1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 #include <linux/export.h> 7 #include <linux/thread_info.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/bitmap.h> 11 #include <linux/bitops.h> 12 #include <linux/bug.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/page.h> 20 21 #include "kstrtox.h" 22 23 /** 24 * DOC: bitmap introduction 25 * 26 * bitmaps provide an array of bits, implemented using an an 27 * array of unsigned longs. The number of valid bits in a 28 * given bitmap does _not_ need to be an exact multiple of 29 * BITS_PER_LONG. 30 * 31 * The possible unused bits in the last, partially used word 32 * of a bitmap are 'don't care'. The implementation makes 33 * no particular effort to keep them zero. It ensures that 34 * their value will not affect the results of any operation. 35 * The bitmap operations that return Boolean (bitmap_empty, 36 * for example) or scalar (bitmap_weight, for example) results 37 * carefully filter out these unused bits from impacting their 38 * results. 39 * 40 * The byte ordering of bitmaps is more natural on little 41 * endian architectures. See the big-endian headers 42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 43 * for the best explanations of this ordering. 44 */ 45 46 int __bitmap_equal(const unsigned long *bitmap1, 47 const unsigned long *bitmap2, unsigned int bits) 48 { 49 unsigned int k, lim = bits/BITS_PER_LONG; 50 for (k = 0; k < lim; ++k) 51 if (bitmap1[k] != bitmap2[k]) 52 return 0; 53 54 if (bits % BITS_PER_LONG) 55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 56 return 0; 57 58 return 1; 59 } 60 EXPORT_SYMBOL(__bitmap_equal); 61 62 bool __bitmap_or_equal(const unsigned long *bitmap1, 63 const unsigned long *bitmap2, 64 const unsigned long *bitmap3, 65 unsigned int bits) 66 { 67 unsigned int k, lim = bits / BITS_PER_LONG; 68 unsigned long tmp; 69 70 for (k = 0; k < lim; ++k) { 71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 72 return false; 73 } 74 75 if (!(bits % BITS_PER_LONG)) 76 return true; 77 78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 80 } 81 82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 83 { 84 unsigned int k, lim = BITS_TO_LONGS(bits); 85 for (k = 0; k < lim; ++k) 86 dst[k] = ~src[k]; 87 } 88 EXPORT_SYMBOL(__bitmap_complement); 89 90 /** 91 * __bitmap_shift_right - logical right shift of the bits in a bitmap 92 * @dst : destination bitmap 93 * @src : source bitmap 94 * @shift : shift by this many bits 95 * @nbits : bitmap size, in bits 96 * 97 * Shifting right (dividing) means moving bits in the MS -> LS bit 98 * direction. Zeros are fed into the vacated MS positions and the 99 * LS bits shifted off the bottom are lost. 100 */ 101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 102 unsigned shift, unsigned nbits) 103 { 104 unsigned k, lim = BITS_TO_LONGS(nbits); 105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 107 for (k = 0; off + k < lim; ++k) { 108 unsigned long upper, lower; 109 110 /* 111 * If shift is not word aligned, take lower rem bits of 112 * word above and make them the top rem bits of result. 113 */ 114 if (!rem || off + k + 1 >= lim) 115 upper = 0; 116 else { 117 upper = src[off + k + 1]; 118 if (off + k + 1 == lim - 1) 119 upper &= mask; 120 upper <<= (BITS_PER_LONG - rem); 121 } 122 lower = src[off + k]; 123 if (off + k == lim - 1) 124 lower &= mask; 125 lower >>= rem; 126 dst[k] = lower | upper; 127 } 128 if (off) 129 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 130 } 131 EXPORT_SYMBOL(__bitmap_shift_right); 132 133 134 /** 135 * __bitmap_shift_left - logical left shift of the bits in a bitmap 136 * @dst : destination bitmap 137 * @src : source bitmap 138 * @shift : shift by this many bits 139 * @nbits : bitmap size, in bits 140 * 141 * Shifting left (multiplying) means moving bits in the LS -> MS 142 * direction. Zeros are fed into the vacated LS bit positions 143 * and those MS bits shifted off the top are lost. 144 */ 145 146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 147 unsigned int shift, unsigned int nbits) 148 { 149 int k; 150 unsigned int lim = BITS_TO_LONGS(nbits); 151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 152 for (k = lim - off - 1; k >= 0; --k) { 153 unsigned long upper, lower; 154 155 /* 156 * If shift is not word aligned, take upper rem bits of 157 * word below and make them the bottom rem bits of result. 158 */ 159 if (rem && k > 0) 160 lower = src[k - 1] >> (BITS_PER_LONG - rem); 161 else 162 lower = 0; 163 upper = src[k] << rem; 164 dst[k + off] = lower | upper; 165 } 166 if (off) 167 memset(dst, 0, off*sizeof(unsigned long)); 168 } 169 EXPORT_SYMBOL(__bitmap_shift_left); 170 171 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 172 const unsigned long *bitmap2, unsigned int bits) 173 { 174 unsigned int k; 175 unsigned int lim = bits/BITS_PER_LONG; 176 unsigned long result = 0; 177 178 for (k = 0; k < lim; k++) 179 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 180 if (bits % BITS_PER_LONG) 181 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 182 BITMAP_LAST_WORD_MASK(bits)); 183 return result != 0; 184 } 185 EXPORT_SYMBOL(__bitmap_and); 186 187 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 188 const unsigned long *bitmap2, unsigned int bits) 189 { 190 unsigned int k; 191 unsigned int nr = BITS_TO_LONGS(bits); 192 193 for (k = 0; k < nr; k++) 194 dst[k] = bitmap1[k] | bitmap2[k]; 195 } 196 EXPORT_SYMBOL(__bitmap_or); 197 198 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 199 const unsigned long *bitmap2, unsigned int bits) 200 { 201 unsigned int k; 202 unsigned int nr = BITS_TO_LONGS(bits); 203 204 for (k = 0; k < nr; k++) 205 dst[k] = bitmap1[k] ^ bitmap2[k]; 206 } 207 EXPORT_SYMBOL(__bitmap_xor); 208 209 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 210 const unsigned long *bitmap2, unsigned int bits) 211 { 212 unsigned int k; 213 unsigned int lim = bits/BITS_PER_LONG; 214 unsigned long result = 0; 215 216 for (k = 0; k < lim; k++) 217 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 218 if (bits % BITS_PER_LONG) 219 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 220 BITMAP_LAST_WORD_MASK(bits)); 221 return result != 0; 222 } 223 EXPORT_SYMBOL(__bitmap_andnot); 224 225 void __bitmap_replace(unsigned long *dst, 226 const unsigned long *old, const unsigned long *new, 227 const unsigned long *mask, unsigned int nbits) 228 { 229 unsigned int k; 230 unsigned int nr = BITS_TO_LONGS(nbits); 231 232 for (k = 0; k < nr; k++) 233 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 234 } 235 EXPORT_SYMBOL(__bitmap_replace); 236 237 int __bitmap_intersects(const unsigned long *bitmap1, 238 const unsigned long *bitmap2, unsigned int bits) 239 { 240 unsigned int k, lim = bits/BITS_PER_LONG; 241 for (k = 0; k < lim; ++k) 242 if (bitmap1[k] & bitmap2[k]) 243 return 1; 244 245 if (bits % BITS_PER_LONG) 246 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 247 return 1; 248 return 0; 249 } 250 EXPORT_SYMBOL(__bitmap_intersects); 251 252 int __bitmap_subset(const unsigned long *bitmap1, 253 const unsigned long *bitmap2, unsigned int bits) 254 { 255 unsigned int k, lim = bits/BITS_PER_LONG; 256 for (k = 0; k < lim; ++k) 257 if (bitmap1[k] & ~bitmap2[k]) 258 return 0; 259 260 if (bits % BITS_PER_LONG) 261 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 262 return 0; 263 return 1; 264 } 265 EXPORT_SYMBOL(__bitmap_subset); 266 267 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 268 { 269 unsigned int k, lim = bits/BITS_PER_LONG; 270 int w = 0; 271 272 for (k = 0; k < lim; k++) 273 w += hweight_long(bitmap[k]); 274 275 if (bits % BITS_PER_LONG) 276 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 277 278 return w; 279 } 280 EXPORT_SYMBOL(__bitmap_weight); 281 282 void __bitmap_set(unsigned long *map, unsigned int start, int len) 283 { 284 unsigned long *p = map + BIT_WORD(start); 285 const unsigned int size = start + len; 286 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 287 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 288 289 while (len - bits_to_set >= 0) { 290 *p |= mask_to_set; 291 len -= bits_to_set; 292 bits_to_set = BITS_PER_LONG; 293 mask_to_set = ~0UL; 294 p++; 295 } 296 if (len) { 297 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 298 *p |= mask_to_set; 299 } 300 } 301 EXPORT_SYMBOL(__bitmap_set); 302 303 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 304 { 305 unsigned long *p = map + BIT_WORD(start); 306 const unsigned int size = start + len; 307 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 308 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 309 310 while (len - bits_to_clear >= 0) { 311 *p &= ~mask_to_clear; 312 len -= bits_to_clear; 313 bits_to_clear = BITS_PER_LONG; 314 mask_to_clear = ~0UL; 315 p++; 316 } 317 if (len) { 318 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 319 *p &= ~mask_to_clear; 320 } 321 } 322 EXPORT_SYMBOL(__bitmap_clear); 323 324 /** 325 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 326 * @map: The address to base the search on 327 * @size: The bitmap size in bits 328 * @start: The bitnumber to start searching at 329 * @nr: The number of zeroed bits we're looking for 330 * @align_mask: Alignment mask for zero area 331 * @align_offset: Alignment offset for zero area. 332 * 333 * The @align_mask should be one less than a power of 2; the effect is that 334 * the bit offset of all zero areas this function finds plus @align_offset 335 * is multiple of that power of 2. 336 */ 337 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 338 unsigned long size, 339 unsigned long start, 340 unsigned int nr, 341 unsigned long align_mask, 342 unsigned long align_offset) 343 { 344 unsigned long index, end, i; 345 again: 346 index = find_next_zero_bit(map, size, start); 347 348 /* Align allocation */ 349 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 350 351 end = index + nr; 352 if (end > size) 353 return end; 354 i = find_next_bit(map, end, index); 355 if (i < end) { 356 start = i + 1; 357 goto again; 358 } 359 return index; 360 } 361 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 362 363 /* 364 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 365 * second version by Paul Jackson, third by Joe Korty. 366 */ 367 368 #define CHUNKSZ 32 369 #define nbits_to_hold_value(val) fls(val) 370 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 371 372 /** 373 * __bitmap_parse - convert an ASCII hex string into a bitmap. 374 * @buf: pointer to buffer containing string. 375 * @buflen: buffer size in bytes. If string is smaller than this 376 * then it must be terminated with a \0. 377 * @is_user: location of buffer, 0 indicates kernel space 378 * @maskp: pointer to bitmap array that will contain result. 379 * @nmaskbits: size of bitmap, in bits. 380 * 381 * Commas group hex digits into chunks. Each chunk defines exactly 32 382 * bits of the resultant bitmask. No chunk may specify a value larger 383 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 384 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 385 * characters and for grouping errors such as "1,,5", ",44", "," and "". 386 * Leading and trailing whitespace accepted, but not embedded whitespace. 387 */ 388 int __bitmap_parse(const char *buf, unsigned int buflen, 389 int is_user, unsigned long *maskp, 390 int nmaskbits) 391 { 392 int c, old_c, totaldigits, ndigits, nchunks, nbits; 393 u32 chunk; 394 const char __user __force *ubuf = (const char __user __force *)buf; 395 396 bitmap_zero(maskp, nmaskbits); 397 398 nchunks = nbits = totaldigits = c = 0; 399 do { 400 chunk = 0; 401 ndigits = totaldigits; 402 403 /* Get the next chunk of the bitmap */ 404 while (buflen) { 405 old_c = c; 406 if (is_user) { 407 if (__get_user(c, ubuf++)) 408 return -EFAULT; 409 } 410 else 411 c = *buf++; 412 buflen--; 413 if (isspace(c)) 414 continue; 415 416 /* 417 * If the last character was a space and the current 418 * character isn't '\0', we've got embedded whitespace. 419 * This is a no-no, so throw an error. 420 */ 421 if (totaldigits && c && isspace(old_c)) 422 return -EINVAL; 423 424 /* A '\0' or a ',' signal the end of the chunk */ 425 if (c == '\0' || c == ',') 426 break; 427 428 if (!isxdigit(c)) 429 return -EINVAL; 430 431 /* 432 * Make sure there are at least 4 free bits in 'chunk'. 433 * If not, this hexdigit will overflow 'chunk', so 434 * throw an error. 435 */ 436 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 437 return -EOVERFLOW; 438 439 chunk = (chunk << 4) | hex_to_bin(c); 440 totaldigits++; 441 } 442 if (ndigits == totaldigits) 443 return -EINVAL; 444 if (nchunks == 0 && chunk == 0) 445 continue; 446 447 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 448 *maskp |= chunk; 449 nchunks++; 450 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 451 if (nbits > nmaskbits) 452 return -EOVERFLOW; 453 } while (buflen && c == ','); 454 455 return 0; 456 } 457 EXPORT_SYMBOL(__bitmap_parse); 458 459 /** 460 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 461 * 462 * @ubuf: pointer to user buffer containing string. 463 * @ulen: buffer size in bytes. If string is smaller than this 464 * then it must be terminated with a \0. 465 * @maskp: pointer to bitmap array that will contain result. 466 * @nmaskbits: size of bitmap, in bits. 467 * 468 * Wrapper for __bitmap_parse(), providing it with user buffer. 469 * 470 * We cannot have this as an inline function in bitmap.h because it needs 471 * linux/uaccess.h to get the access_ok() declaration and this causes 472 * cyclic dependencies. 473 */ 474 int bitmap_parse_user(const char __user *ubuf, 475 unsigned int ulen, unsigned long *maskp, 476 int nmaskbits) 477 { 478 if (!access_ok(ubuf, ulen)) 479 return -EFAULT; 480 return __bitmap_parse((const char __force *)ubuf, 481 ulen, 1, maskp, nmaskbits); 482 483 } 484 EXPORT_SYMBOL(bitmap_parse_user); 485 486 /** 487 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 488 * @list: indicates whether the bitmap must be list 489 * @buf: page aligned buffer into which string is placed 490 * @maskp: pointer to bitmap to convert 491 * @nmaskbits: size of bitmap, in bits 492 * 493 * Output format is a comma-separated list of decimal numbers and 494 * ranges if list is specified or hex digits grouped into comma-separated 495 * sets of 8 digits/set. Returns the number of characters written to buf. 496 * 497 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 498 * area and that sufficient storage remains at @buf to accommodate the 499 * bitmap_print_to_pagebuf() output. Returns the number of characters 500 * actually printed to @buf, excluding terminating '\0'. 501 */ 502 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 503 int nmaskbits) 504 { 505 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 506 507 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 508 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 509 } 510 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 511 512 /* 513 * Region 9-38:4/10 describes the following bitmap structure: 514 * 0 9 12 18 38 515 * .........****......****......****...... 516 * ^ ^ ^ ^ 517 * start off group_len end 518 */ 519 struct region { 520 unsigned int start; 521 unsigned int off; 522 unsigned int group_len; 523 unsigned int end; 524 }; 525 526 static int bitmap_set_region(const struct region *r, 527 unsigned long *bitmap, int nbits) 528 { 529 unsigned int start; 530 531 if (r->end >= nbits) 532 return -ERANGE; 533 534 for (start = r->start; start <= r->end; start += r->group_len) 535 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 536 537 return 0; 538 } 539 540 static int bitmap_check_region(const struct region *r) 541 { 542 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 543 return -EINVAL; 544 545 return 0; 546 } 547 548 static const char *bitmap_getnum(const char *str, unsigned int *num) 549 { 550 unsigned long long n; 551 unsigned int len; 552 553 len = _parse_integer(str, 10, &n); 554 if (!len) 555 return ERR_PTR(-EINVAL); 556 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 557 return ERR_PTR(-EOVERFLOW); 558 559 *num = n; 560 return str + len; 561 } 562 563 static inline bool end_of_str(char c) 564 { 565 return c == '\0' || c == '\n'; 566 } 567 568 static inline bool __end_of_region(char c) 569 { 570 return isspace(c) || c == ','; 571 } 572 573 static inline bool end_of_region(char c) 574 { 575 return __end_of_region(c) || end_of_str(c); 576 } 577 578 /* 579 * The format allows commas and whitespases at the beginning 580 * of the region. 581 */ 582 static const char *bitmap_find_region(const char *str) 583 { 584 while (__end_of_region(*str)) 585 str++; 586 587 return end_of_str(*str) ? NULL : str; 588 } 589 590 static const char *bitmap_parse_region(const char *str, struct region *r) 591 { 592 str = bitmap_getnum(str, &r->start); 593 if (IS_ERR(str)) 594 return str; 595 596 if (end_of_region(*str)) 597 goto no_end; 598 599 if (*str != '-') 600 return ERR_PTR(-EINVAL); 601 602 str = bitmap_getnum(str + 1, &r->end); 603 if (IS_ERR(str)) 604 return str; 605 606 if (end_of_region(*str)) 607 goto no_pattern; 608 609 if (*str != ':') 610 return ERR_PTR(-EINVAL); 611 612 str = bitmap_getnum(str + 1, &r->off); 613 if (IS_ERR(str)) 614 return str; 615 616 if (*str != '/') 617 return ERR_PTR(-EINVAL); 618 619 return bitmap_getnum(str + 1, &r->group_len); 620 621 no_end: 622 r->end = r->start; 623 no_pattern: 624 r->off = r->end + 1; 625 r->group_len = r->end + 1; 626 627 return end_of_str(*str) ? NULL : str; 628 } 629 630 /** 631 * bitmap_parselist - convert list format ASCII string to bitmap 632 * @buf: read user string from this buffer; must be terminated 633 * with a \0 or \n. 634 * @maskp: write resulting mask here 635 * @nmaskbits: number of bits in mask to be written 636 * 637 * Input format is a comma-separated list of decimal numbers and 638 * ranges. Consecutively set bits are shown as two hyphen-separated 639 * decimal numbers, the smallest and largest bit numbers set in 640 * the range. 641 * Optionally each range can be postfixed to denote that only parts of it 642 * should be set. The range will divided to groups of specific size. 643 * From each group will be used only defined amount of bits. 644 * Syntax: range:used_size/group_size 645 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 646 * 647 * Returns: 0 on success, -errno on invalid input strings. Error values: 648 * 649 * - ``-EINVAL``: wrong region format 650 * - ``-EINVAL``: invalid character in string 651 * - ``-ERANGE``: bit number specified too large for mask 652 * - ``-EOVERFLOW``: integer overflow in the input parameters 653 */ 654 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 655 { 656 struct region r; 657 long ret; 658 659 bitmap_zero(maskp, nmaskbits); 660 661 while (buf) { 662 buf = bitmap_find_region(buf); 663 if (buf == NULL) 664 return 0; 665 666 buf = bitmap_parse_region(buf, &r); 667 if (IS_ERR(buf)) 668 return PTR_ERR(buf); 669 670 ret = bitmap_check_region(&r); 671 if (ret) 672 return ret; 673 674 ret = bitmap_set_region(&r, maskp, nmaskbits); 675 if (ret) 676 return ret; 677 } 678 679 return 0; 680 } 681 EXPORT_SYMBOL(bitmap_parselist); 682 683 684 /** 685 * bitmap_parselist_user() 686 * 687 * @ubuf: pointer to user buffer containing string. 688 * @ulen: buffer size in bytes. If string is smaller than this 689 * then it must be terminated with a \0. 690 * @maskp: pointer to bitmap array that will contain result. 691 * @nmaskbits: size of bitmap, in bits. 692 * 693 * Wrapper for bitmap_parselist(), providing it with user buffer. 694 */ 695 int bitmap_parselist_user(const char __user *ubuf, 696 unsigned int ulen, unsigned long *maskp, 697 int nmaskbits) 698 { 699 char *buf; 700 int ret; 701 702 buf = memdup_user_nul(ubuf, ulen); 703 if (IS_ERR(buf)) 704 return PTR_ERR(buf); 705 706 ret = bitmap_parselist(buf, maskp, nmaskbits); 707 708 kfree(buf); 709 return ret; 710 } 711 EXPORT_SYMBOL(bitmap_parselist_user); 712 713 714 #ifdef CONFIG_NUMA 715 /** 716 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 717 * @buf: pointer to a bitmap 718 * @pos: a bit position in @buf (0 <= @pos < @nbits) 719 * @nbits: number of valid bit positions in @buf 720 * 721 * Map the bit at position @pos in @buf (of length @nbits) to the 722 * ordinal of which set bit it is. If it is not set or if @pos 723 * is not a valid bit position, map to -1. 724 * 725 * If for example, just bits 4 through 7 are set in @buf, then @pos 726 * values 4 through 7 will get mapped to 0 through 3, respectively, 727 * and other @pos values will get mapped to -1. When @pos value 7 728 * gets mapped to (returns) @ord value 3 in this example, that means 729 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 730 * 731 * The bit positions 0 through @bits are valid positions in @buf. 732 */ 733 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 734 { 735 if (pos >= nbits || !test_bit(pos, buf)) 736 return -1; 737 738 return __bitmap_weight(buf, pos); 739 } 740 741 /** 742 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 743 * @buf: pointer to bitmap 744 * @ord: ordinal bit position (n-th set bit, n >= 0) 745 * @nbits: number of valid bit positions in @buf 746 * 747 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 748 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 749 * >= weight(buf), returns @nbits. 750 * 751 * If for example, just bits 4 through 7 are set in @buf, then @ord 752 * values 0 through 3 will get mapped to 4 through 7, respectively, 753 * and all other @ord values returns @nbits. When @ord value 3 754 * gets mapped to (returns) @pos value 7 in this example, that means 755 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 756 * 757 * The bit positions 0 through @nbits-1 are valid positions in @buf. 758 */ 759 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 760 { 761 unsigned int pos; 762 763 for (pos = find_first_bit(buf, nbits); 764 pos < nbits && ord; 765 pos = find_next_bit(buf, nbits, pos + 1)) 766 ord--; 767 768 return pos; 769 } 770 771 /** 772 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 773 * @dst: remapped result 774 * @src: subset to be remapped 775 * @old: defines domain of map 776 * @new: defines range of map 777 * @nbits: number of bits in each of these bitmaps 778 * 779 * Let @old and @new define a mapping of bit positions, such that 780 * whatever position is held by the n-th set bit in @old is mapped 781 * to the n-th set bit in @new. In the more general case, allowing 782 * for the possibility that the weight 'w' of @new is less than the 783 * weight of @old, map the position of the n-th set bit in @old to 784 * the position of the m-th set bit in @new, where m == n % w. 785 * 786 * If either of the @old and @new bitmaps are empty, or if @src and 787 * @dst point to the same location, then this routine copies @src 788 * to @dst. 789 * 790 * The positions of unset bits in @old are mapped to themselves 791 * (the identify map). 792 * 793 * Apply the above specified mapping to @src, placing the result in 794 * @dst, clearing any bits previously set in @dst. 795 * 796 * For example, lets say that @old has bits 4 through 7 set, and 797 * @new has bits 12 through 15 set. This defines the mapping of bit 798 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 799 * bit positions unchanged. So if say @src comes into this routine 800 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 801 * 13 and 15 set. 802 */ 803 void bitmap_remap(unsigned long *dst, const unsigned long *src, 804 const unsigned long *old, const unsigned long *new, 805 unsigned int nbits) 806 { 807 unsigned int oldbit, w; 808 809 if (dst == src) /* following doesn't handle inplace remaps */ 810 return; 811 bitmap_zero(dst, nbits); 812 813 w = bitmap_weight(new, nbits); 814 for_each_set_bit(oldbit, src, nbits) { 815 int n = bitmap_pos_to_ord(old, oldbit, nbits); 816 817 if (n < 0 || w == 0) 818 set_bit(oldbit, dst); /* identity map */ 819 else 820 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 821 } 822 } 823 824 /** 825 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 826 * @oldbit: bit position to be mapped 827 * @old: defines domain of map 828 * @new: defines range of map 829 * @bits: number of bits in each of these bitmaps 830 * 831 * Let @old and @new define a mapping of bit positions, such that 832 * whatever position is held by the n-th set bit in @old is mapped 833 * to the n-th set bit in @new. In the more general case, allowing 834 * for the possibility that the weight 'w' of @new is less than the 835 * weight of @old, map the position of the n-th set bit in @old to 836 * the position of the m-th set bit in @new, where m == n % w. 837 * 838 * The positions of unset bits in @old are mapped to themselves 839 * (the identify map). 840 * 841 * Apply the above specified mapping to bit position @oldbit, returning 842 * the new bit position. 843 * 844 * For example, lets say that @old has bits 4 through 7 set, and 845 * @new has bits 12 through 15 set. This defines the mapping of bit 846 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 847 * bit positions unchanged. So if say @oldbit is 5, then this routine 848 * returns 13. 849 */ 850 int bitmap_bitremap(int oldbit, const unsigned long *old, 851 const unsigned long *new, int bits) 852 { 853 int w = bitmap_weight(new, bits); 854 int n = bitmap_pos_to_ord(old, oldbit, bits); 855 if (n < 0 || w == 0) 856 return oldbit; 857 else 858 return bitmap_ord_to_pos(new, n % w, bits); 859 } 860 861 /** 862 * bitmap_onto - translate one bitmap relative to another 863 * @dst: resulting translated bitmap 864 * @orig: original untranslated bitmap 865 * @relmap: bitmap relative to which translated 866 * @bits: number of bits in each of these bitmaps 867 * 868 * Set the n-th bit of @dst iff there exists some m such that the 869 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 870 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 871 * (If you understood the previous sentence the first time your 872 * read it, you're overqualified for your current job.) 873 * 874 * In other words, @orig is mapped onto (surjectively) @dst, 875 * using the map { <n, m> | the n-th bit of @relmap is the 876 * m-th set bit of @relmap }. 877 * 878 * Any set bits in @orig above bit number W, where W is the 879 * weight of (number of set bits in) @relmap are mapped nowhere. 880 * In particular, if for all bits m set in @orig, m >= W, then 881 * @dst will end up empty. In situations where the possibility 882 * of such an empty result is not desired, one way to avoid it is 883 * to use the bitmap_fold() operator, below, to first fold the 884 * @orig bitmap over itself so that all its set bits x are in the 885 * range 0 <= x < W. The bitmap_fold() operator does this by 886 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 887 * 888 * Example [1] for bitmap_onto(): 889 * Let's say @relmap has bits 30-39 set, and @orig has bits 890 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 891 * @dst will have bits 31, 33, 35, 37 and 39 set. 892 * 893 * When bit 0 is set in @orig, it means turn on the bit in 894 * @dst corresponding to whatever is the first bit (if any) 895 * that is turned on in @relmap. Since bit 0 was off in the 896 * above example, we leave off that bit (bit 30) in @dst. 897 * 898 * When bit 1 is set in @orig (as in the above example), it 899 * means turn on the bit in @dst corresponding to whatever 900 * is the second bit that is turned on in @relmap. The second 901 * bit in @relmap that was turned on in the above example was 902 * bit 31, so we turned on bit 31 in @dst. 903 * 904 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 905 * because they were the 4th, 6th, 8th and 10th set bits 906 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 907 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 908 * 909 * When bit 11 is set in @orig, it means turn on the bit in 910 * @dst corresponding to whatever is the twelfth bit that is 911 * turned on in @relmap. In the above example, there were 912 * only ten bits turned on in @relmap (30..39), so that bit 913 * 11 was set in @orig had no affect on @dst. 914 * 915 * Example [2] for bitmap_fold() + bitmap_onto(): 916 * Let's say @relmap has these ten bits set:: 917 * 918 * 40 41 42 43 45 48 53 61 74 95 919 * 920 * (for the curious, that's 40 plus the first ten terms of the 921 * Fibonacci sequence.) 922 * 923 * Further lets say we use the following code, invoking 924 * bitmap_fold() then bitmap_onto, as suggested above to 925 * avoid the possibility of an empty @dst result:: 926 * 927 * unsigned long *tmp; // a temporary bitmap's bits 928 * 929 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 930 * bitmap_onto(dst, tmp, relmap, bits); 931 * 932 * Then this table shows what various values of @dst would be, for 933 * various @orig's. I list the zero-based positions of each set bit. 934 * The tmp column shows the intermediate result, as computed by 935 * using bitmap_fold() to fold the @orig bitmap modulo ten 936 * (the weight of @relmap): 937 * 938 * =============== ============== ================= 939 * @orig tmp @dst 940 * 0 0 40 941 * 1 1 41 942 * 9 9 95 943 * 10 0 40 [#f1]_ 944 * 1 3 5 7 1 3 5 7 41 43 48 61 945 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 946 * 0 9 18 27 0 9 8 7 40 61 74 95 947 * 0 10 20 30 0 40 948 * 0 11 22 33 0 1 2 3 40 41 42 43 949 * 0 12 24 36 0 2 4 6 40 42 45 53 950 * 78 102 211 1 2 8 41 42 74 [#f1]_ 951 * =============== ============== ================= 952 * 953 * .. [#f1] 954 * 955 * For these marked lines, if we hadn't first done bitmap_fold() 956 * into tmp, then the @dst result would have been empty. 957 * 958 * If either of @orig or @relmap is empty (no set bits), then @dst 959 * will be returned empty. 960 * 961 * If (as explained above) the only set bits in @orig are in positions 962 * m where m >= W, (where W is the weight of @relmap) then @dst will 963 * once again be returned empty. 964 * 965 * All bits in @dst not set by the above rule are cleared. 966 */ 967 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 968 const unsigned long *relmap, unsigned int bits) 969 { 970 unsigned int n, m; /* same meaning as in above comment */ 971 972 if (dst == orig) /* following doesn't handle inplace mappings */ 973 return; 974 bitmap_zero(dst, bits); 975 976 /* 977 * The following code is a more efficient, but less 978 * obvious, equivalent to the loop: 979 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 980 * n = bitmap_ord_to_pos(orig, m, bits); 981 * if (test_bit(m, orig)) 982 * set_bit(n, dst); 983 * } 984 */ 985 986 m = 0; 987 for_each_set_bit(n, relmap, bits) { 988 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 989 if (test_bit(m, orig)) 990 set_bit(n, dst); 991 m++; 992 } 993 } 994 995 /** 996 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 997 * @dst: resulting smaller bitmap 998 * @orig: original larger bitmap 999 * @sz: specified size 1000 * @nbits: number of bits in each of these bitmaps 1001 * 1002 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1003 * Clear all other bits in @dst. See further the comment and 1004 * Example [2] for bitmap_onto() for why and how to use this. 1005 */ 1006 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1007 unsigned int sz, unsigned int nbits) 1008 { 1009 unsigned int oldbit; 1010 1011 if (dst == orig) /* following doesn't handle inplace mappings */ 1012 return; 1013 bitmap_zero(dst, nbits); 1014 1015 for_each_set_bit(oldbit, orig, nbits) 1016 set_bit(oldbit % sz, dst); 1017 } 1018 #endif /* CONFIG_NUMA */ 1019 1020 /* 1021 * Common code for bitmap_*_region() routines. 1022 * bitmap: array of unsigned longs corresponding to the bitmap 1023 * pos: the beginning of the region 1024 * order: region size (log base 2 of number of bits) 1025 * reg_op: operation(s) to perform on that region of bitmap 1026 * 1027 * Can set, verify and/or release a region of bits in a bitmap, 1028 * depending on which combination of REG_OP_* flag bits is set. 1029 * 1030 * A region of a bitmap is a sequence of bits in the bitmap, of 1031 * some size '1 << order' (a power of two), aligned to that same 1032 * '1 << order' power of two. 1033 * 1034 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1035 * Returns 0 in all other cases and reg_ops. 1036 */ 1037 1038 enum { 1039 REG_OP_ISFREE, /* true if region is all zero bits */ 1040 REG_OP_ALLOC, /* set all bits in region */ 1041 REG_OP_RELEASE, /* clear all bits in region */ 1042 }; 1043 1044 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1045 { 1046 int nbits_reg; /* number of bits in region */ 1047 int index; /* index first long of region in bitmap */ 1048 int offset; /* bit offset region in bitmap[index] */ 1049 int nlongs_reg; /* num longs spanned by region in bitmap */ 1050 int nbitsinlong; /* num bits of region in each spanned long */ 1051 unsigned long mask; /* bitmask for one long of region */ 1052 int i; /* scans bitmap by longs */ 1053 int ret = 0; /* return value */ 1054 1055 /* 1056 * Either nlongs_reg == 1 (for small orders that fit in one long) 1057 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1058 */ 1059 nbits_reg = 1 << order; 1060 index = pos / BITS_PER_LONG; 1061 offset = pos - (index * BITS_PER_LONG); 1062 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1063 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1064 1065 /* 1066 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1067 * overflows if nbitsinlong == BITS_PER_LONG. 1068 */ 1069 mask = (1UL << (nbitsinlong - 1)); 1070 mask += mask - 1; 1071 mask <<= offset; 1072 1073 switch (reg_op) { 1074 case REG_OP_ISFREE: 1075 for (i = 0; i < nlongs_reg; i++) { 1076 if (bitmap[index + i] & mask) 1077 goto done; 1078 } 1079 ret = 1; /* all bits in region free (zero) */ 1080 break; 1081 1082 case REG_OP_ALLOC: 1083 for (i = 0; i < nlongs_reg; i++) 1084 bitmap[index + i] |= mask; 1085 break; 1086 1087 case REG_OP_RELEASE: 1088 for (i = 0; i < nlongs_reg; i++) 1089 bitmap[index + i] &= ~mask; 1090 break; 1091 } 1092 done: 1093 return ret; 1094 } 1095 1096 /** 1097 * bitmap_find_free_region - find a contiguous aligned mem region 1098 * @bitmap: array of unsigned longs corresponding to the bitmap 1099 * @bits: number of bits in the bitmap 1100 * @order: region size (log base 2 of number of bits) to find 1101 * 1102 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1103 * allocate them (set them to one). Only consider regions of length 1104 * a power (@order) of two, aligned to that power of two, which 1105 * makes the search algorithm much faster. 1106 * 1107 * Return the bit offset in bitmap of the allocated region, 1108 * or -errno on failure. 1109 */ 1110 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1111 { 1112 unsigned int pos, end; /* scans bitmap by regions of size order */ 1113 1114 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1115 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1116 continue; 1117 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1118 return pos; 1119 } 1120 return -ENOMEM; 1121 } 1122 EXPORT_SYMBOL(bitmap_find_free_region); 1123 1124 /** 1125 * bitmap_release_region - release allocated bitmap region 1126 * @bitmap: array of unsigned longs corresponding to the bitmap 1127 * @pos: beginning of bit region to release 1128 * @order: region size (log base 2 of number of bits) to release 1129 * 1130 * This is the complement to __bitmap_find_free_region() and releases 1131 * the found region (by clearing it in the bitmap). 1132 * 1133 * No return value. 1134 */ 1135 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1136 { 1137 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1138 } 1139 EXPORT_SYMBOL(bitmap_release_region); 1140 1141 /** 1142 * bitmap_allocate_region - allocate bitmap region 1143 * @bitmap: array of unsigned longs corresponding to the bitmap 1144 * @pos: beginning of bit region to allocate 1145 * @order: region size (log base 2 of number of bits) to allocate 1146 * 1147 * Allocate (set bits in) a specified region of a bitmap. 1148 * 1149 * Return 0 on success, or %-EBUSY if specified region wasn't 1150 * free (not all bits were zero). 1151 */ 1152 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1153 { 1154 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1155 return -EBUSY; 1156 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1157 } 1158 EXPORT_SYMBOL(bitmap_allocate_region); 1159 1160 /** 1161 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1162 * @dst: destination buffer 1163 * @src: bitmap to copy 1164 * @nbits: number of bits in the bitmap 1165 * 1166 * Require nbits % BITS_PER_LONG == 0. 1167 */ 1168 #ifdef __BIG_ENDIAN 1169 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1170 { 1171 unsigned int i; 1172 1173 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1174 if (BITS_PER_LONG == 64) 1175 dst[i] = cpu_to_le64(src[i]); 1176 else 1177 dst[i] = cpu_to_le32(src[i]); 1178 } 1179 } 1180 EXPORT_SYMBOL(bitmap_copy_le); 1181 #endif 1182 1183 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1184 { 1185 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1186 flags); 1187 } 1188 EXPORT_SYMBOL(bitmap_alloc); 1189 1190 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1191 { 1192 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1193 } 1194 EXPORT_SYMBOL(bitmap_zalloc); 1195 1196 void bitmap_free(const unsigned long *bitmap) 1197 { 1198 kfree(bitmap); 1199 } 1200 EXPORT_SYMBOL(bitmap_free); 1201 1202 #if BITS_PER_LONG == 64 1203 /** 1204 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1205 * @bitmap: array of unsigned longs, the destination bitmap 1206 * @buf: array of u32 (in host byte order), the source bitmap 1207 * @nbits: number of bits in @bitmap 1208 */ 1209 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1210 { 1211 unsigned int i, halfwords; 1212 1213 halfwords = DIV_ROUND_UP(nbits, 32); 1214 for (i = 0; i < halfwords; i++) { 1215 bitmap[i/2] = (unsigned long) buf[i]; 1216 if (++i < halfwords) 1217 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1218 } 1219 1220 /* Clear tail bits in last word beyond nbits. */ 1221 if (nbits % BITS_PER_LONG) 1222 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1223 } 1224 EXPORT_SYMBOL(bitmap_from_arr32); 1225 1226 /** 1227 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1228 * @buf: array of u32 (in host byte order), the dest bitmap 1229 * @bitmap: array of unsigned longs, the source bitmap 1230 * @nbits: number of bits in @bitmap 1231 */ 1232 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1233 { 1234 unsigned int i, halfwords; 1235 1236 halfwords = DIV_ROUND_UP(nbits, 32); 1237 for (i = 0; i < halfwords; i++) { 1238 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1239 if (++i < halfwords) 1240 buf[i] = (u32) (bitmap[i/2] >> 32); 1241 } 1242 1243 /* Clear tail bits in last element of array beyond nbits. */ 1244 if (nbits % BITS_PER_LONG) 1245 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1246 } 1247 EXPORT_SYMBOL(bitmap_to_arr32); 1248 1249 #endif 1250