1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/module.h> 9 #include <linux/ctype.h> 10 #include <linux/errno.h> 11 #include <linux/bitmap.h> 12 #include <linux/bitops.h> 13 #include <asm/uaccess.h> 14 15 /* 16 * bitmaps provide an array of bits, implemented using an an 17 * array of unsigned longs. The number of valid bits in a 18 * given bitmap does _not_ need to be an exact multiple of 19 * BITS_PER_LONG. 20 * 21 * The possible unused bits in the last, partially used word 22 * of a bitmap are 'don't care'. The implementation makes 23 * no particular effort to keep them zero. It ensures that 24 * their value will not affect the results of any operation. 25 * The bitmap operations that return Boolean (bitmap_empty, 26 * for example) or scalar (bitmap_weight, for example) results 27 * carefully filter out these unused bits from impacting their 28 * results. 29 * 30 * These operations actually hold to a slightly stronger rule: 31 * if you don't input any bitmaps to these ops that have some 32 * unused bits set, then they won't output any set unused bits 33 * in output bitmaps. 34 * 35 * The byte ordering of bitmaps is more natural on little 36 * endian architectures. See the big-endian headers 37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 38 * for the best explanations of this ordering. 39 */ 40 41 int __bitmap_empty(const unsigned long *bitmap, int bits) 42 { 43 int k, lim = bits/BITS_PER_LONG; 44 for (k = 0; k < lim; ++k) 45 if (bitmap[k]) 46 return 0; 47 48 if (bits % BITS_PER_LONG) 49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 50 return 0; 51 52 return 1; 53 } 54 EXPORT_SYMBOL(__bitmap_empty); 55 56 int __bitmap_full(const unsigned long *bitmap, int bits) 57 { 58 int k, lim = bits/BITS_PER_LONG; 59 for (k = 0; k < lim; ++k) 60 if (~bitmap[k]) 61 return 0; 62 63 if (bits % BITS_PER_LONG) 64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 65 return 0; 66 67 return 1; 68 } 69 EXPORT_SYMBOL(__bitmap_full); 70 71 int __bitmap_equal(const unsigned long *bitmap1, 72 const unsigned long *bitmap2, int bits) 73 { 74 int k, lim = bits/BITS_PER_LONG; 75 for (k = 0; k < lim; ++k) 76 if (bitmap1[k] != bitmap2[k]) 77 return 0; 78 79 if (bits % BITS_PER_LONG) 80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 81 return 0; 82 83 return 1; 84 } 85 EXPORT_SYMBOL(__bitmap_equal); 86 87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) 88 { 89 int k, lim = bits/BITS_PER_LONG; 90 for (k = 0; k < lim; ++k) 91 dst[k] = ~src[k]; 92 93 if (bits % BITS_PER_LONG) 94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); 95 } 96 EXPORT_SYMBOL(__bitmap_complement); 97 98 /* 99 * __bitmap_shift_right - logical right shift of the bits in a bitmap 100 * @dst - destination bitmap 101 * @src - source bitmap 102 * @nbits - shift by this many bits 103 * @bits - bitmap size, in bits 104 * 105 * Shifting right (dividing) means moving bits in the MS -> LS bit 106 * direction. Zeros are fed into the vacated MS positions and the 107 * LS bits shifted off the bottom are lost. 108 */ 109 void __bitmap_shift_right(unsigned long *dst, 110 const unsigned long *src, int shift, int bits) 111 { 112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 114 unsigned long mask = (1UL << left) - 1; 115 for (k = 0; off + k < lim; ++k) { 116 unsigned long upper, lower; 117 118 /* 119 * If shift is not word aligned, take lower rem bits of 120 * word above and make them the top rem bits of result. 121 */ 122 if (!rem || off + k + 1 >= lim) 123 upper = 0; 124 else { 125 upper = src[off + k + 1]; 126 if (off + k + 1 == lim - 1 && left) 127 upper &= mask; 128 } 129 lower = src[off + k]; 130 if (left && off + k == lim - 1) 131 lower &= mask; 132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; 133 if (left && k == lim - 1) 134 dst[k] &= mask; 135 } 136 if (off) 137 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 138 } 139 EXPORT_SYMBOL(__bitmap_shift_right); 140 141 142 /* 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap 144 * @dst - destination bitmap 145 * @src - source bitmap 146 * @nbits - shift by this many bits 147 * @bits - bitmap size, in bits 148 * 149 * Shifting left (multiplying) means moving bits in the LS -> MS 150 * direction. Zeros are fed into the vacated LS bit positions 151 * and those MS bits shifted off the top are lost. 152 */ 153 154 void __bitmap_shift_left(unsigned long *dst, 155 const unsigned long *src, int shift, int bits) 156 { 157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 159 for (k = lim - off - 1; k >= 0; --k) { 160 unsigned long upper, lower; 161 162 /* 163 * If shift is not word aligned, take upper rem bits of 164 * word below and make them the bottom rem bits of result. 165 */ 166 if (rem && k > 0) 167 lower = src[k - 1]; 168 else 169 lower = 0; 170 upper = src[k]; 171 if (left && k == lim - 1) 172 upper &= (1UL << left) - 1; 173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem; 174 if (left && k + off == lim - 1) 175 dst[k + off] &= (1UL << left) - 1; 176 } 177 if (off) 178 memset(dst, 0, off*sizeof(unsigned long)); 179 } 180 EXPORT_SYMBOL(__bitmap_shift_left); 181 182 void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 183 const unsigned long *bitmap2, int bits) 184 { 185 int k; 186 int nr = BITS_TO_LONGS(bits); 187 188 for (k = 0; k < nr; k++) 189 dst[k] = bitmap1[k] & bitmap2[k]; 190 } 191 EXPORT_SYMBOL(__bitmap_and); 192 193 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 194 const unsigned long *bitmap2, int bits) 195 { 196 int k; 197 int nr = BITS_TO_LONGS(bits); 198 199 for (k = 0; k < nr; k++) 200 dst[k] = bitmap1[k] | bitmap2[k]; 201 } 202 EXPORT_SYMBOL(__bitmap_or); 203 204 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 205 const unsigned long *bitmap2, int bits) 206 { 207 int k; 208 int nr = BITS_TO_LONGS(bits); 209 210 for (k = 0; k < nr; k++) 211 dst[k] = bitmap1[k] ^ bitmap2[k]; 212 } 213 EXPORT_SYMBOL(__bitmap_xor); 214 215 void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 216 const unsigned long *bitmap2, int bits) 217 { 218 int k; 219 int nr = BITS_TO_LONGS(bits); 220 221 for (k = 0; k < nr; k++) 222 dst[k] = bitmap1[k] & ~bitmap2[k]; 223 } 224 EXPORT_SYMBOL(__bitmap_andnot); 225 226 int __bitmap_intersects(const unsigned long *bitmap1, 227 const unsigned long *bitmap2, int bits) 228 { 229 int k, lim = bits/BITS_PER_LONG; 230 for (k = 0; k < lim; ++k) 231 if (bitmap1[k] & bitmap2[k]) 232 return 1; 233 234 if (bits % BITS_PER_LONG) 235 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 236 return 1; 237 return 0; 238 } 239 EXPORT_SYMBOL(__bitmap_intersects); 240 241 int __bitmap_subset(const unsigned long *bitmap1, 242 const unsigned long *bitmap2, int bits) 243 { 244 int k, lim = bits/BITS_PER_LONG; 245 for (k = 0; k < lim; ++k) 246 if (bitmap1[k] & ~bitmap2[k]) 247 return 0; 248 249 if (bits % BITS_PER_LONG) 250 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 251 return 0; 252 return 1; 253 } 254 EXPORT_SYMBOL(__bitmap_subset); 255 256 #if BITS_PER_LONG == 32 257 int __bitmap_weight(const unsigned long *bitmap, int bits) 258 { 259 int k, w = 0, lim = bits/BITS_PER_LONG; 260 261 for (k = 0; k < lim; k++) 262 w += hweight32(bitmap[k]); 263 264 if (bits % BITS_PER_LONG) 265 w += hweight32(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 266 267 return w; 268 } 269 #else 270 int __bitmap_weight(const unsigned long *bitmap, int bits) 271 { 272 int k, w = 0, lim = bits/BITS_PER_LONG; 273 274 for (k = 0; k < lim; k++) 275 w += hweight64(bitmap[k]); 276 277 if (bits % BITS_PER_LONG) 278 w += hweight64(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 279 280 return w; 281 } 282 #endif 283 EXPORT_SYMBOL(__bitmap_weight); 284 285 /* 286 * Bitmap printing & parsing functions: first version by Bill Irwin, 287 * second version by Paul Jackson, third by Joe Korty. 288 */ 289 290 #define CHUNKSZ 32 291 #define nbits_to_hold_value(val) fls(val) 292 #define roundup_power2(val,modulus) (((val) + (modulus) - 1) & ~((modulus) - 1)) 293 #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10)) 294 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 295 296 /** 297 * bitmap_scnprintf - convert bitmap to an ASCII hex string. 298 * @buf: byte buffer into which string is placed 299 * @buflen: reserved size of @buf, in bytes 300 * @maskp: pointer to bitmap to convert 301 * @nmaskbits: size of bitmap, in bits 302 * 303 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into 304 * comma-separated sets of eight digits per set. 305 */ 306 int bitmap_scnprintf(char *buf, unsigned int buflen, 307 const unsigned long *maskp, int nmaskbits) 308 { 309 int i, word, bit, len = 0; 310 unsigned long val; 311 const char *sep = ""; 312 int chunksz; 313 u32 chunkmask; 314 315 chunksz = nmaskbits & (CHUNKSZ - 1); 316 if (chunksz == 0) 317 chunksz = CHUNKSZ; 318 319 i = roundup_power2(nmaskbits, CHUNKSZ) - CHUNKSZ; 320 for (; i >= 0; i -= CHUNKSZ) { 321 chunkmask = ((1ULL << chunksz) - 1); 322 word = i / BITS_PER_LONG; 323 bit = i % BITS_PER_LONG; 324 val = (maskp[word] >> bit) & chunkmask; 325 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, 326 (chunksz+3)/4, val); 327 chunksz = CHUNKSZ; 328 sep = ","; 329 } 330 return len; 331 } 332 EXPORT_SYMBOL(bitmap_scnprintf); 333 334 /** 335 * bitmap_parse - convert an ASCII hex string into a bitmap. 336 * @buf: pointer to buffer in user space containing string. 337 * @buflen: buffer size in bytes. If string is smaller than this 338 * then it must be terminated with a \0. 339 * @maskp: pointer to bitmap array that will contain result. 340 * @nmaskbits: size of bitmap, in bits. 341 * 342 * Commas group hex digits into chunks. Each chunk defines exactly 32 343 * bits of the resultant bitmask. No chunk may specify a value larger 344 * than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value 345 * then leading 0-bits are prepended. -EINVAL is returned for illegal 346 * characters and for grouping errors such as "1,,5", ",44", "," and "". 347 * Leading and trailing whitespace accepted, but not embedded whitespace. 348 */ 349 int bitmap_parse(const char __user *ubuf, unsigned int ubuflen, 350 unsigned long *maskp, int nmaskbits) 351 { 352 int c, old_c, totaldigits, ndigits, nchunks, nbits; 353 u32 chunk; 354 355 bitmap_zero(maskp, nmaskbits); 356 357 nchunks = nbits = totaldigits = c = 0; 358 do { 359 chunk = ndigits = 0; 360 361 /* Get the next chunk of the bitmap */ 362 while (ubuflen) { 363 old_c = c; 364 if (get_user(c, ubuf++)) 365 return -EFAULT; 366 ubuflen--; 367 if (isspace(c)) 368 continue; 369 370 /* 371 * If the last character was a space and the current 372 * character isn't '\0', we've got embedded whitespace. 373 * This is a no-no, so throw an error. 374 */ 375 if (totaldigits && c && isspace(old_c)) 376 return -EINVAL; 377 378 /* A '\0' or a ',' signal the end of the chunk */ 379 if (c == '\0' || c == ',') 380 break; 381 382 if (!isxdigit(c)) 383 return -EINVAL; 384 385 /* 386 * Make sure there are at least 4 free bits in 'chunk'. 387 * If not, this hexdigit will overflow 'chunk', so 388 * throw an error. 389 */ 390 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 391 return -EOVERFLOW; 392 393 chunk = (chunk << 4) | unhex(c); 394 ndigits++; totaldigits++; 395 } 396 if (ndigits == 0) 397 return -EINVAL; 398 if (nchunks == 0 && chunk == 0) 399 continue; 400 401 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 402 *maskp |= chunk; 403 nchunks++; 404 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 405 if (nbits > nmaskbits) 406 return -EOVERFLOW; 407 } while (ubuflen && c == ','); 408 409 return 0; 410 } 411 EXPORT_SYMBOL(bitmap_parse); 412 413 /* 414 * bscnl_emit(buf, buflen, rbot, rtop, bp) 415 * 416 * Helper routine for bitmap_scnlistprintf(). Write decimal number 417 * or range to buf, suppressing output past buf+buflen, with optional 418 * comma-prefix. Return len of what would be written to buf, if it 419 * all fit. 420 */ 421 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) 422 { 423 if (len > 0) 424 len += scnprintf(buf + len, buflen - len, ","); 425 if (rbot == rtop) 426 len += scnprintf(buf + len, buflen - len, "%d", rbot); 427 else 428 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); 429 return len; 430 } 431 432 /** 433 * bitmap_scnlistprintf - convert bitmap to list format ASCII string 434 * @buf: byte buffer into which string is placed 435 * @buflen: reserved size of @buf, in bytes 436 * @maskp: pointer to bitmap to convert 437 * @nmaskbits: size of bitmap, in bits 438 * 439 * Output format is a comma-separated list of decimal numbers and 440 * ranges. Consecutively set bits are shown as two hyphen-separated 441 * decimal numbers, the smallest and largest bit numbers set in 442 * the range. Output format is compatible with the format 443 * accepted as input by bitmap_parselist(). 444 * 445 * The return value is the number of characters which would be 446 * generated for the given input, excluding the trailing '\0', as 447 * per ISO C99. 448 */ 449 int bitmap_scnlistprintf(char *buf, unsigned int buflen, 450 const unsigned long *maskp, int nmaskbits) 451 { 452 int len = 0; 453 /* current bit is 'cur', most recently seen range is [rbot, rtop] */ 454 int cur, rbot, rtop; 455 456 rbot = cur = find_first_bit(maskp, nmaskbits); 457 while (cur < nmaskbits) { 458 rtop = cur; 459 cur = find_next_bit(maskp, nmaskbits, cur+1); 460 if (cur >= nmaskbits || cur > rtop + 1) { 461 len = bscnl_emit(buf, buflen, rbot, rtop, len); 462 rbot = cur; 463 } 464 } 465 return len; 466 } 467 EXPORT_SYMBOL(bitmap_scnlistprintf); 468 469 /** 470 * bitmap_parselist - convert list format ASCII string to bitmap 471 * @buf: read nul-terminated user string from this buffer 472 * @mask: write resulting mask here 473 * @nmaskbits: number of bits in mask to be written 474 * 475 * Input format is a comma-separated list of decimal numbers and 476 * ranges. Consecutively set bits are shown as two hyphen-separated 477 * decimal numbers, the smallest and largest bit numbers set in 478 * the range. 479 * 480 * Returns 0 on success, -errno on invalid input strings: 481 * -EINVAL: second number in range smaller than first 482 * -EINVAL: invalid character in string 483 * -ERANGE: bit number specified too large for mask 484 */ 485 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 486 { 487 unsigned a, b; 488 489 bitmap_zero(maskp, nmaskbits); 490 do { 491 if (!isdigit(*bp)) 492 return -EINVAL; 493 b = a = simple_strtoul(bp, (char **)&bp, BASEDEC); 494 if (*bp == '-') { 495 bp++; 496 if (!isdigit(*bp)) 497 return -EINVAL; 498 b = simple_strtoul(bp, (char **)&bp, BASEDEC); 499 } 500 if (!(a <= b)) 501 return -EINVAL; 502 if (b >= nmaskbits) 503 return -ERANGE; 504 while (a <= b) { 505 set_bit(a, maskp); 506 a++; 507 } 508 if (*bp == ',') 509 bp++; 510 } while (*bp != '\0' && *bp != '\n'); 511 return 0; 512 } 513 EXPORT_SYMBOL(bitmap_parselist); 514 515 /** 516 * bitmap_find_free_region - find a contiguous aligned mem region 517 * @bitmap: an array of unsigned longs corresponding to the bitmap 518 * @bits: number of bits in the bitmap 519 * @order: region size to find (size is actually 1<<order) 520 * 521 * This is used to allocate a memory region from a bitmap. The idea is 522 * that the region has to be 1<<order sized and 1<<order aligned (this 523 * makes the search algorithm much faster). 524 * 525 * The region is marked as set bits in the bitmap if a free one is 526 * found. 527 * 528 * Returns either beginning of region or negative error 529 */ 530 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) 531 { 532 unsigned long mask; 533 int pages = 1 << order; 534 int i; 535 536 if(pages > BITS_PER_LONG) 537 return -EINVAL; 538 539 /* make a mask of the order */ 540 mask = (1ul << (pages - 1)); 541 mask += mask - 1; 542 543 /* run up the bitmap pages bits at a time */ 544 for (i = 0; i < bits; i += pages) { 545 int index = i/BITS_PER_LONG; 546 int offset = i - (index * BITS_PER_LONG); 547 if((bitmap[index] & (mask << offset)) == 0) { 548 /* set region in bimap */ 549 bitmap[index] |= (mask << offset); 550 return i; 551 } 552 } 553 return -ENOMEM; 554 } 555 EXPORT_SYMBOL(bitmap_find_free_region); 556 557 /** 558 * bitmap_release_region - release allocated bitmap region 559 * @bitmap: a pointer to the bitmap 560 * @pos: the beginning of the region 561 * @order: the order of the bits to release (number is 1<<order) 562 * 563 * This is the complement to __bitmap_find_free_region and releases 564 * the found region (by clearing it in the bitmap). 565 */ 566 void bitmap_release_region(unsigned long *bitmap, int pos, int order) 567 { 568 int pages = 1 << order; 569 unsigned long mask = (1ul << (pages - 1)); 570 int index = pos/BITS_PER_LONG; 571 int offset = pos - (index * BITS_PER_LONG); 572 mask += mask - 1; 573 bitmap[index] &= ~(mask << offset); 574 } 575 EXPORT_SYMBOL(bitmap_release_region); 576 577 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) 578 { 579 int pages = 1 << order; 580 unsigned long mask = (1ul << (pages - 1)); 581 int index = pos/BITS_PER_LONG; 582 int offset = pos - (index * BITS_PER_LONG); 583 584 /* We don't do regions of pages > BITS_PER_LONG. The 585 * algorithm would be a simple look for multiple zeros in the 586 * array, but there's no driver today that needs this. If you 587 * trip this BUG(), you get to code it... */ 588 BUG_ON(pages > BITS_PER_LONG); 589 mask += mask - 1; 590 if (bitmap[index] & (mask << offset)) 591 return -EBUSY; 592 bitmap[index] |= (mask << offset); 593 return 0; 594 } 595 EXPORT_SYMBOL(bitmap_allocate_region); 596