xref: /openbmc/linux/lib/bitmap.c (revision 22246614)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40 
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43 	int k, lim = bits/BITS_PER_LONG;
44 	for (k = 0; k < lim; ++k)
45 		if (bitmap[k])
46 			return 0;
47 
48 	if (bits % BITS_PER_LONG)
49 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 			return 0;
51 
52 	return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55 
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58 	int k, lim = bits/BITS_PER_LONG;
59 	for (k = 0; k < lim; ++k)
60 		if (~bitmap[k])
61 			return 0;
62 
63 	if (bits % BITS_PER_LONG)
64 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 			return 0;
66 
67 	return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70 
71 int __bitmap_equal(const unsigned long *bitmap1,
72 		const unsigned long *bitmap2, int bits)
73 {
74 	int k, lim = bits/BITS_PER_LONG;
75 	for (k = 0; k < lim; ++k)
76 		if (bitmap1[k] != bitmap2[k])
77 			return 0;
78 
79 	if (bits % BITS_PER_LONG)
80 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 			return 0;
82 
83 	return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86 
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89 	int k, lim = bits/BITS_PER_LONG;
90 	for (k = 0; k < lim; ++k)
91 		dst[k] = ~src[k];
92 
93 	if (bits % BITS_PER_LONG)
94 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97 
98 /**
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst : destination bitmap
101  *   @src : source bitmap
102  *   @shift : shift by this many bits
103  *   @bits : bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110 			const unsigned long *src, int shift, int bits)
111 {
112 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 	unsigned long mask = (1UL << left) - 1;
115 	for (k = 0; off + k < lim; ++k) {
116 		unsigned long upper, lower;
117 
118 		/*
119 		 * If shift is not word aligned, take lower rem bits of
120 		 * word above and make them the top rem bits of result.
121 		 */
122 		if (!rem || off + k + 1 >= lim)
123 			upper = 0;
124 		else {
125 			upper = src[off + k + 1];
126 			if (off + k + 1 == lim - 1 && left)
127 				upper &= mask;
128 		}
129 		lower = src[off + k];
130 		if (left && off + k == lim - 1)
131 			lower &= mask;
132 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 		if (left && k == lim - 1)
134 			dst[k] &= mask;
135 	}
136 	if (off)
137 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140 
141 
142 /**
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst : destination bitmap
145  *   @src : source bitmap
146  *   @shift : shift by this many bits
147  *   @bits : bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153 
154 void __bitmap_shift_left(unsigned long *dst,
155 			const unsigned long *src, int shift, int bits)
156 {
157 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 	for (k = lim - off - 1; k >= 0; --k) {
160 		unsigned long upper, lower;
161 
162 		/*
163 		 * If shift is not word aligned, take upper rem bits of
164 		 * word below and make them the bottom rem bits of result.
165 		 */
166 		if (rem && k > 0)
167 			lower = src[k - 1];
168 		else
169 			lower = 0;
170 		upper = src[k];
171 		if (left && k == lim - 1)
172 			upper &= (1UL << left) - 1;
173 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174 		if (left && k + off == lim - 1)
175 			dst[k + off] &= (1UL << left) - 1;
176 	}
177 	if (off)
178 		memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181 
182 void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, int bits)
184 {
185 	int k;
186 	int nr = BITS_TO_LONGS(bits);
187 
188 	for (k = 0; k < nr; k++)
189 		dst[k] = bitmap1[k] & bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_and);
192 
193 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194 				const unsigned long *bitmap2, int bits)
195 {
196 	int k;
197 	int nr = BITS_TO_LONGS(bits);
198 
199 	for (k = 0; k < nr; k++)
200 		dst[k] = bitmap1[k] | bitmap2[k];
201 }
202 EXPORT_SYMBOL(__bitmap_or);
203 
204 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205 				const unsigned long *bitmap2, int bits)
206 {
207 	int k;
208 	int nr = BITS_TO_LONGS(bits);
209 
210 	for (k = 0; k < nr; k++)
211 		dst[k] = bitmap1[k] ^ bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_xor);
214 
215 void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216 				const unsigned long *bitmap2, int bits)
217 {
218 	int k;
219 	int nr = BITS_TO_LONGS(bits);
220 
221 	for (k = 0; k < nr; k++)
222 		dst[k] = bitmap1[k] & ~bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_andnot);
225 
226 int __bitmap_intersects(const unsigned long *bitmap1,
227 				const unsigned long *bitmap2, int bits)
228 {
229 	int k, lim = bits/BITS_PER_LONG;
230 	for (k = 0; k < lim; ++k)
231 		if (bitmap1[k] & bitmap2[k])
232 			return 1;
233 
234 	if (bits % BITS_PER_LONG)
235 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236 			return 1;
237 	return 0;
238 }
239 EXPORT_SYMBOL(__bitmap_intersects);
240 
241 int __bitmap_subset(const unsigned long *bitmap1,
242 				const unsigned long *bitmap2, int bits)
243 {
244 	int k, lim = bits/BITS_PER_LONG;
245 	for (k = 0; k < lim; ++k)
246 		if (bitmap1[k] & ~bitmap2[k])
247 			return 0;
248 
249 	if (bits % BITS_PER_LONG)
250 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251 			return 0;
252 	return 1;
253 }
254 EXPORT_SYMBOL(__bitmap_subset);
255 
256 int __bitmap_weight(const unsigned long *bitmap, int bits)
257 {
258 	int k, w = 0, lim = bits/BITS_PER_LONG;
259 
260 	for (k = 0; k < lim; k++)
261 		w += hweight_long(bitmap[k]);
262 
263 	if (bits % BITS_PER_LONG)
264 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
265 
266 	return w;
267 }
268 EXPORT_SYMBOL(__bitmap_weight);
269 
270 /*
271  * Bitmap printing & parsing functions: first version by Bill Irwin,
272  * second version by Paul Jackson, third by Joe Korty.
273  */
274 
275 #define CHUNKSZ				32
276 #define nbits_to_hold_value(val)	fls(val)
277 #define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
279 
280 /**
281  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282  * @buf: byte buffer into which string is placed
283  * @buflen: reserved size of @buf, in bytes
284  * @maskp: pointer to bitmap to convert
285  * @nmaskbits: size of bitmap, in bits
286  *
287  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
288  * comma-separated sets of eight digits per set.
289  */
290 int bitmap_scnprintf(char *buf, unsigned int buflen,
291 	const unsigned long *maskp, int nmaskbits)
292 {
293 	int i, word, bit, len = 0;
294 	unsigned long val;
295 	const char *sep = "";
296 	int chunksz;
297 	u32 chunkmask;
298 
299 	chunksz = nmaskbits & (CHUNKSZ - 1);
300 	if (chunksz == 0)
301 		chunksz = CHUNKSZ;
302 
303 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
304 	for (; i >= 0; i -= CHUNKSZ) {
305 		chunkmask = ((1ULL << chunksz) - 1);
306 		word = i / BITS_PER_LONG;
307 		bit = i % BITS_PER_LONG;
308 		val = (maskp[word] >> bit) & chunkmask;
309 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310 			(chunksz+3)/4, val);
311 		chunksz = CHUNKSZ;
312 		sep = ",";
313 	}
314 	return len;
315 }
316 EXPORT_SYMBOL(bitmap_scnprintf);
317 
318 /**
319  * __bitmap_parse - convert an ASCII hex string into a bitmap.
320  * @buf: pointer to buffer containing string.
321  * @buflen: buffer size in bytes.  If string is smaller than this
322  *    then it must be terminated with a \0.
323  * @is_user: location of buffer, 0 indicates kernel space
324  * @maskp: pointer to bitmap array that will contain result.
325  * @nmaskbits: size of bitmap, in bits.
326  *
327  * Commas group hex digits into chunks.  Each chunk defines exactly 32
328  * bits of the resultant bitmask.  No chunk may specify a value larger
329  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
330  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
331  * characters and for grouping errors such as "1,,5", ",44", "," and "".
332  * Leading and trailing whitespace accepted, but not embedded whitespace.
333  */
334 int __bitmap_parse(const char *buf, unsigned int buflen,
335 		int is_user, unsigned long *maskp,
336 		int nmaskbits)
337 {
338 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
339 	u32 chunk;
340 	const char __user *ubuf = buf;
341 
342 	bitmap_zero(maskp, nmaskbits);
343 
344 	nchunks = nbits = totaldigits = c = 0;
345 	do {
346 		chunk = ndigits = 0;
347 
348 		/* Get the next chunk of the bitmap */
349 		while (buflen) {
350 			old_c = c;
351 			if (is_user) {
352 				if (__get_user(c, ubuf++))
353 					return -EFAULT;
354 			}
355 			else
356 				c = *buf++;
357 			buflen--;
358 			if (isspace(c))
359 				continue;
360 
361 			/*
362 			 * If the last character was a space and the current
363 			 * character isn't '\0', we've got embedded whitespace.
364 			 * This is a no-no, so throw an error.
365 			 */
366 			if (totaldigits && c && isspace(old_c))
367 				return -EINVAL;
368 
369 			/* A '\0' or a ',' signal the end of the chunk */
370 			if (c == '\0' || c == ',')
371 				break;
372 
373 			if (!isxdigit(c))
374 				return -EINVAL;
375 
376 			/*
377 			 * Make sure there are at least 4 free bits in 'chunk'.
378 			 * If not, this hexdigit will overflow 'chunk', so
379 			 * throw an error.
380 			 */
381 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
382 				return -EOVERFLOW;
383 
384 			chunk = (chunk << 4) | unhex(c);
385 			ndigits++; totaldigits++;
386 		}
387 		if (ndigits == 0)
388 			return -EINVAL;
389 		if (nchunks == 0 && chunk == 0)
390 			continue;
391 
392 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
393 		*maskp |= chunk;
394 		nchunks++;
395 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
396 		if (nbits > nmaskbits)
397 			return -EOVERFLOW;
398 	} while (buflen && c == ',');
399 
400 	return 0;
401 }
402 EXPORT_SYMBOL(__bitmap_parse);
403 
404 /**
405  * bitmap_parse_user()
406  *
407  * @ubuf: pointer to user buffer containing string.
408  * @ulen: buffer size in bytes.  If string is smaller than this
409  *    then it must be terminated with a \0.
410  * @maskp: pointer to bitmap array that will contain result.
411  * @nmaskbits: size of bitmap, in bits.
412  *
413  * Wrapper for __bitmap_parse(), providing it with user buffer.
414  *
415  * We cannot have this as an inline function in bitmap.h because it needs
416  * linux/uaccess.h to get the access_ok() declaration and this causes
417  * cyclic dependencies.
418  */
419 int bitmap_parse_user(const char __user *ubuf,
420 			unsigned int ulen, unsigned long *maskp,
421 			int nmaskbits)
422 {
423 	if (!access_ok(VERIFY_READ, ubuf, ulen))
424 		return -EFAULT;
425 	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
426 }
427 EXPORT_SYMBOL(bitmap_parse_user);
428 
429 /*
430  * bscnl_emit(buf, buflen, rbot, rtop, bp)
431  *
432  * Helper routine for bitmap_scnlistprintf().  Write decimal number
433  * or range to buf, suppressing output past buf+buflen, with optional
434  * comma-prefix.  Return len of what would be written to buf, if it
435  * all fit.
436  */
437 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
438 {
439 	if (len > 0)
440 		len += scnprintf(buf + len, buflen - len, ",");
441 	if (rbot == rtop)
442 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
443 	else
444 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
445 	return len;
446 }
447 
448 /**
449  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
450  * @buf: byte buffer into which string is placed
451  * @buflen: reserved size of @buf, in bytes
452  * @maskp: pointer to bitmap to convert
453  * @nmaskbits: size of bitmap, in bits
454  *
455  * Output format is a comma-separated list of decimal numbers and
456  * ranges.  Consecutively set bits are shown as two hyphen-separated
457  * decimal numbers, the smallest and largest bit numbers set in
458  * the range.  Output format is compatible with the format
459  * accepted as input by bitmap_parselist().
460  *
461  * The return value is the number of characters which would be
462  * generated for the given input, excluding the trailing '\0', as
463  * per ISO C99.
464  */
465 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
466 	const unsigned long *maskp, int nmaskbits)
467 {
468 	int len = 0;
469 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
470 	int cur, rbot, rtop;
471 
472 	if (buflen == 0)
473 		return 0;
474 	buf[0] = 0;
475 
476 	rbot = cur = find_first_bit(maskp, nmaskbits);
477 	while (cur < nmaskbits) {
478 		rtop = cur;
479 		cur = find_next_bit(maskp, nmaskbits, cur+1);
480 		if (cur >= nmaskbits || cur > rtop + 1) {
481 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
482 			rbot = cur;
483 		}
484 	}
485 	return len;
486 }
487 EXPORT_SYMBOL(bitmap_scnlistprintf);
488 
489 /**
490  * bitmap_parselist - convert list format ASCII string to bitmap
491  * @bp: read nul-terminated user string from this buffer
492  * @maskp: write resulting mask here
493  * @nmaskbits: number of bits in mask to be written
494  *
495  * Input format is a comma-separated list of decimal numbers and
496  * ranges.  Consecutively set bits are shown as two hyphen-separated
497  * decimal numbers, the smallest and largest bit numbers set in
498  * the range.
499  *
500  * Returns 0 on success, -errno on invalid input strings.
501  * Error values:
502  *    %-EINVAL: second number in range smaller than first
503  *    %-EINVAL: invalid character in string
504  *    %-ERANGE: bit number specified too large for mask
505  */
506 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
507 {
508 	unsigned a, b;
509 
510 	bitmap_zero(maskp, nmaskbits);
511 	do {
512 		if (!isdigit(*bp))
513 			return -EINVAL;
514 		b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
515 		if (*bp == '-') {
516 			bp++;
517 			if (!isdigit(*bp))
518 				return -EINVAL;
519 			b = simple_strtoul(bp, (char **)&bp, BASEDEC);
520 		}
521 		if (!(a <= b))
522 			return -EINVAL;
523 		if (b >= nmaskbits)
524 			return -ERANGE;
525 		while (a <= b) {
526 			set_bit(a, maskp);
527 			a++;
528 		}
529 		if (*bp == ',')
530 			bp++;
531 	} while (*bp != '\0' && *bp != '\n');
532 	return 0;
533 }
534 EXPORT_SYMBOL(bitmap_parselist);
535 
536 /**
537  * bitmap_pos_to_ord(buf, pos, bits)
538  *	@buf: pointer to a bitmap
539  *	@pos: a bit position in @buf (0 <= @pos < @bits)
540  *	@bits: number of valid bit positions in @buf
541  *
542  * Map the bit at position @pos in @buf (of length @bits) to the
543  * ordinal of which set bit it is.  If it is not set or if @pos
544  * is not a valid bit position, map to -1.
545  *
546  * If for example, just bits 4 through 7 are set in @buf, then @pos
547  * values 4 through 7 will get mapped to 0 through 3, respectively,
548  * and other @pos values will get mapped to 0.  When @pos value 7
549  * gets mapped to (returns) @ord value 3 in this example, that means
550  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
551  *
552  * The bit positions 0 through @bits are valid positions in @buf.
553  */
554 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
555 {
556 	int i, ord;
557 
558 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
559 		return -1;
560 
561 	i = find_first_bit(buf, bits);
562 	ord = 0;
563 	while (i < pos) {
564 		i = find_next_bit(buf, bits, i + 1);
565 	     	ord++;
566 	}
567 	BUG_ON(i != pos);
568 
569 	return ord;
570 }
571 
572 /**
573  * bitmap_ord_to_pos(buf, ord, bits)
574  *	@buf: pointer to bitmap
575  *	@ord: ordinal bit position (n-th set bit, n >= 0)
576  *	@bits: number of valid bit positions in @buf
577  *
578  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
579  * Value of @ord should be in range 0 <= @ord < weight(buf), else
580  * results are undefined.
581  *
582  * If for example, just bits 4 through 7 are set in @buf, then @ord
583  * values 0 through 3 will get mapped to 4 through 7, respectively,
584  * and all other @ord values return undefined values.  When @ord value 3
585  * gets mapped to (returns) @pos value 7 in this example, that means
586  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
587  *
588  * The bit positions 0 through @bits are valid positions in @buf.
589  */
590 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
591 {
592 	int pos = 0;
593 
594 	if (ord >= 0 && ord < bits) {
595 		int i;
596 
597 		for (i = find_first_bit(buf, bits);
598 		     i < bits && ord > 0;
599 		     i = find_next_bit(buf, bits, i + 1))
600 	     		ord--;
601 		if (i < bits && ord == 0)
602 			pos = i;
603 	}
604 
605 	return pos;
606 }
607 
608 /**
609  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
610  *	@dst: remapped result
611  *	@src: subset to be remapped
612  *	@old: defines domain of map
613  *	@new: defines range of map
614  *	@bits: number of bits in each of these bitmaps
615  *
616  * Let @old and @new define a mapping of bit positions, such that
617  * whatever position is held by the n-th set bit in @old is mapped
618  * to the n-th set bit in @new.  In the more general case, allowing
619  * for the possibility that the weight 'w' of @new is less than the
620  * weight of @old, map the position of the n-th set bit in @old to
621  * the position of the m-th set bit in @new, where m == n % w.
622  *
623  * If either of the @old and @new bitmaps are empty, or if @src and
624  * @dst point to the same location, then this routine copies @src
625  * to @dst.
626  *
627  * The positions of unset bits in @old are mapped to themselves
628  * (the identify map).
629  *
630  * Apply the above specified mapping to @src, placing the result in
631  * @dst, clearing any bits previously set in @dst.
632  *
633  * For example, lets say that @old has bits 4 through 7 set, and
634  * @new has bits 12 through 15 set.  This defines the mapping of bit
635  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
636  * bit positions unchanged.  So if say @src comes into this routine
637  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
638  * 13 and 15 set.
639  */
640 void bitmap_remap(unsigned long *dst, const unsigned long *src,
641 		const unsigned long *old, const unsigned long *new,
642 		int bits)
643 {
644 	int oldbit, w;
645 
646 	if (dst == src)		/* following doesn't handle inplace remaps */
647 		return;
648 	bitmap_zero(dst, bits);
649 
650 	w = bitmap_weight(new, bits);
651 	for (oldbit = find_first_bit(src, bits);
652 	     oldbit < bits;
653 	     oldbit = find_next_bit(src, bits, oldbit + 1)) {
654 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
655 		if (n < 0 || w == 0)
656 			set_bit(oldbit, dst);	/* identity map */
657 		else
658 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
659 	}
660 }
661 EXPORT_SYMBOL(bitmap_remap);
662 
663 /**
664  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
665  *	@oldbit: bit position to be mapped
666  *	@old: defines domain of map
667  *	@new: defines range of map
668  *	@bits: number of bits in each of these bitmaps
669  *
670  * Let @old and @new define a mapping of bit positions, such that
671  * whatever position is held by the n-th set bit in @old is mapped
672  * to the n-th set bit in @new.  In the more general case, allowing
673  * for the possibility that the weight 'w' of @new is less than the
674  * weight of @old, map the position of the n-th set bit in @old to
675  * the position of the m-th set bit in @new, where m == n % w.
676  *
677  * The positions of unset bits in @old are mapped to themselves
678  * (the identify map).
679  *
680  * Apply the above specified mapping to bit position @oldbit, returning
681  * the new bit position.
682  *
683  * For example, lets say that @old has bits 4 through 7 set, and
684  * @new has bits 12 through 15 set.  This defines the mapping of bit
685  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
686  * bit positions unchanged.  So if say @oldbit is 5, then this routine
687  * returns 13.
688  */
689 int bitmap_bitremap(int oldbit, const unsigned long *old,
690 				const unsigned long *new, int bits)
691 {
692 	int w = bitmap_weight(new, bits);
693 	int n = bitmap_pos_to_ord(old, oldbit, bits);
694 	if (n < 0 || w == 0)
695 		return oldbit;
696 	else
697 		return bitmap_ord_to_pos(new, n % w, bits);
698 }
699 EXPORT_SYMBOL(bitmap_bitremap);
700 
701 /**
702  * bitmap_onto - translate one bitmap relative to another
703  *	@dst: resulting translated bitmap
704  * 	@orig: original untranslated bitmap
705  * 	@relmap: bitmap relative to which translated
706  *	@bits: number of bits in each of these bitmaps
707  *
708  * Set the n-th bit of @dst iff there exists some m such that the
709  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
710  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
711  * (If you understood the previous sentence the first time your
712  * read it, you're overqualified for your current job.)
713  *
714  * In other words, @orig is mapped onto (surjectively) @dst,
715  * using the the map { <n, m> | the n-th bit of @relmap is the
716  * m-th set bit of @relmap }.
717  *
718  * Any set bits in @orig above bit number W, where W is the
719  * weight of (number of set bits in) @relmap are mapped nowhere.
720  * In particular, if for all bits m set in @orig, m >= W, then
721  * @dst will end up empty.  In situations where the possibility
722  * of such an empty result is not desired, one way to avoid it is
723  * to use the bitmap_fold() operator, below, to first fold the
724  * @orig bitmap over itself so that all its set bits x are in the
725  * range 0 <= x < W.  The bitmap_fold() operator does this by
726  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
727  *
728  * Example [1] for bitmap_onto():
729  *  Let's say @relmap has bits 30-39 set, and @orig has bits
730  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
731  *  @dst will have bits 31, 33, 35, 37 and 39 set.
732  *
733  *  When bit 0 is set in @orig, it means turn on the bit in
734  *  @dst corresponding to whatever is the first bit (if any)
735  *  that is turned on in @relmap.  Since bit 0 was off in the
736  *  above example, we leave off that bit (bit 30) in @dst.
737  *
738  *  When bit 1 is set in @orig (as in the above example), it
739  *  means turn on the bit in @dst corresponding to whatever
740  *  is the second bit that is turned on in @relmap.  The second
741  *  bit in @relmap that was turned on in the above example was
742  *  bit 31, so we turned on bit 31 in @dst.
743  *
744  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
745  *  because they were the 4th, 6th, 8th and 10th set bits
746  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
747  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
748  *
749  *  When bit 11 is set in @orig, it means turn on the bit in
750  *  @dst corresponding to whatever is the twelth bit that is
751  *  turned on in @relmap.  In the above example, there were
752  *  only ten bits turned on in @relmap (30..39), so that bit
753  *  11 was set in @orig had no affect on @dst.
754  *
755  * Example [2] for bitmap_fold() + bitmap_onto():
756  *  Let's say @relmap has these ten bits set:
757  *		40 41 42 43 45 48 53 61 74 95
758  *  (for the curious, that's 40 plus the first ten terms of the
759  *  Fibonacci sequence.)
760  *
761  *  Further lets say we use the following code, invoking
762  *  bitmap_fold() then bitmap_onto, as suggested above to
763  *  avoid the possitility of an empty @dst result:
764  *
765  *	unsigned long *tmp;	// a temporary bitmap's bits
766  *
767  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
768  *	bitmap_onto(dst, tmp, relmap, bits);
769  *
770  *  Then this table shows what various values of @dst would be, for
771  *  various @orig's.  I list the zero-based positions of each set bit.
772  *  The tmp column shows the intermediate result, as computed by
773  *  using bitmap_fold() to fold the @orig bitmap modulo ten
774  *  (the weight of @relmap).
775  *
776  *      @orig           tmp            @dst
777  *      0                0             40
778  *      1                1             41
779  *      9                9             95
780  *      10               0             40 (*)
781  *      1 3 5 7          1 3 5 7       41 43 48 61
782  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
783  *      0 9 18 27        0 9 8 7       40 61 74 95
784  *      0 10 20 30       0             40
785  *      0 11 22 33       0 1 2 3       40 41 42 43
786  *      0 12 24 36       0 2 4 6       40 42 45 53
787  *      78 102 211       1 2 8         41 42 74 (*)
788  *
789  * (*) For these marked lines, if we hadn't first done bitmap_fold()
790  *     into tmp, then the @dst result would have been empty.
791  *
792  * If either of @orig or @relmap is empty (no set bits), then @dst
793  * will be returned empty.
794  *
795  * If (as explained above) the only set bits in @orig are in positions
796  * m where m >= W, (where W is the weight of @relmap) then @dst will
797  * once again be returned empty.
798  *
799  * All bits in @dst not set by the above rule are cleared.
800  */
801 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
802 			const unsigned long *relmap, int bits)
803 {
804 	int n, m;       	/* same meaning as in above comment */
805 
806 	if (dst == orig)	/* following doesn't handle inplace mappings */
807 		return;
808 	bitmap_zero(dst, bits);
809 
810 	/*
811 	 * The following code is a more efficient, but less
812 	 * obvious, equivalent to the loop:
813 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
814 	 *		n = bitmap_ord_to_pos(orig, m, bits);
815 	 *		if (test_bit(m, orig))
816 	 *			set_bit(n, dst);
817 	 *	}
818 	 */
819 
820 	m = 0;
821 	for (n = find_first_bit(relmap, bits);
822 	     n < bits;
823 	     n = find_next_bit(relmap, bits, n + 1)) {
824 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
825 		if (test_bit(m, orig))
826 			set_bit(n, dst);
827 		m++;
828 	}
829 }
830 EXPORT_SYMBOL(bitmap_onto);
831 
832 /**
833  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
834  *	@dst: resulting smaller bitmap
835  *	@orig: original larger bitmap
836  *	@sz: specified size
837  *	@bits: number of bits in each of these bitmaps
838  *
839  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
840  * Clear all other bits in @dst.  See further the comment and
841  * Example [2] for bitmap_onto() for why and how to use this.
842  */
843 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
844 			int sz, int bits)
845 {
846 	int oldbit;
847 
848 	if (dst == orig)	/* following doesn't handle inplace mappings */
849 		return;
850 	bitmap_zero(dst, bits);
851 
852 	for (oldbit = find_first_bit(orig, bits);
853 	     oldbit < bits;
854 	     oldbit = find_next_bit(orig, bits, oldbit + 1))
855 		set_bit(oldbit % sz, dst);
856 }
857 EXPORT_SYMBOL(bitmap_fold);
858 
859 /*
860  * Common code for bitmap_*_region() routines.
861  *	bitmap: array of unsigned longs corresponding to the bitmap
862  *	pos: the beginning of the region
863  *	order: region size (log base 2 of number of bits)
864  *	reg_op: operation(s) to perform on that region of bitmap
865  *
866  * Can set, verify and/or release a region of bits in a bitmap,
867  * depending on which combination of REG_OP_* flag bits is set.
868  *
869  * A region of a bitmap is a sequence of bits in the bitmap, of
870  * some size '1 << order' (a power of two), aligned to that same
871  * '1 << order' power of two.
872  *
873  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
874  * Returns 0 in all other cases and reg_ops.
875  */
876 
877 enum {
878 	REG_OP_ISFREE,		/* true if region is all zero bits */
879 	REG_OP_ALLOC,		/* set all bits in region */
880 	REG_OP_RELEASE,		/* clear all bits in region */
881 };
882 
883 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
884 {
885 	int nbits_reg;		/* number of bits in region */
886 	int index;		/* index first long of region in bitmap */
887 	int offset;		/* bit offset region in bitmap[index] */
888 	int nlongs_reg;		/* num longs spanned by region in bitmap */
889 	int nbitsinlong;	/* num bits of region in each spanned long */
890 	unsigned long mask;	/* bitmask for one long of region */
891 	int i;			/* scans bitmap by longs */
892 	int ret = 0;		/* return value */
893 
894 	/*
895 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
896 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
897 	 */
898 	nbits_reg = 1 << order;
899 	index = pos / BITS_PER_LONG;
900 	offset = pos - (index * BITS_PER_LONG);
901 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
902 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
903 
904 	/*
905 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
906 	 * overflows if nbitsinlong == BITS_PER_LONG.
907 	 */
908 	mask = (1UL << (nbitsinlong - 1));
909 	mask += mask - 1;
910 	mask <<= offset;
911 
912 	switch (reg_op) {
913 	case REG_OP_ISFREE:
914 		for (i = 0; i < nlongs_reg; i++) {
915 			if (bitmap[index + i] & mask)
916 				goto done;
917 		}
918 		ret = 1;	/* all bits in region free (zero) */
919 		break;
920 
921 	case REG_OP_ALLOC:
922 		for (i = 0; i < nlongs_reg; i++)
923 			bitmap[index + i] |= mask;
924 		break;
925 
926 	case REG_OP_RELEASE:
927 		for (i = 0; i < nlongs_reg; i++)
928 			bitmap[index + i] &= ~mask;
929 		break;
930 	}
931 done:
932 	return ret;
933 }
934 
935 /**
936  * bitmap_find_free_region - find a contiguous aligned mem region
937  *	@bitmap: array of unsigned longs corresponding to the bitmap
938  *	@bits: number of bits in the bitmap
939  *	@order: region size (log base 2 of number of bits) to find
940  *
941  * Find a region of free (zero) bits in a @bitmap of @bits bits and
942  * allocate them (set them to one).  Only consider regions of length
943  * a power (@order) of two, aligned to that power of two, which
944  * makes the search algorithm much faster.
945  *
946  * Return the bit offset in bitmap of the allocated region,
947  * or -errno on failure.
948  */
949 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
950 {
951 	int pos;		/* scans bitmap by regions of size order */
952 
953 	for (pos = 0; pos < bits; pos += (1 << order))
954 		if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
955 			break;
956 	if (pos == bits)
957 		return -ENOMEM;
958 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
959 	return pos;
960 }
961 EXPORT_SYMBOL(bitmap_find_free_region);
962 
963 /**
964  * bitmap_release_region - release allocated bitmap region
965  *	@bitmap: array of unsigned longs corresponding to the bitmap
966  *	@pos: beginning of bit region to release
967  *	@order: region size (log base 2 of number of bits) to release
968  *
969  * This is the complement to __bitmap_find_free_region() and releases
970  * the found region (by clearing it in the bitmap).
971  *
972  * No return value.
973  */
974 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
975 {
976 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
977 }
978 EXPORT_SYMBOL(bitmap_release_region);
979 
980 /**
981  * bitmap_allocate_region - allocate bitmap region
982  *	@bitmap: array of unsigned longs corresponding to the bitmap
983  *	@pos: beginning of bit region to allocate
984  *	@order: region size (log base 2 of number of bits) to allocate
985  *
986  * Allocate (set bits in) a specified region of a bitmap.
987  *
988  * Return 0 on success, or %-EBUSY if specified region wasn't
989  * free (not all bits were zero).
990  */
991 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
992 {
993 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
994 		return -EBUSY;
995 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
996 	return 0;
997 }
998 EXPORT_SYMBOL(bitmap_allocate_region);
999