */
470 		while (buflen) {
471 			old_c = c;
472 			if (is_user) {
473 				if (__get_user(c, ubuf++))
474 					return -EFAULT;
475 			}
476 			else
477 				c = *buf++;
478 			buflen--;
479 			if (isspace(c))
480 				continue;
481 
482 			/*
483 			 * If the last character was a space and the current
484 			 * character isn't '\0', we've got embedded whitespace.
485 			 * This is a no-no, so throw an error.
486 			 */
487 			if (totaldigits && c && isspace(old_c))
488 				return -EINVAL;
489 
490 			/* A '\0' or a ',' signal the end of the chunk */
491 			if (c == '\0' || c == ',')
492 				break;
493 
494 			if (!isxdigit(c))
495 				return -EINVAL;
496 
497 			/*
498 			 * Make sure there are at least 4 free bits in 'chunk'.
499 			 * If not, this hexdigit will overflow 'chunk', so
500 			 * throw an error.
501 			 */
502 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
503 				return -EOVERFLOW;
504 
505 			chunk = (chunk << 4) | hex_to_bin(c);
506 			totaldigits++;
507 		}
508 		if (ndigits == totaldigits)
509 			return -EINVAL;
510 		if (nchunks == 0 && chunk == 0)
511 			continue;
512 
513 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
514 		*maskp |= chunk;
515 		nchunks++;
516 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
517 		if (nbits > nmaskbits)
518 			return -EOVERFLOW;
519 	} while (buflen && c == ',');
520 
521 	return 0;
522 }
523 EXPORT_SYMBOL(__bitmap_parse);
524 
525 /**
526  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
527  *
528  * @ubuf: pointer to user buffer containing string.
529  * @ulen: buffer size in bytes.  If string is smaller than this
530  *    then it must be terminated with a \0.
531  * @maskp: pointer to bitmap array that will contain result.
532  * @nmaskbits: size of bitmap, in bits.
533  *
534  * Wrapper for __bitmap_parse(), providing it with user buffer.
535  *
536  * We cannot have this as an inline function in bitmap.h because it needs
537  * linux/uaccess.h to get the access_ok() declaration and this causes
538  * cyclic dependencies.
539  */
540 int bitmap_parse_user(const char __user *ubuf,
541 			unsigned int ulen, unsigned long *maskp,
542 			int nmaskbits)
543 {
544 	if (!access_ok(ubuf, ulen))
545 		return -EFAULT;
546 	return __bitmap_parse((const char __force *)ubuf,
547 				ulen, 1, maskp, nmaskbits);
548 
549 }
550 EXPORT_SYMBOL(bitmap_parse_user);
551 
552 /**
553  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
554  * @list: indicates whether the bitmap must be list
555  * @buf: page aligned buffer into which string is placed
556  * @maskp: pointer to bitmap to convert
557  * @nmaskbits: size of bitmap, in bits
558  *
559  * Output format is a comma-separated list of decimal numbers and
560  * ranges if list is specified or hex digits grouped into comma-separated
561  * sets of 8 digits/set. Returns the number of characters written to buf.
562  *
563  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
564  * area and that sufficient storage remains at @buf to accommodate the
565  * bitmap_print_to_pagebuf() output. Returns the number of characters
566  * actually printed to @buf, excluding terminating '\0'.
567  */
568 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
569 			    int nmaskbits)
570 {
571 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
572 
573 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
574 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
575 }
576 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
577 
578 /*
579  * Region 9-38:4/10 describes the following bitmap structure:
580  * 0	   9  12    18			38
581  * .........****......****......****......
582  *	    ^  ^     ^			 ^
583  *      start  off   group_len	       end
584  */
585 struct region {
586 	unsigned int start;
587 	unsigned int off;
588 	unsigned int group_len;
589 	unsigned int end;
590 };
591 
592 static int bitmap_set_region(const struct region *r,
593 				unsigned long *bitmap, int nbits)
594 {
595 	unsigned int start;
596 
597 	if (r->end >= nbits)
598 		return -ERANGE;
599 
600 	for (start = r->start; start <= r->end; start += r->group_len)
601 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
602 
603 	return 0;
604 }
605 
606 static int bitmap_check_region(const struct region *r)
607 {
608 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
609 		return -EINVAL;
610 
611 	return 0;
612 }
613 
614 static const char *bitmap_getnum(const char *str, unsigned int *num)
615 {
616 	unsigned long long n;
617 	unsigned int len;
618 
619 	len = _parse_integer(str, 10, &n);
620 	if (!len)
621 		return ERR_PTR(-EINVAL);
622 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
623 		return ERR_PTR(-EOVERFLOW);
624 
625 	*num = n;
626 	return str + len;
627 }
628 
629 static inline bool end_of_str(char c)
630 {
631 	return c == '\0' || c == '\n';
632 }
633 
634 static inline bool __end_of_region(char c)
635 {
636 	return isspace(c) || c == ',';
637 }
638 
639 static inline bool end_of_region(char c)
640 {
641 	return __end_of_region(c) || end_of_str(c);
642 }
643 
644 /*
645  * The format allows commas and whitespases at the beginning
646  * of the region.
647  */
648 static const char *bitmap_find_region(const char *str)
649 {
650 	while (__end_of_region(*str))
651 		str++;
652 
653 	return end_of_str(*str) ? NULL : str;
654 }
655 
656 static const char *bitmap_parse_region(const char *str, struct region *r)
657 {
658 	str = bitmap_getnum(str, &r->start);
659 	if (IS_ERR(str))
660 		return str;
661 
662 	if (end_of_region(*str))
663 		goto no_end;
664 
665 	if (*str != '-')
666 		return ERR_PTR(-EINVAL);
667 
668 	str = bitmap_getnum(str + 1, &r->end);
669 	if (IS_ERR(str))
670 		return str;
671 
672 	if (end_of_region(*str))
673 		goto no_pattern;
674 
675 	if (*str != ':')
676 		return ERR_PTR(-EINVAL);
677 
678 	str = bitmap_getnum(str + 1, &r->off);
679 	if (IS_ERR(str))
680 		return str;
681 
682 	if (*str != '/')
683 		return ERR_PTR(-EINVAL);
684 
685 	return bitmap_getnum(str + 1, &r->group_len);
686 
687 no_end:
688 	r->end = r->start;
689 no_pattern:
690 	r->off = r->end + 1;
691 	r->group_len = r->end + 1;
692 
693 	return end_of_str(*str) ? NULL : str;
694 }
695 
696 /**
697  * bitmap_parselist - convert list format ASCII string to bitmap
698  * @buf: read user string from this buffer; must be terminated
699  *    with a \0 or \n.
700  * @maskp: write resulting mask here
701  * @nmaskbits: number of bits in mask to be written
702  *
703  * Input format is a comma-separated list of decimal numbers and
704  * ranges.  Consecutively set bits are shown as two hyphen-separated
705  * decimal numbers, the smallest and largest bit numbers set in
706  * the range.
707  * Optionally each range can be postfixed to denote that only parts of it
708  * should be set. The range will divided to groups of specific size.
709  * From each group will be used only defined amount of bits.
710  * Syntax: range:used_size/group_size
711  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
712  *
713  * Returns: 0 on success, -errno on invalid input strings. Error values:
714  *
715  *   - ``-EINVAL``: wrong region format
716  *   - ``-EINVAL``: invalid character in string
717  *   - ``-ERANGE``: bit number specified too large for mask
718  *   - ``-EOVERFLOW``: integer overflow in the input parameters
719  */
720 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
721 {
722 	struct region r;
723 	long ret;
724 
725 	bitmap_zero(maskp, nmaskbits);
726 
727 	while (buf) {
728 		buf = bitmap_find_region(buf);
729 		if (buf == NULL)
730 			return 0;
731 
732 		buf = bitmap_parse_region(buf, &r);
733 		if (IS_ERR(buf))
734 			return PTR_ERR(buf);
735 
736 		ret = bitmap_check_region(&r);
737 		if (ret)
738 			return ret;
739 
740 		ret = bitmap_set_region(&r, maskp, nmaskbits);
741 		if (ret)
742 			return ret;
743 	}
744 
745 	return 0;
746 }
747 EXPORT_SYMBOL(bitmap_parselist);
748 
749 
750 /**
751  * bitmap_parselist_user()
752  *
753  * @ubuf: pointer to user buffer containing string.
754  * @ulen: buffer size in bytes.  If string is smaller than this
755  *    then it must be terminated with a \0.
756  * @maskp: pointer to bitmap array that will contain result.
757  * @nmaskbits: size of bitmap, in bits.
758  *
759  * Wrapper for bitmap_parselist(), providing it with user buffer.
760  */
761 int bitmap_parselist_user(const char __user *ubuf,
762 			unsigned int ulen, unsigned long *maskp,
763 			int nmaskbits)
764 {
765 	char *buf;
766 	int ret;
767 
768 	buf = memdup_user_nul(ubuf, ulen);
769 	if (IS_ERR(buf))
770 		return PTR_ERR(buf);
771 
772 	ret = bitmap_parselist(buf, maskp, nmaskbits);
773 
774 	kfree(buf);
775 	return ret;
776 }
777 EXPORT_SYMBOL(bitmap_parselist_user);
778 
779 
780 #ifdef CONFIG_NUMA
781 /**
782  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
783  *	@buf: pointer to a bitmap
784  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
785  *	@nbits: number of valid bit positions in @buf
786  *
787  * Map the bit at position @pos in @buf (of length @nbits) to the
788  * ordinal of which set bit it is.  If it is not set or if @pos
789  * is not a valid bit position, map to -1.
790  *
791  * If for example, just bits 4 through 7 are set in @buf, then @pos
792  * values 4 through 7 will get mapped to 0 through 3, respectively,
793  * and other @pos values will get mapped to -1.  When @pos value 7
794  * gets mapped to (returns) @ord value 3 in this example, that means
795  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
796  *
797  * The bit positions 0 through @bits are valid positions in @buf.
798  */
799 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
800 {
801 	if (pos >= nbits || !test_bit(pos, buf))
802 		return -1;
803 
804 	return __bitmap_weight(buf, pos);
805 }
806 
807 /**
808  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
809  *	@buf: pointer to bitmap
810  *	@ord: ordinal bit position (n-th set bit, n >= 0)
811  *	@nbits: number of valid bit positions in @buf
812  *
813  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
814  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
815  * >= weight(buf), returns @nbits.
816  *
817  * If for example, just bits 4 through 7 are set in @buf, then @ord
818  * values 0 through 3 will get mapped to 4 through 7, respectively,
819  * and all other @ord values returns @nbits.  When @ord value 3
820  * gets mapped to (returns) @pos value 7 in this example, that means
821  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
822  *
823  * The bit positions 0 through @nbits-1 are valid positions in @buf.
824  */
825 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
826 {
827 	unsigned int pos;
828 
829 	for (pos = find_first_bit(buf, nbits);
830 	     pos < nbits && ord;
831 	     pos = find_next_bit(buf, nbits, pos + 1))
832 		ord--;
833 
834 	return pos;
835 }
836 
837 /**
838  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
839  *	@dst: remapped result
840  *	@src: subset to be remapped
841  *	@old: defines domain of map
842  *	@new: defines range of map
843  *	@nbits: number of bits in each of these bitmaps
844  *
845  * Let @old and @new define a mapping of bit positions, such that
846  * whatever position is held by the n-th set bit in @old is mapped
847  * to the n-th set bit in @new.  In the more general case, allowing
848  * for the possibility that the weight 'w' of @new is less than the
849  * weight of @old, map the position of the n-th set bit in @old to
850  * the position of the m-th set bit in @new, where m == n % w.
851  *
852  * If either of the @old and @new bitmaps are empty, or if @src and
853  * @dst point to the same location, then this routine copies @src
854  * to @dst.
855  *
856  * The positions of unset bits in @old are mapped to themselves
857  * (the identify map).
858  *
859  * Apply the above specified mapping to @src, placing the result in
860  * @dst, clearing any bits previously set in @dst.
861  *
862  * For example, lets say that @old has bits 4 through 7 set, and
863  * @new has bits 12 through 15 set.  This defines the mapping of bit
864  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
865  * bit positions unchanged.  So if say @src comes into this routine
866  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
867  * 13 and 15 set.
868  */
869 void bitmap_remap(unsigned long *dst, const unsigned long *src,
870 		const unsigned long *old, const unsigned long *new,
871 		unsigned int nbits)
872 {
873 	unsigned int oldbit, w;
874 
875 	if (dst == src)		/* following doesn't handle inplace remaps */
876 		return;
877 	bitmap_zero(dst, nbits);
878 
879 	w = bitmap_weight(new, nbits);
880 	for_each_set_bit(oldbit, src, nbits) {
881 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
882 
883 		if (n < 0 || w == 0)
884 			set_bit(oldbit, dst);	/* identity map */
885 		else
886 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
887 	}
888 }
889 
890 /**
891  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
892  *	@oldbit: bit position to be mapped
893  *	@old: defines domain of map
894  *	@new: defines range of map
895  *	@bits: number of bits in each of these bitmaps
896  *
897  * Let @old and @new define a mapping of bit positions, such that
898  * whatever position is held by the n-th set bit in @old is mapped
899  * to the n-th set bit in @new.  In the more general case, allowing
900  * for the possibility that the weight 'w' of @new is less than the
901  * weight of @old, map the position of the n-th set bit in @old to
902  * the position of the m-th set bit in @new, where m == n % w.
903  *
904  * The positions of unset bits in @old are mapped to themselves
905  * (the identify map).
906  *
907  * Apply the above specified mapping to bit position @oldbit, returning
908  * the new bit position.
909  *
910  * For example, lets say that @old has bits 4 through 7 set, and
911  * @new has bits 12 through 15 set.  This defines the mapping of bit
912  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
913  * bit positions unchanged.  So if say @oldbit is 5, then this routine
914  * returns 13.
915  */
916 int bitmap_bitremap(int oldbit, const unsigned long *old,
917 				const unsigned long *new, int bits)
918 {
919 	int w = bitmap_weight(new, bits);
920 	int n = bitmap_pos_to_ord(old, oldbit, bits);
921 	if (n < 0 || w == 0)
922 		return oldbit;
923 	else
924 		return bitmap_ord_to_pos(new, n % w, bits);
925 }
926 
927 /**
928  * bitmap_onto - translate one bitmap relative to another
929  *	@dst: resulting translated bitmap
930  * 	@orig: original untranslated bitmap
931  * 	@relmap: bitmap relative to which translated
932  *	@bits: number of bits in each of these bitmaps
933  *
934  * Set the n-th bit of @dst iff there exists some m such that the
935  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
936  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
937  * (If you understood the previous sentence the first time your
938  * read it, you're overqualified for your current job.)
939  *
940  * In other words, @orig is mapped onto (surjectively) @dst,
941  * using the map { <n, m> | the n-th bit of @relmap is the
942  * m-th set bit of @relmap }.
943  *
944  * Any set bits in @orig above bit number W, where W is the
945  * weight of (number of set bits in) @relmap are mapped nowhere.
946  * In particular, if for all bits m set in @orig, m >= W, then
947  * @dst will end up empty.  In situations where the possibility
948  * of such an empty result is not desired, one way to avoid it is
949  * to use the bitmap_fold() operator, below, to first fold the
950  * @orig bitmap over itself so that all its set bits x are in the
951  * range 0 <= x < W.  The bitmap_fold() operator does this by
952  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
953  *
954  * Example [1] for bitmap_onto():
955  *  Let's say @relmap has bits 30-39 set, and @orig has bits
956  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
957  *  @dst will have bits 31, 33, 35, 37 and 39 set.
958  *
959  *  When bit 0 is set in @orig, it means turn on the bit in
960  *  @dst corresponding to whatever is the first bit (if any)
961  *  that is turned on in @relmap.  Since bit 0 was off in the
962  *  above example, we leave off that bit (bit 30) in @dst.
963  *
964  *  When bit 1 is set in @orig (as in the above example), it
965  *  means turn on the bit in @dst corresponding to whatever
966  *  is the second bit that is turned on in @relmap.  The second
967  *  bit in @relmap that was turned on in the above example was
968  *  bit 31, so we turned on bit 31 in @dst.
969  *
970  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
971  *  because they were the 4th, 6th, 8th and 10th set bits
972  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
973  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
974  *
975  *  When bit 11 is set in @orig, it means turn on the bit in
976  *  @dst corresponding to whatever is the twelfth bit that is
977  *  turned on in @relmap.  In the above example, there were
978  *  only ten bits turned on in @relmap (30..39), so that bit
979  *  11 was set in @orig had no affect on @dst.
980  *
981  * Example [2] for bitmap_fold() + bitmap_onto():
982  *  Let's say @relmap has these ten bits set::
983  *
984  *		40 41 42 43 45 48 53 61 74 95
985  *
986  *  (for the curious, that's 40 plus the first ten terms of the
987  *  Fibonacci sequence.)
988  *
989  *  Further lets say we use the following code, invoking
990  *  bitmap_fold() then bitmap_onto, as suggested above to
991  *  avoid the possibility of an empty @dst result::
992  *
993  *	unsigned long *tmp;	// a temporary bitmap's bits
994  *
995  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
996  *	bitmap_onto(dst, tmp, relmap, bits);
997  *
998  *  Then this table shows what various values of @dst would be, for
999  *  various @orig's.  I list the zero-based positions of each set bit.
1000  *  The tmp column shows the intermediate result, as computed by
1001  *  using bitmap_fold() to fold the @orig bitmap modulo ten
1002  *  (the weight of @relmap):
1003  *
1004  *      =============== ============== =================
1005  *      @orig           tmp            @dst
1006  *      0                0             40
1007  *      1                1             41
1008  *      9                9             95
1009  *      10               0             40 [#f1]_
1010  *      1 3 5 7          1 3 5 7       41 43 48 61
1011  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1012  *      0 9 18 27        0 9 8 7       40 61 74 95
1013  *      0 10 20 30       0             40
1014  *      0 11 22 33       0 1 2 3       40 41 42 43
1015  *      0 12 24 36       0 2 4 6       40 42 45 53
1016  *      78 102 211       1 2 8         41 42 74 [#f1]_
1017  *      =============== ============== =================
1018  *
1019  * .. [#f1]
1020  *
1021  *     For these marked lines, if we hadn't first done bitmap_fold()
1022  *     into tmp, then the @dst result would have been empty.
1023  *
1024  * If either of @orig or @relmap is empty (no set bits), then @dst
1025  * will be returned empty.
1026  *
1027  * If (as explained above) the only set bits in @orig are in positions
1028  * m where m >= W, (where W is the weight of @relmap) then @dst will
1029  * once again be returned empty.
1030  *
1031  * All bits in @dst not set by the above rule are cleared.
1032  */
1033 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1034 			const unsigned long *relmap, unsigned int bits)
1035 {
1036 	unsigned int n, m;	/* same meaning as in above comment */
1037 
1038 	if (dst == orig)	/* following doesn't handle inplace mappings */
1039 		return;
1040 	bitmap_zero(dst, bits);
1041 
1042 	/*
1043 	 * The following code is a more efficient, but less
1044 	 * obvious, equivalent to the loop:
1045 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1046 	 *		n = bitmap_ord_to_pos(orig, m, bits);
1047 	 *		if (test_bit(m, orig))
1048 	 *			set_bit(n, dst);
1049 	 *	}
1050 	 */
1051 
1052 	m = 0;
1053 	for_each_set_bit(n, relmap, bits) {
1054 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1055 		if (test_bit(m, orig))
1056 			set_bit(n, dst);
1057 		m++;
1058 	}
1059 }
1060 
1061 /**
1062  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1063  *	@dst: resulting smaller bitmap
1064  *	@orig: original larger bitmap
1065  *	@sz: specified size
1066  *	@nbits: number of bits in each of these bitmaps
1067  *
1068  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1069  * Clear all other bits in @dst.  See further the comment and
1070  * Example [2] for bitmap_onto() for why and how to use this.
1071  */
1072 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1073 			unsigned int sz, unsigned int nbits)
1074 {
1075 	unsigned int oldbit;
1076 
1077 	if (dst == orig)	/* following doesn't handle inplace mappings */
1078 		return;
1079 	bitmap_zero(dst, nbits);
1080 
1081 	for_each_set_bit(oldbit, orig, nbits)
1082 		set_bit(oldbit % sz, dst);
1083 }
1084 #endif /* CONFIG_NUMA */
1085 
1086 /*
1087  * Common code for bitmap_*_region() routines.
1088  *	bitmap: array of unsigned longs corresponding to the bitmap
1089  *	pos: the beginning of the region
1090  *	order: region size (log base 2 of number of bits)
1091  *	reg_op: operation(s) to perform on that region of bitmap
1092  *
1093  * Can set, verify and/or release a region of bits in a bitmap,
1094  * depending on which combination of REG_OP_* flag bits is set.
1095  *
1096  * A region of a bitmap is a sequence of bits in the bitmap, of
1097  * some size '1 << order' (a power of two), aligned to that same
1098  * '1 << order' power of two.
1099  *
1100  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1101  * Returns 0 in all other cases and reg_ops.
1102  */
1103 
1104 enum {
1105 	REG_OP_ISFREE,		/* true if region is all zero bits */
1106 	REG_OP_ALLOC,		/* set all bits in region */
1107 	REG_OP_RELEASE,		/* clear all bits in region */
1108 };
1109 
1110 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1111 {
1112 	int nbits_reg;		/* number of bits in region */
1113 	int index;		/* index first long of region in bitmap */
1114 	int offset;		/* bit offset region in bitmap[index] */
1115 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1116 	int nbitsinlong;	/* num bits of region in each spanned long */
1117 	unsigned long mask;	/* bitmask for one long of region */
1118 	int i;			/* scans bitmap by longs */
1119 	int ret = 0;		/* return value */
1120 
1121 	/*
1122 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1123 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1124 	 */
1125 	nbits_reg = 1 << order;
1126 	index = pos / BITS_PER_LONG;
1127 	offset = pos - (index * BITS_PER_LONG);
1128 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1129 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1130 
1131 	/*
1132 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1133 	 * overflows if nbitsinlong == BITS_PER_LONG.
1134 	 */
1135 	mask = (1UL << (nbitsinlong - 1));
1136 	mask += mask - 1;
1137 	mask <<= offset;
1138 
1139 	switch (reg_op) {
1140 	case REG_OP_ISFREE:
1141 		for (i = 0; i < nlongs_reg; i++) {
1142 			if (bitmap[index + i] & mask)
1143 				goto done;
1144 		}
1145 		ret = 1;	/* all bits in region free (zero) */
1146 		break;
1147 
1148 	case REG_OP_ALLOC:
1149 		for (i = 0; i < nlongs_reg; i++)
1150 			bitmap[index + i] |= mask;
1151 		break;
1152 
1153 	case REG_OP_RELEASE:
1154 		for (i = 0; i < nlongs_reg; i++)
1155 			bitmap[index + i] &= ~mask;
1156 		break;
1157 	}
1158 done:
1159 	return ret;
1160 }
1161 
1162 /**
1163  * bitmap_find_free_region - find a contiguous aligned mem region
1164  *	@bitmap: array of unsigned longs corresponding to the bitmap
1165  *	@bits: number of bits in the bitmap
1166  *	@order: region size (log base 2 of number of bits) to find
1167  *
1168  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1169  * allocate them (set them to one).  Only consider regions of length
1170  * a power (@order) of two, aligned to that power of two, which
1171  * makes the search algorithm much faster.
1172  *
1173  * Return the bit offset in bitmap of the allocated region,
1174  * or -errno on failure.
1175  */
1176 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1177 {
1178 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1179 
1180 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1181 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1182 			continue;
1183 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1184 		return pos;
1185 	}
1186 	return -ENOMEM;
1187 }
1188 EXPORT_SYMBOL(bitmap_find_free_region);
1189 
1190 /**
1191  * bitmap_release_region - release allocated bitmap region
1192  *	@bitmap: array of unsigned longs corresponding to the bitmap
1193  *	@pos: beginning of bit region to release
1194  *	@order: region size (log base 2 of number of bits) to release
1195  *
1196  * This is the complement to __bitmap_find_free_region() and releases
1197  * the found region (by clearing it in the bitmap).
1198  *
1199  * No return value.
1200  */
1201 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1202 {
1203 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1204 }
1205 EXPORT_SYMBOL(bitmap_release_region);
1206 
1207 /**
1208  * bitmap_allocate_region - allocate bitmap region
1209  *	@bitmap: array of unsigned longs corresponding to the bitmap
1210  *	@pos: beginning of bit region to allocate
1211  *	@order: region size (log base 2 of number of bits) to allocate
1212  *
1213  * Allocate (set bits in) a specified region of a bitmap.
1214  *
1215  * Return 0 on success, or %-EBUSY if specified region wasn't
1216  * free (not all bits were zero).
1217  */
1218 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1219 {
1220 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1221 		return -EBUSY;
1222 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1223 }
1224 EXPORT_SYMBOL(bitmap_allocate_region);
1225 
1226 /**
1227  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1228  * @dst:   destination buffer
1229  * @src:   bitmap to copy
1230  * @nbits: number of bits in the bitmap
1231  *
1232  * Require nbits % BITS_PER_LONG == 0.
1233  */
1234 #ifdef __BIG_ENDIAN
1235 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1236 {
1237 	unsigned int i;
1238 
1239 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1240 		if (BITS_PER_LONG == 64)
1241 			dst[i] = cpu_to_le64(src[i]);
1242 		else
1243 			dst[i] = cpu_to_le32(src[i]);
1244 	}
1245 }
1246 EXPORT_SYMBOL(bitmap_copy_le);
1247 #endif
1248 
1249 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1250 {
1251 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1252 			     flags);
1253 }
1254 EXPORT_SYMBOL(bitmap_alloc);
1255 
1256 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1257 {
1258 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1259 }
1260 EXPORT_SYMBOL(bitmap_zalloc);
1261 
1262 void bitmap_free(const unsigned long *bitmap)
1263 {
1264 	kfree(bitmap);
1265 }
1266 EXPORT_SYMBOL(bitmap_free);
1267 
1268 #if BITS_PER_LONG == 64
1269 /**
1270  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1271  *	@bitmap: array of unsigned longs, the destination bitmap
1272  *	@buf: array of u32 (in host byte order), the source bitmap
1273  *	@nbits: number of bits in @bitmap
1274  */
1275 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1276 {
1277 	unsigned int i, halfwords;
1278 
1279 	halfwords = DIV_ROUND_UP(nbits, 32);
1280 	for (i = 0; i < halfwords; i++) {
1281 		bitmap[i/2] = (unsigned long) buf[i];
1282 		if (++i < halfwords)
1283 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1284 	}
1285 
1286 	/* Clear tail bits in last word beyond nbits. */
1287 	if (nbits % BITS_PER_LONG)
1288 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1289 }
1290 EXPORT_SYMBOL(bitmap_from_arr32);
1291 
1292 /**
1293  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1294  *	@buf: array of u32 (in host byte order), the dest bitmap
1295  *	@bitmap: array of unsigned longs, the source bitmap
1296  *	@nbits: number of bits in @bitmap
1297  */
1298 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1299 {
1300 	unsigned int i, halfwords;
1301 
1302 	halfwords = DIV_ROUND_UP(nbits, 32);
1303 	for (i = 0; i < halfwords; i++) {
1304 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1305 		if (++i < halfwords)
1306 			buf[i] = (u32) (bitmap[i/2] >> 32);
1307 	}
1308 
1309 	/* Clear tail bits in last element of array beyond nbits. */
1310 	if (nbits % BITS_PER_LONG)
1311 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1312 }
1313 EXPORT_SYMBOL(bitmap_to_arr32);
1314 
1315 #endif
1316