xref: /openbmc/linux/lib/bitmap.c (revision 3805e6a1)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 
18 #include <asm/page.h>
19 #include <asm/uaccess.h>
20 
21 /*
22  * bitmaps provide an array of bits, implemented using an an
23  * array of unsigned longs.  The number of valid bits in a
24  * given bitmap does _not_ need to be an exact multiple of
25  * BITS_PER_LONG.
26  *
27  * The possible unused bits in the last, partially used word
28  * of a bitmap are 'don't care'.  The implementation makes
29  * no particular effort to keep them zero.  It ensures that
30  * their value will not affect the results of any operation.
31  * The bitmap operations that return Boolean (bitmap_empty,
32  * for example) or scalar (bitmap_weight, for example) results
33  * carefully filter out these unused bits from impacting their
34  * results.
35  *
36  * These operations actually hold to a slightly stronger rule:
37  * if you don't input any bitmaps to these ops that have some
38  * unused bits set, then they won't output any set unused bits
39  * in output bitmaps.
40  *
41  * The byte ordering of bitmaps is more natural on little
42  * endian architectures.  See the big-endian headers
43  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
44  * for the best explanations of this ordering.
45  */
46 
47 int __bitmap_equal(const unsigned long *bitmap1,
48 		const unsigned long *bitmap2, unsigned int bits)
49 {
50 	unsigned int k, lim = bits/BITS_PER_LONG;
51 	for (k = 0; k < lim; ++k)
52 		if (bitmap1[k] != bitmap2[k])
53 			return 0;
54 
55 	if (bits % BITS_PER_LONG)
56 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
57 			return 0;
58 
59 	return 1;
60 }
61 EXPORT_SYMBOL(__bitmap_equal);
62 
63 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
64 {
65 	unsigned int k, lim = bits/BITS_PER_LONG;
66 	for (k = 0; k < lim; ++k)
67 		dst[k] = ~src[k];
68 
69 	if (bits % BITS_PER_LONG)
70 		dst[k] = ~src[k];
71 }
72 EXPORT_SYMBOL(__bitmap_complement);
73 
74 /**
75  * __bitmap_shift_right - logical right shift of the bits in a bitmap
76  *   @dst : destination bitmap
77  *   @src : source bitmap
78  *   @shift : shift by this many bits
79  *   @nbits : bitmap size, in bits
80  *
81  * Shifting right (dividing) means moving bits in the MS -> LS bit
82  * direction.  Zeros are fed into the vacated MS positions and the
83  * LS bits shifted off the bottom are lost.
84  */
85 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
86 			unsigned shift, unsigned nbits)
87 {
88 	unsigned k, lim = BITS_TO_LONGS(nbits);
89 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
90 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
91 	for (k = 0; off + k < lim; ++k) {
92 		unsigned long upper, lower;
93 
94 		/*
95 		 * If shift is not word aligned, take lower rem bits of
96 		 * word above and make them the top rem bits of result.
97 		 */
98 		if (!rem || off + k + 1 >= lim)
99 			upper = 0;
100 		else {
101 			upper = src[off + k + 1];
102 			if (off + k + 1 == lim - 1)
103 				upper &= mask;
104 			upper <<= (BITS_PER_LONG - rem);
105 		}
106 		lower = src[off + k];
107 		if (off + k == lim - 1)
108 			lower &= mask;
109 		lower >>= rem;
110 		dst[k] = lower | upper;
111 	}
112 	if (off)
113 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
114 }
115 EXPORT_SYMBOL(__bitmap_shift_right);
116 
117 
118 /**
119  * __bitmap_shift_left - logical left shift of the bits in a bitmap
120  *   @dst : destination bitmap
121  *   @src : source bitmap
122  *   @shift : shift by this many bits
123  *   @nbits : bitmap size, in bits
124  *
125  * Shifting left (multiplying) means moving bits in the LS -> MS
126  * direction.  Zeros are fed into the vacated LS bit positions
127  * and those MS bits shifted off the top are lost.
128  */
129 
130 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
131 			unsigned int shift, unsigned int nbits)
132 {
133 	int k;
134 	unsigned int lim = BITS_TO_LONGS(nbits);
135 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
136 	for (k = lim - off - 1; k >= 0; --k) {
137 		unsigned long upper, lower;
138 
139 		/*
140 		 * If shift is not word aligned, take upper rem bits of
141 		 * word below and make them the bottom rem bits of result.
142 		 */
143 		if (rem && k > 0)
144 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
145 		else
146 			lower = 0;
147 		upper = src[k] << rem;
148 		dst[k + off] = lower | upper;
149 	}
150 	if (off)
151 		memset(dst, 0, off*sizeof(unsigned long));
152 }
153 EXPORT_SYMBOL(__bitmap_shift_left);
154 
155 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
156 				const unsigned long *bitmap2, unsigned int bits)
157 {
158 	unsigned int k;
159 	unsigned int lim = bits/BITS_PER_LONG;
160 	unsigned long result = 0;
161 
162 	for (k = 0; k < lim; k++)
163 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
164 	if (bits % BITS_PER_LONG)
165 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
166 			   BITMAP_LAST_WORD_MASK(bits));
167 	return result != 0;
168 }
169 EXPORT_SYMBOL(__bitmap_and);
170 
171 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
172 				const unsigned long *bitmap2, unsigned int bits)
173 {
174 	unsigned int k;
175 	unsigned int nr = BITS_TO_LONGS(bits);
176 
177 	for (k = 0; k < nr; k++)
178 		dst[k] = bitmap1[k] | bitmap2[k];
179 }
180 EXPORT_SYMBOL(__bitmap_or);
181 
182 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, unsigned int bits)
184 {
185 	unsigned int k;
186 	unsigned int nr = BITS_TO_LONGS(bits);
187 
188 	for (k = 0; k < nr; k++)
189 		dst[k] = bitmap1[k] ^ bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_xor);
192 
193 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
194 				const unsigned long *bitmap2, unsigned int bits)
195 {
196 	unsigned int k;
197 	unsigned int lim = bits/BITS_PER_LONG;
198 	unsigned long result = 0;
199 
200 	for (k = 0; k < lim; k++)
201 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
202 	if (bits % BITS_PER_LONG)
203 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
204 			   BITMAP_LAST_WORD_MASK(bits));
205 	return result != 0;
206 }
207 EXPORT_SYMBOL(__bitmap_andnot);
208 
209 int __bitmap_intersects(const unsigned long *bitmap1,
210 			const unsigned long *bitmap2, unsigned int bits)
211 {
212 	unsigned int k, lim = bits/BITS_PER_LONG;
213 	for (k = 0; k < lim; ++k)
214 		if (bitmap1[k] & bitmap2[k])
215 			return 1;
216 
217 	if (bits % BITS_PER_LONG)
218 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
219 			return 1;
220 	return 0;
221 }
222 EXPORT_SYMBOL(__bitmap_intersects);
223 
224 int __bitmap_subset(const unsigned long *bitmap1,
225 		    const unsigned long *bitmap2, unsigned int bits)
226 {
227 	unsigned int k, lim = bits/BITS_PER_LONG;
228 	for (k = 0; k < lim; ++k)
229 		if (bitmap1[k] & ~bitmap2[k])
230 			return 0;
231 
232 	if (bits % BITS_PER_LONG)
233 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
234 			return 0;
235 	return 1;
236 }
237 EXPORT_SYMBOL(__bitmap_subset);
238 
239 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
240 {
241 	unsigned int k, lim = bits/BITS_PER_LONG;
242 	int w = 0;
243 
244 	for (k = 0; k < lim; k++)
245 		w += hweight_long(bitmap[k]);
246 
247 	if (bits % BITS_PER_LONG)
248 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
249 
250 	return w;
251 }
252 EXPORT_SYMBOL(__bitmap_weight);
253 
254 void bitmap_set(unsigned long *map, unsigned int start, int len)
255 {
256 	unsigned long *p = map + BIT_WORD(start);
257 	const unsigned int size = start + len;
258 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
259 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
260 
261 	while (len - bits_to_set >= 0) {
262 		*p |= mask_to_set;
263 		len -= bits_to_set;
264 		bits_to_set = BITS_PER_LONG;
265 		mask_to_set = ~0UL;
266 		p++;
267 	}
268 	if (len) {
269 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
270 		*p |= mask_to_set;
271 	}
272 }
273 EXPORT_SYMBOL(bitmap_set);
274 
275 void bitmap_clear(unsigned long *map, unsigned int start, int len)
276 {
277 	unsigned long *p = map + BIT_WORD(start);
278 	const unsigned int size = start + len;
279 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
280 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
281 
282 	while (len - bits_to_clear >= 0) {
283 		*p &= ~mask_to_clear;
284 		len -= bits_to_clear;
285 		bits_to_clear = BITS_PER_LONG;
286 		mask_to_clear = ~0UL;
287 		p++;
288 	}
289 	if (len) {
290 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
291 		*p &= ~mask_to_clear;
292 	}
293 }
294 EXPORT_SYMBOL(bitmap_clear);
295 
296 /**
297  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
298  * @map: The address to base the search on
299  * @size: The bitmap size in bits
300  * @start: The bitnumber to start searching at
301  * @nr: The number of zeroed bits we're looking for
302  * @align_mask: Alignment mask for zero area
303  * @align_offset: Alignment offset for zero area.
304  *
305  * The @align_mask should be one less than a power of 2; the effect is that
306  * the bit offset of all zero areas this function finds plus @align_offset
307  * is multiple of that power of 2.
308  */
309 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
310 					     unsigned long size,
311 					     unsigned long start,
312 					     unsigned int nr,
313 					     unsigned long align_mask,
314 					     unsigned long align_offset)
315 {
316 	unsigned long index, end, i;
317 again:
318 	index = find_next_zero_bit(map, size, start);
319 
320 	/* Align allocation */
321 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
322 
323 	end = index + nr;
324 	if (end > size)
325 		return end;
326 	i = find_next_bit(map, end, index);
327 	if (i < end) {
328 		start = i + 1;
329 		goto again;
330 	}
331 	return index;
332 }
333 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
334 
335 /*
336  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
337  * second version by Paul Jackson, third by Joe Korty.
338  */
339 
340 #define CHUNKSZ				32
341 #define nbits_to_hold_value(val)	fls(val)
342 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
343 
344 /**
345  * __bitmap_parse - convert an ASCII hex string into a bitmap.
346  * @buf: pointer to buffer containing string.
347  * @buflen: buffer size in bytes.  If string is smaller than this
348  *    then it must be terminated with a \0.
349  * @is_user: location of buffer, 0 indicates kernel space
350  * @maskp: pointer to bitmap array that will contain result.
351  * @nmaskbits: size of bitmap, in bits.
352  *
353  * Commas group hex digits into chunks.  Each chunk defines exactly 32
354  * bits of the resultant bitmask.  No chunk may specify a value larger
355  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
356  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
357  * characters and for grouping errors such as "1,,5", ",44", "," and "".
358  * Leading and trailing whitespace accepted, but not embedded whitespace.
359  */
360 int __bitmap_parse(const char *buf, unsigned int buflen,
361 		int is_user, unsigned long *maskp,
362 		int nmaskbits)
363 {
364 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
365 	u32 chunk;
366 	const char __user __force *ubuf = (const char __user __force *)buf;
367 
368 	bitmap_zero(maskp, nmaskbits);
369 
370 	nchunks = nbits = totaldigits = c = 0;
371 	do {
372 		chunk = 0;
373 		ndigits = totaldigits;
374 
375 		/* Get the next chunk of the bitmap */
376 		while (buflen) {
377 			old_c = c;
378 			if (is_user) {
379 				if (__get_user(c, ubuf++))
380 					return -EFAULT;
381 			}
382 			else
383 				c = *buf++;
384 			buflen--;
385 			if (isspace(c))
386 				continue;
387 
388 			/*
389 			 * If the last character was a space and the current
390 			 * character isn't '\0', we've got embedded whitespace.
391 			 * This is a no-no, so throw an error.
392 			 */
393 			if (totaldigits && c && isspace(old_c))
394 				return -EINVAL;
395 
396 			/* A '\0' or a ',' signal the end of the chunk */
397 			if (c == '\0' || c == ',')
398 				break;
399 
400 			if (!isxdigit(c))
401 				return -EINVAL;
402 
403 			/*
404 			 * Make sure there are at least 4 free bits in 'chunk'.
405 			 * If not, this hexdigit will overflow 'chunk', so
406 			 * throw an error.
407 			 */
408 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
409 				return -EOVERFLOW;
410 
411 			chunk = (chunk << 4) | hex_to_bin(c);
412 			totaldigits++;
413 		}
414 		if (ndigits == totaldigits)
415 			return -EINVAL;
416 		if (nchunks == 0 && chunk == 0)
417 			continue;
418 
419 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
420 		*maskp |= chunk;
421 		nchunks++;
422 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
423 		if (nbits > nmaskbits)
424 			return -EOVERFLOW;
425 	} while (buflen && c == ',');
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL(__bitmap_parse);
430 
431 /**
432  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
433  *
434  * @ubuf: pointer to user buffer containing string.
435  * @ulen: buffer size in bytes.  If string is smaller than this
436  *    then it must be terminated with a \0.
437  * @maskp: pointer to bitmap array that will contain result.
438  * @nmaskbits: size of bitmap, in bits.
439  *
440  * Wrapper for __bitmap_parse(), providing it with user buffer.
441  *
442  * We cannot have this as an inline function in bitmap.h because it needs
443  * linux/uaccess.h to get the access_ok() declaration and this causes
444  * cyclic dependencies.
445  */
446 int bitmap_parse_user(const char __user *ubuf,
447 			unsigned int ulen, unsigned long *maskp,
448 			int nmaskbits)
449 {
450 	if (!access_ok(VERIFY_READ, ubuf, ulen))
451 		return -EFAULT;
452 	return __bitmap_parse((const char __force *)ubuf,
453 				ulen, 1, maskp, nmaskbits);
454 
455 }
456 EXPORT_SYMBOL(bitmap_parse_user);
457 
458 /**
459  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
460  * @list: indicates whether the bitmap must be list
461  * @buf: page aligned buffer into which string is placed
462  * @maskp: pointer to bitmap to convert
463  * @nmaskbits: size of bitmap, in bits
464  *
465  * Output format is a comma-separated list of decimal numbers and
466  * ranges if list is specified or hex digits grouped into comma-separated
467  * sets of 8 digits/set. Returns the number of characters written to buf.
468  *
469  * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
470  * sufficient storage remains at @buf to accommodate the
471  * bitmap_print_to_pagebuf() output.
472  */
473 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
474 			    int nmaskbits)
475 {
476 	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
477 	int n = 0;
478 
479 	if (len > 1)
480 		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
481 			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
482 	return n;
483 }
484 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
485 
486 /**
487  * __bitmap_parselist - convert list format ASCII string to bitmap
488  * @buf: read nul-terminated user string from this buffer
489  * @buflen: buffer size in bytes.  If string is smaller than this
490  *    then it must be terminated with a \0.
491  * @is_user: location of buffer, 0 indicates kernel space
492  * @maskp: write resulting mask here
493  * @nmaskbits: number of bits in mask to be written
494  *
495  * Input format is a comma-separated list of decimal numbers and
496  * ranges.  Consecutively set bits are shown as two hyphen-separated
497  * decimal numbers, the smallest and largest bit numbers set in
498  * the range.
499  *
500  * Returns 0 on success, -errno on invalid input strings.
501  * Error values:
502  *    %-EINVAL: second number in range smaller than first
503  *    %-EINVAL: invalid character in string
504  *    %-ERANGE: bit number specified too large for mask
505  */
506 static int __bitmap_parselist(const char *buf, unsigned int buflen,
507 		int is_user, unsigned long *maskp,
508 		int nmaskbits)
509 {
510 	unsigned a, b;
511 	int c, old_c, totaldigits, ndigits;
512 	const char __user __force *ubuf = (const char __user __force *)buf;
513 	int at_start, in_range;
514 
515 	totaldigits = c = 0;
516 	bitmap_zero(maskp, nmaskbits);
517 	do {
518 		at_start = 1;
519 		in_range = 0;
520 		a = b = 0;
521 		ndigits = totaldigits;
522 
523 		/* Get the next cpu# or a range of cpu#'s */
524 		while (buflen) {
525 			old_c = c;
526 			if (is_user) {
527 				if (__get_user(c, ubuf++))
528 					return -EFAULT;
529 			} else
530 				c = *buf++;
531 			buflen--;
532 			if (isspace(c))
533 				continue;
534 
535 			/* A '\0' or a ',' signal the end of a cpu# or range */
536 			if (c == '\0' || c == ',')
537 				break;
538 			/*
539 			* whitespaces between digits are not allowed,
540 			* but it's ok if whitespaces are on head or tail.
541 			* when old_c is whilespace,
542 			* if totaldigits == ndigits, whitespace is on head.
543 			* if whitespace is on tail, it should not run here.
544 			* as c was ',' or '\0',
545 			* the last code line has broken the current loop.
546 			*/
547 			if ((totaldigits != ndigits) && isspace(old_c))
548 				return -EINVAL;
549 
550 			if (c == '-') {
551 				if (at_start || in_range)
552 					return -EINVAL;
553 				b = 0;
554 				in_range = 1;
555 				at_start = 1;
556 				continue;
557 			}
558 
559 			if (!isdigit(c))
560 				return -EINVAL;
561 
562 			b = b * 10 + (c - '0');
563 			if (!in_range)
564 				a = b;
565 			at_start = 0;
566 			totaldigits++;
567 		}
568 		if (ndigits == totaldigits)
569 			continue;
570 		/* if no digit is after '-', it's wrong*/
571 		if (at_start && in_range)
572 			return -EINVAL;
573 		if (!(a <= b))
574 			return -EINVAL;
575 		if (b >= nmaskbits)
576 			return -ERANGE;
577 		while (a <= b) {
578 			set_bit(a, maskp);
579 			a++;
580 		}
581 	} while (buflen && c == ',');
582 	return 0;
583 }
584 
585 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
586 {
587 	char *nl  = strchrnul(bp, '\n');
588 	int len = nl - bp;
589 
590 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
591 }
592 EXPORT_SYMBOL(bitmap_parselist);
593 
594 
595 /**
596  * bitmap_parselist_user()
597  *
598  * @ubuf: pointer to user buffer containing string.
599  * @ulen: buffer size in bytes.  If string is smaller than this
600  *    then it must be terminated with a \0.
601  * @maskp: pointer to bitmap array that will contain result.
602  * @nmaskbits: size of bitmap, in bits.
603  *
604  * Wrapper for bitmap_parselist(), providing it with user buffer.
605  *
606  * We cannot have this as an inline function in bitmap.h because it needs
607  * linux/uaccess.h to get the access_ok() declaration and this causes
608  * cyclic dependencies.
609  */
610 int bitmap_parselist_user(const char __user *ubuf,
611 			unsigned int ulen, unsigned long *maskp,
612 			int nmaskbits)
613 {
614 	if (!access_ok(VERIFY_READ, ubuf, ulen))
615 		return -EFAULT;
616 	return __bitmap_parselist((const char __force *)ubuf,
617 					ulen, 1, maskp, nmaskbits);
618 }
619 EXPORT_SYMBOL(bitmap_parselist_user);
620 
621 
622 /**
623  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
624  *	@buf: pointer to a bitmap
625  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
626  *	@nbits: number of valid bit positions in @buf
627  *
628  * Map the bit at position @pos in @buf (of length @nbits) to the
629  * ordinal of which set bit it is.  If it is not set or if @pos
630  * is not a valid bit position, map to -1.
631  *
632  * If for example, just bits 4 through 7 are set in @buf, then @pos
633  * values 4 through 7 will get mapped to 0 through 3, respectively,
634  * and other @pos values will get mapped to -1.  When @pos value 7
635  * gets mapped to (returns) @ord value 3 in this example, that means
636  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
637  *
638  * The bit positions 0 through @bits are valid positions in @buf.
639  */
640 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
641 {
642 	if (pos >= nbits || !test_bit(pos, buf))
643 		return -1;
644 
645 	return __bitmap_weight(buf, pos);
646 }
647 
648 /**
649  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
650  *	@buf: pointer to bitmap
651  *	@ord: ordinal bit position (n-th set bit, n >= 0)
652  *	@nbits: number of valid bit positions in @buf
653  *
654  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
655  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
656  * >= weight(buf), returns @nbits.
657  *
658  * If for example, just bits 4 through 7 are set in @buf, then @ord
659  * values 0 through 3 will get mapped to 4 through 7, respectively,
660  * and all other @ord values returns @nbits.  When @ord value 3
661  * gets mapped to (returns) @pos value 7 in this example, that means
662  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
663  *
664  * The bit positions 0 through @nbits-1 are valid positions in @buf.
665  */
666 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
667 {
668 	unsigned int pos;
669 
670 	for (pos = find_first_bit(buf, nbits);
671 	     pos < nbits && ord;
672 	     pos = find_next_bit(buf, nbits, pos + 1))
673 		ord--;
674 
675 	return pos;
676 }
677 
678 /**
679  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
680  *	@dst: remapped result
681  *	@src: subset to be remapped
682  *	@old: defines domain of map
683  *	@new: defines range of map
684  *	@nbits: number of bits in each of these bitmaps
685  *
686  * Let @old and @new define a mapping of bit positions, such that
687  * whatever position is held by the n-th set bit in @old is mapped
688  * to the n-th set bit in @new.  In the more general case, allowing
689  * for the possibility that the weight 'w' of @new is less than the
690  * weight of @old, map the position of the n-th set bit in @old to
691  * the position of the m-th set bit in @new, where m == n % w.
692  *
693  * If either of the @old and @new bitmaps are empty, or if @src and
694  * @dst point to the same location, then this routine copies @src
695  * to @dst.
696  *
697  * The positions of unset bits in @old are mapped to themselves
698  * (the identify map).
699  *
700  * Apply the above specified mapping to @src, placing the result in
701  * @dst, clearing any bits previously set in @dst.
702  *
703  * For example, lets say that @old has bits 4 through 7 set, and
704  * @new has bits 12 through 15 set.  This defines the mapping of bit
705  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
706  * bit positions unchanged.  So if say @src comes into this routine
707  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
708  * 13 and 15 set.
709  */
710 void bitmap_remap(unsigned long *dst, const unsigned long *src,
711 		const unsigned long *old, const unsigned long *new,
712 		unsigned int nbits)
713 {
714 	unsigned int oldbit, w;
715 
716 	if (dst == src)		/* following doesn't handle inplace remaps */
717 		return;
718 	bitmap_zero(dst, nbits);
719 
720 	w = bitmap_weight(new, nbits);
721 	for_each_set_bit(oldbit, src, nbits) {
722 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
723 
724 		if (n < 0 || w == 0)
725 			set_bit(oldbit, dst);	/* identity map */
726 		else
727 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
728 	}
729 }
730 EXPORT_SYMBOL(bitmap_remap);
731 
732 /**
733  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
734  *	@oldbit: bit position to be mapped
735  *	@old: defines domain of map
736  *	@new: defines range of map
737  *	@bits: number of bits in each of these bitmaps
738  *
739  * Let @old and @new define a mapping of bit positions, such that
740  * whatever position is held by the n-th set bit in @old is mapped
741  * to the n-th set bit in @new.  In the more general case, allowing
742  * for the possibility that the weight 'w' of @new is less than the
743  * weight of @old, map the position of the n-th set bit in @old to
744  * the position of the m-th set bit in @new, where m == n % w.
745  *
746  * The positions of unset bits in @old are mapped to themselves
747  * (the identify map).
748  *
749  * Apply the above specified mapping to bit position @oldbit, returning
750  * the new bit position.
751  *
752  * For example, lets say that @old has bits 4 through 7 set, and
753  * @new has bits 12 through 15 set.  This defines the mapping of bit
754  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
755  * bit positions unchanged.  So if say @oldbit is 5, then this routine
756  * returns 13.
757  */
758 int bitmap_bitremap(int oldbit, const unsigned long *old,
759 				const unsigned long *new, int bits)
760 {
761 	int w = bitmap_weight(new, bits);
762 	int n = bitmap_pos_to_ord(old, oldbit, bits);
763 	if (n < 0 || w == 0)
764 		return oldbit;
765 	else
766 		return bitmap_ord_to_pos(new, n % w, bits);
767 }
768 EXPORT_SYMBOL(bitmap_bitremap);
769 
770 /**
771  * bitmap_onto - translate one bitmap relative to another
772  *	@dst: resulting translated bitmap
773  * 	@orig: original untranslated bitmap
774  * 	@relmap: bitmap relative to which translated
775  *	@bits: number of bits in each of these bitmaps
776  *
777  * Set the n-th bit of @dst iff there exists some m such that the
778  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
779  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
780  * (If you understood the previous sentence the first time your
781  * read it, you're overqualified for your current job.)
782  *
783  * In other words, @orig is mapped onto (surjectively) @dst,
784  * using the map { <n, m> | the n-th bit of @relmap is the
785  * m-th set bit of @relmap }.
786  *
787  * Any set bits in @orig above bit number W, where W is the
788  * weight of (number of set bits in) @relmap are mapped nowhere.
789  * In particular, if for all bits m set in @orig, m >= W, then
790  * @dst will end up empty.  In situations where the possibility
791  * of such an empty result is not desired, one way to avoid it is
792  * to use the bitmap_fold() operator, below, to first fold the
793  * @orig bitmap over itself so that all its set bits x are in the
794  * range 0 <= x < W.  The bitmap_fold() operator does this by
795  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
796  *
797  * Example [1] for bitmap_onto():
798  *  Let's say @relmap has bits 30-39 set, and @orig has bits
799  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
800  *  @dst will have bits 31, 33, 35, 37 and 39 set.
801  *
802  *  When bit 0 is set in @orig, it means turn on the bit in
803  *  @dst corresponding to whatever is the first bit (if any)
804  *  that is turned on in @relmap.  Since bit 0 was off in the
805  *  above example, we leave off that bit (bit 30) in @dst.
806  *
807  *  When bit 1 is set in @orig (as in the above example), it
808  *  means turn on the bit in @dst corresponding to whatever
809  *  is the second bit that is turned on in @relmap.  The second
810  *  bit in @relmap that was turned on in the above example was
811  *  bit 31, so we turned on bit 31 in @dst.
812  *
813  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
814  *  because they were the 4th, 6th, 8th and 10th set bits
815  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
816  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
817  *
818  *  When bit 11 is set in @orig, it means turn on the bit in
819  *  @dst corresponding to whatever is the twelfth bit that is
820  *  turned on in @relmap.  In the above example, there were
821  *  only ten bits turned on in @relmap (30..39), so that bit
822  *  11 was set in @orig had no affect on @dst.
823  *
824  * Example [2] for bitmap_fold() + bitmap_onto():
825  *  Let's say @relmap has these ten bits set:
826  *		40 41 42 43 45 48 53 61 74 95
827  *  (for the curious, that's 40 plus the first ten terms of the
828  *  Fibonacci sequence.)
829  *
830  *  Further lets say we use the following code, invoking
831  *  bitmap_fold() then bitmap_onto, as suggested above to
832  *  avoid the possibility of an empty @dst result:
833  *
834  *	unsigned long *tmp;	// a temporary bitmap's bits
835  *
836  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
837  *	bitmap_onto(dst, tmp, relmap, bits);
838  *
839  *  Then this table shows what various values of @dst would be, for
840  *  various @orig's.  I list the zero-based positions of each set bit.
841  *  The tmp column shows the intermediate result, as computed by
842  *  using bitmap_fold() to fold the @orig bitmap modulo ten
843  *  (the weight of @relmap).
844  *
845  *      @orig           tmp            @dst
846  *      0                0             40
847  *      1                1             41
848  *      9                9             95
849  *      10               0             40 (*)
850  *      1 3 5 7          1 3 5 7       41 43 48 61
851  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
852  *      0 9 18 27        0 9 8 7       40 61 74 95
853  *      0 10 20 30       0             40
854  *      0 11 22 33       0 1 2 3       40 41 42 43
855  *      0 12 24 36       0 2 4 6       40 42 45 53
856  *      78 102 211       1 2 8         41 42 74 (*)
857  *
858  * (*) For these marked lines, if we hadn't first done bitmap_fold()
859  *     into tmp, then the @dst result would have been empty.
860  *
861  * If either of @orig or @relmap is empty (no set bits), then @dst
862  * will be returned empty.
863  *
864  * If (as explained above) the only set bits in @orig are in positions
865  * m where m >= W, (where W is the weight of @relmap) then @dst will
866  * once again be returned empty.
867  *
868  * All bits in @dst not set by the above rule are cleared.
869  */
870 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
871 			const unsigned long *relmap, unsigned int bits)
872 {
873 	unsigned int n, m;	/* same meaning as in above comment */
874 
875 	if (dst == orig)	/* following doesn't handle inplace mappings */
876 		return;
877 	bitmap_zero(dst, bits);
878 
879 	/*
880 	 * The following code is a more efficient, but less
881 	 * obvious, equivalent to the loop:
882 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
883 	 *		n = bitmap_ord_to_pos(orig, m, bits);
884 	 *		if (test_bit(m, orig))
885 	 *			set_bit(n, dst);
886 	 *	}
887 	 */
888 
889 	m = 0;
890 	for_each_set_bit(n, relmap, bits) {
891 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
892 		if (test_bit(m, orig))
893 			set_bit(n, dst);
894 		m++;
895 	}
896 }
897 EXPORT_SYMBOL(bitmap_onto);
898 
899 /**
900  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
901  *	@dst: resulting smaller bitmap
902  *	@orig: original larger bitmap
903  *	@sz: specified size
904  *	@nbits: number of bits in each of these bitmaps
905  *
906  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
907  * Clear all other bits in @dst.  See further the comment and
908  * Example [2] for bitmap_onto() for why and how to use this.
909  */
910 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
911 			unsigned int sz, unsigned int nbits)
912 {
913 	unsigned int oldbit;
914 
915 	if (dst == orig)	/* following doesn't handle inplace mappings */
916 		return;
917 	bitmap_zero(dst, nbits);
918 
919 	for_each_set_bit(oldbit, orig, nbits)
920 		set_bit(oldbit % sz, dst);
921 }
922 EXPORT_SYMBOL(bitmap_fold);
923 
924 /*
925  * Common code for bitmap_*_region() routines.
926  *	bitmap: array of unsigned longs corresponding to the bitmap
927  *	pos: the beginning of the region
928  *	order: region size (log base 2 of number of bits)
929  *	reg_op: operation(s) to perform on that region of bitmap
930  *
931  * Can set, verify and/or release a region of bits in a bitmap,
932  * depending on which combination of REG_OP_* flag bits is set.
933  *
934  * A region of a bitmap is a sequence of bits in the bitmap, of
935  * some size '1 << order' (a power of two), aligned to that same
936  * '1 << order' power of two.
937  *
938  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
939  * Returns 0 in all other cases and reg_ops.
940  */
941 
942 enum {
943 	REG_OP_ISFREE,		/* true if region is all zero bits */
944 	REG_OP_ALLOC,		/* set all bits in region */
945 	REG_OP_RELEASE,		/* clear all bits in region */
946 };
947 
948 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
949 {
950 	int nbits_reg;		/* number of bits in region */
951 	int index;		/* index first long of region in bitmap */
952 	int offset;		/* bit offset region in bitmap[index] */
953 	int nlongs_reg;		/* num longs spanned by region in bitmap */
954 	int nbitsinlong;	/* num bits of region in each spanned long */
955 	unsigned long mask;	/* bitmask for one long of region */
956 	int i;			/* scans bitmap by longs */
957 	int ret = 0;		/* return value */
958 
959 	/*
960 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
961 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
962 	 */
963 	nbits_reg = 1 << order;
964 	index = pos / BITS_PER_LONG;
965 	offset = pos - (index * BITS_PER_LONG);
966 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
967 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
968 
969 	/*
970 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
971 	 * overflows if nbitsinlong == BITS_PER_LONG.
972 	 */
973 	mask = (1UL << (nbitsinlong - 1));
974 	mask += mask - 1;
975 	mask <<= offset;
976 
977 	switch (reg_op) {
978 	case REG_OP_ISFREE:
979 		for (i = 0; i < nlongs_reg; i++) {
980 			if (bitmap[index + i] & mask)
981 				goto done;
982 		}
983 		ret = 1;	/* all bits in region free (zero) */
984 		break;
985 
986 	case REG_OP_ALLOC:
987 		for (i = 0; i < nlongs_reg; i++)
988 			bitmap[index + i] |= mask;
989 		break;
990 
991 	case REG_OP_RELEASE:
992 		for (i = 0; i < nlongs_reg; i++)
993 			bitmap[index + i] &= ~mask;
994 		break;
995 	}
996 done:
997 	return ret;
998 }
999 
1000 /**
1001  * bitmap_find_free_region - find a contiguous aligned mem region
1002  *	@bitmap: array of unsigned longs corresponding to the bitmap
1003  *	@bits: number of bits in the bitmap
1004  *	@order: region size (log base 2 of number of bits) to find
1005  *
1006  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1007  * allocate them (set them to one).  Only consider regions of length
1008  * a power (@order) of two, aligned to that power of two, which
1009  * makes the search algorithm much faster.
1010  *
1011  * Return the bit offset in bitmap of the allocated region,
1012  * or -errno on failure.
1013  */
1014 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1015 {
1016 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1017 
1018 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1019 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1020 			continue;
1021 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1022 		return pos;
1023 	}
1024 	return -ENOMEM;
1025 }
1026 EXPORT_SYMBOL(bitmap_find_free_region);
1027 
1028 /**
1029  * bitmap_release_region - release allocated bitmap region
1030  *	@bitmap: array of unsigned longs corresponding to the bitmap
1031  *	@pos: beginning of bit region to release
1032  *	@order: region size (log base 2 of number of bits) to release
1033  *
1034  * This is the complement to __bitmap_find_free_region() and releases
1035  * the found region (by clearing it in the bitmap).
1036  *
1037  * No return value.
1038  */
1039 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1040 {
1041 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1042 }
1043 EXPORT_SYMBOL(bitmap_release_region);
1044 
1045 /**
1046  * bitmap_allocate_region - allocate bitmap region
1047  *	@bitmap: array of unsigned longs corresponding to the bitmap
1048  *	@pos: beginning of bit region to allocate
1049  *	@order: region size (log base 2 of number of bits) to allocate
1050  *
1051  * Allocate (set bits in) a specified region of a bitmap.
1052  *
1053  * Return 0 on success, or %-EBUSY if specified region wasn't
1054  * free (not all bits were zero).
1055  */
1056 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1057 {
1058 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1059 		return -EBUSY;
1060 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1061 }
1062 EXPORT_SYMBOL(bitmap_allocate_region);
1063 
1064 /**
1065  * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1066  *	@bitmap: array of unsigned longs, the destination bitmap, non NULL
1067  *	@nbits: number of bits in @bitmap
1068  *	@buf: array of u32 (in host byte order), the source bitmap, non NULL
1069  *	@nwords: number of u32 words in @buf
1070  *
1071  * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1072  * bits between nword and nbits in @bitmap (if any) are cleared. In
1073  * last word of @bitmap, the bits beyond nbits (if any) are kept
1074  * unchanged.
1075  *
1076  * Return the number of bits effectively copied.
1077  */
1078 unsigned int
1079 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1080 		     const u32 *buf, unsigned int nwords)
1081 {
1082 	unsigned int dst_idx, src_idx;
1083 
1084 	for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1085 		unsigned long part = 0;
1086 
1087 		if (src_idx < nwords)
1088 			part = buf[src_idx++];
1089 
1090 #if BITS_PER_LONG == 64
1091 		if (src_idx < nwords)
1092 			part |= ((unsigned long) buf[src_idx++]) << 32;
1093 #endif
1094 
1095 		if (dst_idx < nbits/BITS_PER_LONG)
1096 			bitmap[dst_idx] = part;
1097 		else {
1098 			unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1099 
1100 			bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1101 				| (part & mask);
1102 		}
1103 	}
1104 
1105 	return min_t(unsigned int, nbits, 32*nwords);
1106 }
1107 EXPORT_SYMBOL(bitmap_from_u32array);
1108 
1109 /**
1110  * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1111  *	@buf: array of u32 (in host byte order), the dest bitmap, non NULL
1112  *	@nwords: number of u32 words in @buf
1113  *	@bitmap: array of unsigned longs, the source bitmap, non NULL
1114  *	@nbits: number of bits in @bitmap
1115  *
1116  * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1117  * bits after nbits in @buf (if any) are cleared.
1118  *
1119  * Return the number of bits effectively copied.
1120  */
1121 unsigned int
1122 bitmap_to_u32array(u32 *buf, unsigned int nwords,
1123 		   const unsigned long *bitmap, unsigned int nbits)
1124 {
1125 	unsigned int dst_idx = 0, src_idx = 0;
1126 
1127 	while (dst_idx < nwords) {
1128 		unsigned long part = 0;
1129 
1130 		if (src_idx < BITS_TO_LONGS(nbits)) {
1131 			part = bitmap[src_idx];
1132 			if (src_idx >= nbits/BITS_PER_LONG)
1133 				part &= BITMAP_LAST_WORD_MASK(nbits);
1134 			src_idx++;
1135 		}
1136 
1137 		buf[dst_idx++] = part & 0xffffffffUL;
1138 
1139 #if BITS_PER_LONG == 64
1140 		if (dst_idx < nwords) {
1141 			part >>= 32;
1142 			buf[dst_idx++] = part & 0xffffffffUL;
1143 		}
1144 #endif
1145 	}
1146 
1147 	return min_t(unsigned int, nbits, 32*nwords);
1148 }
1149 EXPORT_SYMBOL(bitmap_to_u32array);
1150 
1151 /**
1152  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1153  * @dst:   destination buffer
1154  * @src:   bitmap to copy
1155  * @nbits: number of bits in the bitmap
1156  *
1157  * Require nbits % BITS_PER_LONG == 0.
1158  */
1159 #ifdef __BIG_ENDIAN
1160 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1161 {
1162 	unsigned int i;
1163 
1164 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1165 		if (BITS_PER_LONG == 64)
1166 			dst[i] = cpu_to_le64(src[i]);
1167 		else
1168 			dst[i] = cpu_to_le32(src[i]);
1169 	}
1170 }
1171 EXPORT_SYMBOL(bitmap_copy_le);
1172 #endif
1173