1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 #include <linux/kernel.h> 16 #include <linux/string.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/page.h> 20 21 /* 22 * bitmaps provide an array of bits, implemented using an an 23 * array of unsigned longs. The number of valid bits in a 24 * given bitmap does _not_ need to be an exact multiple of 25 * BITS_PER_LONG. 26 * 27 * The possible unused bits in the last, partially used word 28 * of a bitmap are 'don't care'. The implementation makes 29 * no particular effort to keep them zero. It ensures that 30 * their value will not affect the results of any operation. 31 * The bitmap operations that return Boolean (bitmap_empty, 32 * for example) or scalar (bitmap_weight, for example) results 33 * carefully filter out these unused bits from impacting their 34 * results. 35 * 36 * These operations actually hold to a slightly stronger rule: 37 * if you don't input any bitmaps to these ops that have some 38 * unused bits set, then they won't output any set unused bits 39 * in output bitmaps. 40 * 41 * The byte ordering of bitmaps is more natural on little 42 * endian architectures. See the big-endian headers 43 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 44 * for the best explanations of this ordering. 45 */ 46 47 int __bitmap_equal(const unsigned long *bitmap1, 48 const unsigned long *bitmap2, unsigned int bits) 49 { 50 unsigned int k, lim = bits/BITS_PER_LONG; 51 for (k = 0; k < lim; ++k) 52 if (bitmap1[k] != bitmap2[k]) 53 return 0; 54 55 if (bits % BITS_PER_LONG) 56 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 57 return 0; 58 59 return 1; 60 } 61 EXPORT_SYMBOL(__bitmap_equal); 62 63 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 64 { 65 unsigned int k, lim = bits/BITS_PER_LONG; 66 for (k = 0; k < lim; ++k) 67 dst[k] = ~src[k]; 68 69 if (bits % BITS_PER_LONG) 70 dst[k] = ~src[k]; 71 } 72 EXPORT_SYMBOL(__bitmap_complement); 73 74 /** 75 * __bitmap_shift_right - logical right shift of the bits in a bitmap 76 * @dst : destination bitmap 77 * @src : source bitmap 78 * @shift : shift by this many bits 79 * @nbits : bitmap size, in bits 80 * 81 * Shifting right (dividing) means moving bits in the MS -> LS bit 82 * direction. Zeros are fed into the vacated MS positions and the 83 * LS bits shifted off the bottom are lost. 84 */ 85 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 86 unsigned shift, unsigned nbits) 87 { 88 unsigned k, lim = BITS_TO_LONGS(nbits); 89 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 90 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 91 for (k = 0; off + k < lim; ++k) { 92 unsigned long upper, lower; 93 94 /* 95 * If shift is not word aligned, take lower rem bits of 96 * word above and make them the top rem bits of result. 97 */ 98 if (!rem || off + k + 1 >= lim) 99 upper = 0; 100 else { 101 upper = src[off + k + 1]; 102 if (off + k + 1 == lim - 1) 103 upper &= mask; 104 upper <<= (BITS_PER_LONG - rem); 105 } 106 lower = src[off + k]; 107 if (off + k == lim - 1) 108 lower &= mask; 109 lower >>= rem; 110 dst[k] = lower | upper; 111 } 112 if (off) 113 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 114 } 115 EXPORT_SYMBOL(__bitmap_shift_right); 116 117 118 /** 119 * __bitmap_shift_left - logical left shift of the bits in a bitmap 120 * @dst : destination bitmap 121 * @src : source bitmap 122 * @shift : shift by this many bits 123 * @nbits : bitmap size, in bits 124 * 125 * Shifting left (multiplying) means moving bits in the LS -> MS 126 * direction. Zeros are fed into the vacated LS bit positions 127 * and those MS bits shifted off the top are lost. 128 */ 129 130 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 131 unsigned int shift, unsigned int nbits) 132 { 133 int k; 134 unsigned int lim = BITS_TO_LONGS(nbits); 135 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 136 for (k = lim - off - 1; k >= 0; --k) { 137 unsigned long upper, lower; 138 139 /* 140 * If shift is not word aligned, take upper rem bits of 141 * word below and make them the bottom rem bits of result. 142 */ 143 if (rem && k > 0) 144 lower = src[k - 1] >> (BITS_PER_LONG - rem); 145 else 146 lower = 0; 147 upper = src[k] << rem; 148 dst[k + off] = lower | upper; 149 } 150 if (off) 151 memset(dst, 0, off*sizeof(unsigned long)); 152 } 153 EXPORT_SYMBOL(__bitmap_shift_left); 154 155 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 156 const unsigned long *bitmap2, unsigned int bits) 157 { 158 unsigned int k; 159 unsigned int lim = bits/BITS_PER_LONG; 160 unsigned long result = 0; 161 162 for (k = 0; k < lim; k++) 163 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 164 if (bits % BITS_PER_LONG) 165 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 166 BITMAP_LAST_WORD_MASK(bits)); 167 return result != 0; 168 } 169 EXPORT_SYMBOL(__bitmap_and); 170 171 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 172 const unsigned long *bitmap2, unsigned int bits) 173 { 174 unsigned int k; 175 unsigned int nr = BITS_TO_LONGS(bits); 176 177 for (k = 0; k < nr; k++) 178 dst[k] = bitmap1[k] | bitmap2[k]; 179 } 180 EXPORT_SYMBOL(__bitmap_or); 181 182 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 183 const unsigned long *bitmap2, unsigned int bits) 184 { 185 unsigned int k; 186 unsigned int nr = BITS_TO_LONGS(bits); 187 188 for (k = 0; k < nr; k++) 189 dst[k] = bitmap1[k] ^ bitmap2[k]; 190 } 191 EXPORT_SYMBOL(__bitmap_xor); 192 193 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 194 const unsigned long *bitmap2, unsigned int bits) 195 { 196 unsigned int k; 197 unsigned int lim = bits/BITS_PER_LONG; 198 unsigned long result = 0; 199 200 for (k = 0; k < lim; k++) 201 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 202 if (bits % BITS_PER_LONG) 203 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 204 BITMAP_LAST_WORD_MASK(bits)); 205 return result != 0; 206 } 207 EXPORT_SYMBOL(__bitmap_andnot); 208 209 int __bitmap_intersects(const unsigned long *bitmap1, 210 const unsigned long *bitmap2, unsigned int bits) 211 { 212 unsigned int k, lim = bits/BITS_PER_LONG; 213 for (k = 0; k < lim; ++k) 214 if (bitmap1[k] & bitmap2[k]) 215 return 1; 216 217 if (bits % BITS_PER_LONG) 218 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 219 return 1; 220 return 0; 221 } 222 EXPORT_SYMBOL(__bitmap_intersects); 223 224 int __bitmap_subset(const unsigned long *bitmap1, 225 const unsigned long *bitmap2, unsigned int bits) 226 { 227 unsigned int k, lim = bits/BITS_PER_LONG; 228 for (k = 0; k < lim; ++k) 229 if (bitmap1[k] & ~bitmap2[k]) 230 return 0; 231 232 if (bits % BITS_PER_LONG) 233 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 234 return 0; 235 return 1; 236 } 237 EXPORT_SYMBOL(__bitmap_subset); 238 239 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 240 { 241 unsigned int k, lim = bits/BITS_PER_LONG; 242 int w = 0; 243 244 for (k = 0; k < lim; k++) 245 w += hweight_long(bitmap[k]); 246 247 if (bits % BITS_PER_LONG) 248 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 249 250 return w; 251 } 252 EXPORT_SYMBOL(__bitmap_weight); 253 254 void __bitmap_set(unsigned long *map, unsigned int start, int len) 255 { 256 unsigned long *p = map + BIT_WORD(start); 257 const unsigned int size = start + len; 258 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 259 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 260 261 while (len - bits_to_set >= 0) { 262 *p |= mask_to_set; 263 len -= bits_to_set; 264 bits_to_set = BITS_PER_LONG; 265 mask_to_set = ~0UL; 266 p++; 267 } 268 if (len) { 269 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 270 *p |= mask_to_set; 271 } 272 } 273 EXPORT_SYMBOL(__bitmap_set); 274 275 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 276 { 277 unsigned long *p = map + BIT_WORD(start); 278 const unsigned int size = start + len; 279 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 280 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 281 282 while (len - bits_to_clear >= 0) { 283 *p &= ~mask_to_clear; 284 len -= bits_to_clear; 285 bits_to_clear = BITS_PER_LONG; 286 mask_to_clear = ~0UL; 287 p++; 288 } 289 if (len) { 290 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 291 *p &= ~mask_to_clear; 292 } 293 } 294 EXPORT_SYMBOL(__bitmap_clear); 295 296 /** 297 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 298 * @map: The address to base the search on 299 * @size: The bitmap size in bits 300 * @start: The bitnumber to start searching at 301 * @nr: The number of zeroed bits we're looking for 302 * @align_mask: Alignment mask for zero area 303 * @align_offset: Alignment offset for zero area. 304 * 305 * The @align_mask should be one less than a power of 2; the effect is that 306 * the bit offset of all zero areas this function finds plus @align_offset 307 * is multiple of that power of 2. 308 */ 309 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 310 unsigned long size, 311 unsigned long start, 312 unsigned int nr, 313 unsigned long align_mask, 314 unsigned long align_offset) 315 { 316 unsigned long index, end, i; 317 again: 318 index = find_next_zero_bit(map, size, start); 319 320 /* Align allocation */ 321 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 322 323 end = index + nr; 324 if (end > size) 325 return end; 326 i = find_next_bit(map, end, index); 327 if (i < end) { 328 start = i + 1; 329 goto again; 330 } 331 return index; 332 } 333 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 334 335 /* 336 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 337 * second version by Paul Jackson, third by Joe Korty. 338 */ 339 340 #define CHUNKSZ 32 341 #define nbits_to_hold_value(val) fls(val) 342 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 343 344 /** 345 * __bitmap_parse - convert an ASCII hex string into a bitmap. 346 * @buf: pointer to buffer containing string. 347 * @buflen: buffer size in bytes. If string is smaller than this 348 * then it must be terminated with a \0. 349 * @is_user: location of buffer, 0 indicates kernel space 350 * @maskp: pointer to bitmap array that will contain result. 351 * @nmaskbits: size of bitmap, in bits. 352 * 353 * Commas group hex digits into chunks. Each chunk defines exactly 32 354 * bits of the resultant bitmask. No chunk may specify a value larger 355 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 356 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 357 * characters and for grouping errors such as "1,,5", ",44", "," and "". 358 * Leading and trailing whitespace accepted, but not embedded whitespace. 359 */ 360 int __bitmap_parse(const char *buf, unsigned int buflen, 361 int is_user, unsigned long *maskp, 362 int nmaskbits) 363 { 364 int c, old_c, totaldigits, ndigits, nchunks, nbits; 365 u32 chunk; 366 const char __user __force *ubuf = (const char __user __force *)buf; 367 368 bitmap_zero(maskp, nmaskbits); 369 370 nchunks = nbits = totaldigits = c = 0; 371 do { 372 chunk = 0; 373 ndigits = totaldigits; 374 375 /* Get the next chunk of the bitmap */ 376 while (buflen) { 377 old_c = c; 378 if (is_user) { 379 if (__get_user(c, ubuf++)) 380 return -EFAULT; 381 } 382 else 383 c = *buf++; 384 buflen--; 385 if (isspace(c)) 386 continue; 387 388 /* 389 * If the last character was a space and the current 390 * character isn't '\0', we've got embedded whitespace. 391 * This is a no-no, so throw an error. 392 */ 393 if (totaldigits && c && isspace(old_c)) 394 return -EINVAL; 395 396 /* A '\0' or a ',' signal the end of the chunk */ 397 if (c == '\0' || c == ',') 398 break; 399 400 if (!isxdigit(c)) 401 return -EINVAL; 402 403 /* 404 * Make sure there are at least 4 free bits in 'chunk'. 405 * If not, this hexdigit will overflow 'chunk', so 406 * throw an error. 407 */ 408 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 409 return -EOVERFLOW; 410 411 chunk = (chunk << 4) | hex_to_bin(c); 412 totaldigits++; 413 } 414 if (ndigits == totaldigits) 415 return -EINVAL; 416 if (nchunks == 0 && chunk == 0) 417 continue; 418 419 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 420 *maskp |= chunk; 421 nchunks++; 422 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 423 if (nbits > nmaskbits) 424 return -EOVERFLOW; 425 } while (buflen && c == ','); 426 427 return 0; 428 } 429 EXPORT_SYMBOL(__bitmap_parse); 430 431 /** 432 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 433 * 434 * @ubuf: pointer to user buffer containing string. 435 * @ulen: buffer size in bytes. If string is smaller than this 436 * then it must be terminated with a \0. 437 * @maskp: pointer to bitmap array that will contain result. 438 * @nmaskbits: size of bitmap, in bits. 439 * 440 * Wrapper for __bitmap_parse(), providing it with user buffer. 441 * 442 * We cannot have this as an inline function in bitmap.h because it needs 443 * linux/uaccess.h to get the access_ok() declaration and this causes 444 * cyclic dependencies. 445 */ 446 int bitmap_parse_user(const char __user *ubuf, 447 unsigned int ulen, unsigned long *maskp, 448 int nmaskbits) 449 { 450 if (!access_ok(VERIFY_READ, ubuf, ulen)) 451 return -EFAULT; 452 return __bitmap_parse((const char __force *)ubuf, 453 ulen, 1, maskp, nmaskbits); 454 455 } 456 EXPORT_SYMBOL(bitmap_parse_user); 457 458 /** 459 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 460 * @list: indicates whether the bitmap must be list 461 * @buf: page aligned buffer into which string is placed 462 * @maskp: pointer to bitmap to convert 463 * @nmaskbits: size of bitmap, in bits 464 * 465 * Output format is a comma-separated list of decimal numbers and 466 * ranges if list is specified or hex digits grouped into comma-separated 467 * sets of 8 digits/set. Returns the number of characters written to buf. 468 * 469 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that 470 * sufficient storage remains at @buf to accommodate the 471 * bitmap_print_to_pagebuf() output. 472 */ 473 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 474 int nmaskbits) 475 { 476 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf; 477 int n = 0; 478 479 if (len > 1) 480 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 481 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 482 return n; 483 } 484 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 485 486 /** 487 * __bitmap_parselist - convert list format ASCII string to bitmap 488 * @buf: read nul-terminated user string from this buffer 489 * @buflen: buffer size in bytes. If string is smaller than this 490 * then it must be terminated with a \0. 491 * @is_user: location of buffer, 0 indicates kernel space 492 * @maskp: write resulting mask here 493 * @nmaskbits: number of bits in mask to be written 494 * 495 * Input format is a comma-separated list of decimal numbers and 496 * ranges. Consecutively set bits are shown as two hyphen-separated 497 * decimal numbers, the smallest and largest bit numbers set in 498 * the range. 499 * Optionally each range can be postfixed to denote that only parts of it 500 * should be set. The range will divided to groups of specific size. 501 * From each group will be used only defined amount of bits. 502 * Syntax: range:used_size/group_size 503 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 504 * 505 * Returns: 0 on success, -errno on invalid input strings. Error values: 506 * 507 * - ``-EINVAL``: second number in range smaller than first 508 * - ``-EINVAL``: invalid character in string 509 * - ``-ERANGE``: bit number specified too large for mask 510 */ 511 static int __bitmap_parselist(const char *buf, unsigned int buflen, 512 int is_user, unsigned long *maskp, 513 int nmaskbits) 514 { 515 unsigned int a, b, old_a, old_b; 516 unsigned int group_size, used_size; 517 int c, old_c, totaldigits, ndigits; 518 const char __user __force *ubuf = (const char __user __force *)buf; 519 int at_start, in_range, in_partial_range; 520 521 totaldigits = c = 0; 522 old_a = old_b = 0; 523 group_size = used_size = 0; 524 bitmap_zero(maskp, nmaskbits); 525 do { 526 at_start = 1; 527 in_range = 0; 528 in_partial_range = 0; 529 a = b = 0; 530 ndigits = totaldigits; 531 532 /* Get the next cpu# or a range of cpu#'s */ 533 while (buflen) { 534 old_c = c; 535 if (is_user) { 536 if (__get_user(c, ubuf++)) 537 return -EFAULT; 538 } else 539 c = *buf++; 540 buflen--; 541 if (isspace(c)) 542 continue; 543 544 /* A '\0' or a ',' signal the end of a cpu# or range */ 545 if (c == '\0' || c == ',') 546 break; 547 /* 548 * whitespaces between digits are not allowed, 549 * but it's ok if whitespaces are on head or tail. 550 * when old_c is whilespace, 551 * if totaldigits == ndigits, whitespace is on head. 552 * if whitespace is on tail, it should not run here. 553 * as c was ',' or '\0', 554 * the last code line has broken the current loop. 555 */ 556 if ((totaldigits != ndigits) && isspace(old_c)) 557 return -EINVAL; 558 559 if (c == '/') { 560 used_size = a; 561 at_start = 1; 562 in_range = 0; 563 a = b = 0; 564 continue; 565 } 566 567 if (c == ':') { 568 old_a = a; 569 old_b = b; 570 at_start = 1; 571 in_range = 0; 572 in_partial_range = 1; 573 a = b = 0; 574 continue; 575 } 576 577 if (c == '-') { 578 if (at_start || in_range) 579 return -EINVAL; 580 b = 0; 581 in_range = 1; 582 at_start = 1; 583 continue; 584 } 585 586 if (!isdigit(c)) 587 return -EINVAL; 588 589 b = b * 10 + (c - '0'); 590 if (!in_range) 591 a = b; 592 at_start = 0; 593 totaldigits++; 594 } 595 if (ndigits == totaldigits) 596 continue; 597 if (in_partial_range) { 598 group_size = a; 599 a = old_a; 600 b = old_b; 601 old_a = old_b = 0; 602 } 603 /* if no digit is after '-', it's wrong*/ 604 if (at_start && in_range) 605 return -EINVAL; 606 if (!(a <= b) || !(used_size <= group_size)) 607 return -EINVAL; 608 if (b >= nmaskbits) 609 return -ERANGE; 610 while (a <= b) { 611 if (in_partial_range) { 612 static int pos_in_group = 1; 613 614 if (pos_in_group <= used_size) 615 set_bit(a, maskp); 616 617 if (a == b || ++pos_in_group > group_size) 618 pos_in_group = 1; 619 } else 620 set_bit(a, maskp); 621 a++; 622 } 623 } while (buflen && c == ','); 624 return 0; 625 } 626 627 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 628 { 629 char *nl = strchrnul(bp, '\n'); 630 int len = nl - bp; 631 632 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 633 } 634 EXPORT_SYMBOL(bitmap_parselist); 635 636 637 /** 638 * bitmap_parselist_user() 639 * 640 * @ubuf: pointer to user buffer containing string. 641 * @ulen: buffer size in bytes. If string is smaller than this 642 * then it must be terminated with a \0. 643 * @maskp: pointer to bitmap array that will contain result. 644 * @nmaskbits: size of bitmap, in bits. 645 * 646 * Wrapper for bitmap_parselist(), providing it with user buffer. 647 * 648 * We cannot have this as an inline function in bitmap.h because it needs 649 * linux/uaccess.h to get the access_ok() declaration and this causes 650 * cyclic dependencies. 651 */ 652 int bitmap_parselist_user(const char __user *ubuf, 653 unsigned int ulen, unsigned long *maskp, 654 int nmaskbits) 655 { 656 if (!access_ok(VERIFY_READ, ubuf, ulen)) 657 return -EFAULT; 658 return __bitmap_parselist((const char __force *)ubuf, 659 ulen, 1, maskp, nmaskbits); 660 } 661 EXPORT_SYMBOL(bitmap_parselist_user); 662 663 664 /** 665 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 666 * @buf: pointer to a bitmap 667 * @pos: a bit position in @buf (0 <= @pos < @nbits) 668 * @nbits: number of valid bit positions in @buf 669 * 670 * Map the bit at position @pos in @buf (of length @nbits) to the 671 * ordinal of which set bit it is. If it is not set or if @pos 672 * is not a valid bit position, map to -1. 673 * 674 * If for example, just bits 4 through 7 are set in @buf, then @pos 675 * values 4 through 7 will get mapped to 0 through 3, respectively, 676 * and other @pos values will get mapped to -1. When @pos value 7 677 * gets mapped to (returns) @ord value 3 in this example, that means 678 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 679 * 680 * The bit positions 0 through @bits are valid positions in @buf. 681 */ 682 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 683 { 684 if (pos >= nbits || !test_bit(pos, buf)) 685 return -1; 686 687 return __bitmap_weight(buf, pos); 688 } 689 690 /** 691 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 692 * @buf: pointer to bitmap 693 * @ord: ordinal bit position (n-th set bit, n >= 0) 694 * @nbits: number of valid bit positions in @buf 695 * 696 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 697 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 698 * >= weight(buf), returns @nbits. 699 * 700 * If for example, just bits 4 through 7 are set in @buf, then @ord 701 * values 0 through 3 will get mapped to 4 through 7, respectively, 702 * and all other @ord values returns @nbits. When @ord value 3 703 * gets mapped to (returns) @pos value 7 in this example, that means 704 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 705 * 706 * The bit positions 0 through @nbits-1 are valid positions in @buf. 707 */ 708 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 709 { 710 unsigned int pos; 711 712 for (pos = find_first_bit(buf, nbits); 713 pos < nbits && ord; 714 pos = find_next_bit(buf, nbits, pos + 1)) 715 ord--; 716 717 return pos; 718 } 719 720 /** 721 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 722 * @dst: remapped result 723 * @src: subset to be remapped 724 * @old: defines domain of map 725 * @new: defines range of map 726 * @nbits: number of bits in each of these bitmaps 727 * 728 * Let @old and @new define a mapping of bit positions, such that 729 * whatever position is held by the n-th set bit in @old is mapped 730 * to the n-th set bit in @new. In the more general case, allowing 731 * for the possibility that the weight 'w' of @new is less than the 732 * weight of @old, map the position of the n-th set bit in @old to 733 * the position of the m-th set bit in @new, where m == n % w. 734 * 735 * If either of the @old and @new bitmaps are empty, or if @src and 736 * @dst point to the same location, then this routine copies @src 737 * to @dst. 738 * 739 * The positions of unset bits in @old are mapped to themselves 740 * (the identify map). 741 * 742 * Apply the above specified mapping to @src, placing the result in 743 * @dst, clearing any bits previously set in @dst. 744 * 745 * For example, lets say that @old has bits 4 through 7 set, and 746 * @new has bits 12 through 15 set. This defines the mapping of bit 747 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 748 * bit positions unchanged. So if say @src comes into this routine 749 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 750 * 13 and 15 set. 751 */ 752 void bitmap_remap(unsigned long *dst, const unsigned long *src, 753 const unsigned long *old, const unsigned long *new, 754 unsigned int nbits) 755 { 756 unsigned int oldbit, w; 757 758 if (dst == src) /* following doesn't handle inplace remaps */ 759 return; 760 bitmap_zero(dst, nbits); 761 762 w = bitmap_weight(new, nbits); 763 for_each_set_bit(oldbit, src, nbits) { 764 int n = bitmap_pos_to_ord(old, oldbit, nbits); 765 766 if (n < 0 || w == 0) 767 set_bit(oldbit, dst); /* identity map */ 768 else 769 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 770 } 771 } 772 EXPORT_SYMBOL(bitmap_remap); 773 774 /** 775 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 776 * @oldbit: bit position to be mapped 777 * @old: defines domain of map 778 * @new: defines range of map 779 * @bits: number of bits in each of these bitmaps 780 * 781 * Let @old and @new define a mapping of bit positions, such that 782 * whatever position is held by the n-th set bit in @old is mapped 783 * to the n-th set bit in @new. In the more general case, allowing 784 * for the possibility that the weight 'w' of @new is less than the 785 * weight of @old, map the position of the n-th set bit in @old to 786 * the position of the m-th set bit in @new, where m == n % w. 787 * 788 * The positions of unset bits in @old are mapped to themselves 789 * (the identify map). 790 * 791 * Apply the above specified mapping to bit position @oldbit, returning 792 * the new bit position. 793 * 794 * For example, lets say that @old has bits 4 through 7 set, and 795 * @new has bits 12 through 15 set. This defines the mapping of bit 796 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 797 * bit positions unchanged. So if say @oldbit is 5, then this routine 798 * returns 13. 799 */ 800 int bitmap_bitremap(int oldbit, const unsigned long *old, 801 const unsigned long *new, int bits) 802 { 803 int w = bitmap_weight(new, bits); 804 int n = bitmap_pos_to_ord(old, oldbit, bits); 805 if (n < 0 || w == 0) 806 return oldbit; 807 else 808 return bitmap_ord_to_pos(new, n % w, bits); 809 } 810 EXPORT_SYMBOL(bitmap_bitremap); 811 812 /** 813 * bitmap_onto - translate one bitmap relative to another 814 * @dst: resulting translated bitmap 815 * @orig: original untranslated bitmap 816 * @relmap: bitmap relative to which translated 817 * @bits: number of bits in each of these bitmaps 818 * 819 * Set the n-th bit of @dst iff there exists some m such that the 820 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 821 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 822 * (If you understood the previous sentence the first time your 823 * read it, you're overqualified for your current job.) 824 * 825 * In other words, @orig is mapped onto (surjectively) @dst, 826 * using the map { <n, m> | the n-th bit of @relmap is the 827 * m-th set bit of @relmap }. 828 * 829 * Any set bits in @orig above bit number W, where W is the 830 * weight of (number of set bits in) @relmap are mapped nowhere. 831 * In particular, if for all bits m set in @orig, m >= W, then 832 * @dst will end up empty. In situations where the possibility 833 * of such an empty result is not desired, one way to avoid it is 834 * to use the bitmap_fold() operator, below, to first fold the 835 * @orig bitmap over itself so that all its set bits x are in the 836 * range 0 <= x < W. The bitmap_fold() operator does this by 837 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 838 * 839 * Example [1] for bitmap_onto(): 840 * Let's say @relmap has bits 30-39 set, and @orig has bits 841 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 842 * @dst will have bits 31, 33, 35, 37 and 39 set. 843 * 844 * When bit 0 is set in @orig, it means turn on the bit in 845 * @dst corresponding to whatever is the first bit (if any) 846 * that is turned on in @relmap. Since bit 0 was off in the 847 * above example, we leave off that bit (bit 30) in @dst. 848 * 849 * When bit 1 is set in @orig (as in the above example), it 850 * means turn on the bit in @dst corresponding to whatever 851 * is the second bit that is turned on in @relmap. The second 852 * bit in @relmap that was turned on in the above example was 853 * bit 31, so we turned on bit 31 in @dst. 854 * 855 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 856 * because they were the 4th, 6th, 8th and 10th set bits 857 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 858 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 859 * 860 * When bit 11 is set in @orig, it means turn on the bit in 861 * @dst corresponding to whatever is the twelfth bit that is 862 * turned on in @relmap. In the above example, there were 863 * only ten bits turned on in @relmap (30..39), so that bit 864 * 11 was set in @orig had no affect on @dst. 865 * 866 * Example [2] for bitmap_fold() + bitmap_onto(): 867 * Let's say @relmap has these ten bits set:: 868 * 869 * 40 41 42 43 45 48 53 61 74 95 870 * 871 * (for the curious, that's 40 plus the first ten terms of the 872 * Fibonacci sequence.) 873 * 874 * Further lets say we use the following code, invoking 875 * bitmap_fold() then bitmap_onto, as suggested above to 876 * avoid the possibility of an empty @dst result:: 877 * 878 * unsigned long *tmp; // a temporary bitmap's bits 879 * 880 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 881 * bitmap_onto(dst, tmp, relmap, bits); 882 * 883 * Then this table shows what various values of @dst would be, for 884 * various @orig's. I list the zero-based positions of each set bit. 885 * The tmp column shows the intermediate result, as computed by 886 * using bitmap_fold() to fold the @orig bitmap modulo ten 887 * (the weight of @relmap): 888 * 889 * =============== ============== ================= 890 * @orig tmp @dst 891 * 0 0 40 892 * 1 1 41 893 * 9 9 95 894 * 10 0 40 [#f1]_ 895 * 1 3 5 7 1 3 5 7 41 43 48 61 896 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 897 * 0 9 18 27 0 9 8 7 40 61 74 95 898 * 0 10 20 30 0 40 899 * 0 11 22 33 0 1 2 3 40 41 42 43 900 * 0 12 24 36 0 2 4 6 40 42 45 53 901 * 78 102 211 1 2 8 41 42 74 [#f1]_ 902 * =============== ============== ================= 903 * 904 * .. [#f1] 905 * 906 * For these marked lines, if we hadn't first done bitmap_fold() 907 * into tmp, then the @dst result would have been empty. 908 * 909 * If either of @orig or @relmap is empty (no set bits), then @dst 910 * will be returned empty. 911 * 912 * If (as explained above) the only set bits in @orig are in positions 913 * m where m >= W, (where W is the weight of @relmap) then @dst will 914 * once again be returned empty. 915 * 916 * All bits in @dst not set by the above rule are cleared. 917 */ 918 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 919 const unsigned long *relmap, unsigned int bits) 920 { 921 unsigned int n, m; /* same meaning as in above comment */ 922 923 if (dst == orig) /* following doesn't handle inplace mappings */ 924 return; 925 bitmap_zero(dst, bits); 926 927 /* 928 * The following code is a more efficient, but less 929 * obvious, equivalent to the loop: 930 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 931 * n = bitmap_ord_to_pos(orig, m, bits); 932 * if (test_bit(m, orig)) 933 * set_bit(n, dst); 934 * } 935 */ 936 937 m = 0; 938 for_each_set_bit(n, relmap, bits) { 939 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 940 if (test_bit(m, orig)) 941 set_bit(n, dst); 942 m++; 943 } 944 } 945 EXPORT_SYMBOL(bitmap_onto); 946 947 /** 948 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 949 * @dst: resulting smaller bitmap 950 * @orig: original larger bitmap 951 * @sz: specified size 952 * @nbits: number of bits in each of these bitmaps 953 * 954 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 955 * Clear all other bits in @dst. See further the comment and 956 * Example [2] for bitmap_onto() for why and how to use this. 957 */ 958 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 959 unsigned int sz, unsigned int nbits) 960 { 961 unsigned int oldbit; 962 963 if (dst == orig) /* following doesn't handle inplace mappings */ 964 return; 965 bitmap_zero(dst, nbits); 966 967 for_each_set_bit(oldbit, orig, nbits) 968 set_bit(oldbit % sz, dst); 969 } 970 EXPORT_SYMBOL(bitmap_fold); 971 972 /* 973 * Common code for bitmap_*_region() routines. 974 * bitmap: array of unsigned longs corresponding to the bitmap 975 * pos: the beginning of the region 976 * order: region size (log base 2 of number of bits) 977 * reg_op: operation(s) to perform on that region of bitmap 978 * 979 * Can set, verify and/or release a region of bits in a bitmap, 980 * depending on which combination of REG_OP_* flag bits is set. 981 * 982 * A region of a bitmap is a sequence of bits in the bitmap, of 983 * some size '1 << order' (a power of two), aligned to that same 984 * '1 << order' power of two. 985 * 986 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 987 * Returns 0 in all other cases and reg_ops. 988 */ 989 990 enum { 991 REG_OP_ISFREE, /* true if region is all zero bits */ 992 REG_OP_ALLOC, /* set all bits in region */ 993 REG_OP_RELEASE, /* clear all bits in region */ 994 }; 995 996 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 997 { 998 int nbits_reg; /* number of bits in region */ 999 int index; /* index first long of region in bitmap */ 1000 int offset; /* bit offset region in bitmap[index] */ 1001 int nlongs_reg; /* num longs spanned by region in bitmap */ 1002 int nbitsinlong; /* num bits of region in each spanned long */ 1003 unsigned long mask; /* bitmask for one long of region */ 1004 int i; /* scans bitmap by longs */ 1005 int ret = 0; /* return value */ 1006 1007 /* 1008 * Either nlongs_reg == 1 (for small orders that fit in one long) 1009 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1010 */ 1011 nbits_reg = 1 << order; 1012 index = pos / BITS_PER_LONG; 1013 offset = pos - (index * BITS_PER_LONG); 1014 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1015 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1016 1017 /* 1018 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1019 * overflows if nbitsinlong == BITS_PER_LONG. 1020 */ 1021 mask = (1UL << (nbitsinlong - 1)); 1022 mask += mask - 1; 1023 mask <<= offset; 1024 1025 switch (reg_op) { 1026 case REG_OP_ISFREE: 1027 for (i = 0; i < nlongs_reg; i++) { 1028 if (bitmap[index + i] & mask) 1029 goto done; 1030 } 1031 ret = 1; /* all bits in region free (zero) */ 1032 break; 1033 1034 case REG_OP_ALLOC: 1035 for (i = 0; i < nlongs_reg; i++) 1036 bitmap[index + i] |= mask; 1037 break; 1038 1039 case REG_OP_RELEASE: 1040 for (i = 0; i < nlongs_reg; i++) 1041 bitmap[index + i] &= ~mask; 1042 break; 1043 } 1044 done: 1045 return ret; 1046 } 1047 1048 /** 1049 * bitmap_find_free_region - find a contiguous aligned mem region 1050 * @bitmap: array of unsigned longs corresponding to the bitmap 1051 * @bits: number of bits in the bitmap 1052 * @order: region size (log base 2 of number of bits) to find 1053 * 1054 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1055 * allocate them (set them to one). Only consider regions of length 1056 * a power (@order) of two, aligned to that power of two, which 1057 * makes the search algorithm much faster. 1058 * 1059 * Return the bit offset in bitmap of the allocated region, 1060 * or -errno on failure. 1061 */ 1062 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1063 { 1064 unsigned int pos, end; /* scans bitmap by regions of size order */ 1065 1066 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1067 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1068 continue; 1069 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1070 return pos; 1071 } 1072 return -ENOMEM; 1073 } 1074 EXPORT_SYMBOL(bitmap_find_free_region); 1075 1076 /** 1077 * bitmap_release_region - release allocated bitmap region 1078 * @bitmap: array of unsigned longs corresponding to the bitmap 1079 * @pos: beginning of bit region to release 1080 * @order: region size (log base 2 of number of bits) to release 1081 * 1082 * This is the complement to __bitmap_find_free_region() and releases 1083 * the found region (by clearing it in the bitmap). 1084 * 1085 * No return value. 1086 */ 1087 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1088 { 1089 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1090 } 1091 EXPORT_SYMBOL(bitmap_release_region); 1092 1093 /** 1094 * bitmap_allocate_region - allocate bitmap region 1095 * @bitmap: array of unsigned longs corresponding to the bitmap 1096 * @pos: beginning of bit region to allocate 1097 * @order: region size (log base 2 of number of bits) to allocate 1098 * 1099 * Allocate (set bits in) a specified region of a bitmap. 1100 * 1101 * Return 0 on success, or %-EBUSY if specified region wasn't 1102 * free (not all bits were zero). 1103 */ 1104 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1105 { 1106 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1107 return -EBUSY; 1108 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1109 } 1110 EXPORT_SYMBOL(bitmap_allocate_region); 1111 1112 /** 1113 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap 1114 * @bitmap: array of unsigned longs, the destination bitmap, non NULL 1115 * @nbits: number of bits in @bitmap 1116 * @buf: array of u32 (in host byte order), the source bitmap, non NULL 1117 * @nwords: number of u32 words in @buf 1118 * 1119 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining 1120 * bits between nword and nbits in @bitmap (if any) are cleared. In 1121 * last word of @bitmap, the bits beyond nbits (if any) are kept 1122 * unchanged. 1123 * 1124 * Return the number of bits effectively copied. 1125 */ 1126 unsigned int 1127 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits, 1128 const u32 *buf, unsigned int nwords) 1129 { 1130 unsigned int dst_idx, src_idx; 1131 1132 for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) { 1133 unsigned long part = 0; 1134 1135 if (src_idx < nwords) 1136 part = buf[src_idx++]; 1137 1138 #if BITS_PER_LONG == 64 1139 if (src_idx < nwords) 1140 part |= ((unsigned long) buf[src_idx++]) << 32; 1141 #endif 1142 1143 if (dst_idx < nbits/BITS_PER_LONG) 1144 bitmap[dst_idx] = part; 1145 else { 1146 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 1147 1148 bitmap[dst_idx] = (bitmap[dst_idx] & ~mask) 1149 | (part & mask); 1150 } 1151 } 1152 1153 return min_t(unsigned int, nbits, 32*nwords); 1154 } 1155 EXPORT_SYMBOL(bitmap_from_u32array); 1156 1157 /** 1158 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits 1159 * @buf: array of u32 (in host byte order), the dest bitmap, non NULL 1160 * @nwords: number of u32 words in @buf 1161 * @bitmap: array of unsigned longs, the source bitmap, non NULL 1162 * @nbits: number of bits in @bitmap 1163 * 1164 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining 1165 * bits after nbits in @buf (if any) are cleared. 1166 * 1167 * Return the number of bits effectively copied. 1168 */ 1169 unsigned int 1170 bitmap_to_u32array(u32 *buf, unsigned int nwords, 1171 const unsigned long *bitmap, unsigned int nbits) 1172 { 1173 unsigned int dst_idx = 0, src_idx = 0; 1174 1175 while (dst_idx < nwords) { 1176 unsigned long part = 0; 1177 1178 if (src_idx < BITS_TO_LONGS(nbits)) { 1179 part = bitmap[src_idx]; 1180 if (src_idx >= nbits/BITS_PER_LONG) 1181 part &= BITMAP_LAST_WORD_MASK(nbits); 1182 src_idx++; 1183 } 1184 1185 buf[dst_idx++] = part & 0xffffffffUL; 1186 1187 #if BITS_PER_LONG == 64 1188 if (dst_idx < nwords) { 1189 part >>= 32; 1190 buf[dst_idx++] = part & 0xffffffffUL; 1191 } 1192 #endif 1193 } 1194 1195 return min_t(unsigned int, nbits, 32*nwords); 1196 } 1197 EXPORT_SYMBOL(bitmap_to_u32array); 1198 1199 /** 1200 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1201 * @dst: destination buffer 1202 * @src: bitmap to copy 1203 * @nbits: number of bits in the bitmap 1204 * 1205 * Require nbits % BITS_PER_LONG == 0. 1206 */ 1207 #ifdef __BIG_ENDIAN 1208 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1209 { 1210 unsigned int i; 1211 1212 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1213 if (BITS_PER_LONG == 64) 1214 dst[i] = cpu_to_le64(src[i]); 1215 else 1216 dst[i] = cpu_to_le32(src[i]); 1217 } 1218 } 1219 EXPORT_SYMBOL(bitmap_copy_le); 1220 #endif 1221