1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/module.h> 9 #include <linux/ctype.h> 10 #include <linux/errno.h> 11 #include <linux/bitmap.h> 12 #include <linux/bitops.h> 13 #include <asm/uaccess.h> 14 15 /* 16 * bitmaps provide an array of bits, implemented using an an 17 * array of unsigned longs. The number of valid bits in a 18 * given bitmap does _not_ need to be an exact multiple of 19 * BITS_PER_LONG. 20 * 21 * The possible unused bits in the last, partially used word 22 * of a bitmap are 'don't care'. The implementation makes 23 * no particular effort to keep them zero. It ensures that 24 * their value will not affect the results of any operation. 25 * The bitmap operations that return Boolean (bitmap_empty, 26 * for example) or scalar (bitmap_weight, for example) results 27 * carefully filter out these unused bits from impacting their 28 * results. 29 * 30 * These operations actually hold to a slightly stronger rule: 31 * if you don't input any bitmaps to these ops that have some 32 * unused bits set, then they won't output any set unused bits 33 * in output bitmaps. 34 * 35 * The byte ordering of bitmaps is more natural on little 36 * endian architectures. See the big-endian headers 37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 38 * for the best explanations of this ordering. 39 */ 40 41 int __bitmap_empty(const unsigned long *bitmap, int bits) 42 { 43 int k, lim = bits/BITS_PER_LONG; 44 for (k = 0; k < lim; ++k) 45 if (bitmap[k]) 46 return 0; 47 48 if (bits % BITS_PER_LONG) 49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 50 return 0; 51 52 return 1; 53 } 54 EXPORT_SYMBOL(__bitmap_empty); 55 56 int __bitmap_full(const unsigned long *bitmap, int bits) 57 { 58 int k, lim = bits/BITS_PER_LONG; 59 for (k = 0; k < lim; ++k) 60 if (~bitmap[k]) 61 return 0; 62 63 if (bits % BITS_PER_LONG) 64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 65 return 0; 66 67 return 1; 68 } 69 EXPORT_SYMBOL(__bitmap_full); 70 71 int __bitmap_equal(const unsigned long *bitmap1, 72 const unsigned long *bitmap2, int bits) 73 { 74 int k, lim = bits/BITS_PER_LONG; 75 for (k = 0; k < lim; ++k) 76 if (bitmap1[k] != bitmap2[k]) 77 return 0; 78 79 if (bits % BITS_PER_LONG) 80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 81 return 0; 82 83 return 1; 84 } 85 EXPORT_SYMBOL(__bitmap_equal); 86 87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) 88 { 89 int k, lim = bits/BITS_PER_LONG; 90 for (k = 0; k < lim; ++k) 91 dst[k] = ~src[k]; 92 93 if (bits % BITS_PER_LONG) 94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); 95 } 96 EXPORT_SYMBOL(__bitmap_complement); 97 98 /** 99 * __bitmap_shift_right - logical right shift of the bits in a bitmap 100 * @dst : destination bitmap 101 * @src : source bitmap 102 * @shift : shift by this many bits 103 * @bits : bitmap size, in bits 104 * 105 * Shifting right (dividing) means moving bits in the MS -> LS bit 106 * direction. Zeros are fed into the vacated MS positions and the 107 * LS bits shifted off the bottom are lost. 108 */ 109 void __bitmap_shift_right(unsigned long *dst, 110 const unsigned long *src, int shift, int bits) 111 { 112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 114 unsigned long mask = (1UL << left) - 1; 115 for (k = 0; off + k < lim; ++k) { 116 unsigned long upper, lower; 117 118 /* 119 * If shift is not word aligned, take lower rem bits of 120 * word above and make them the top rem bits of result. 121 */ 122 if (!rem || off + k + 1 >= lim) 123 upper = 0; 124 else { 125 upper = src[off + k + 1]; 126 if (off + k + 1 == lim - 1 && left) 127 upper &= mask; 128 } 129 lower = src[off + k]; 130 if (left && off + k == lim - 1) 131 lower &= mask; 132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; 133 if (left && k == lim - 1) 134 dst[k] &= mask; 135 } 136 if (off) 137 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 138 } 139 EXPORT_SYMBOL(__bitmap_shift_right); 140 141 142 /** 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap 144 * @dst : destination bitmap 145 * @src : source bitmap 146 * @shift : shift by this many bits 147 * @bits : bitmap size, in bits 148 * 149 * Shifting left (multiplying) means moving bits in the LS -> MS 150 * direction. Zeros are fed into the vacated LS bit positions 151 * and those MS bits shifted off the top are lost. 152 */ 153 154 void __bitmap_shift_left(unsigned long *dst, 155 const unsigned long *src, int shift, int bits) 156 { 157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 159 for (k = lim - off - 1; k >= 0; --k) { 160 unsigned long upper, lower; 161 162 /* 163 * If shift is not word aligned, take upper rem bits of 164 * word below and make them the bottom rem bits of result. 165 */ 166 if (rem && k > 0) 167 lower = src[k - 1]; 168 else 169 lower = 0; 170 upper = src[k]; 171 if (left && k == lim - 1) 172 upper &= (1UL << left) - 1; 173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem; 174 if (left && k + off == lim - 1) 175 dst[k + off] &= (1UL << left) - 1; 176 } 177 if (off) 178 memset(dst, 0, off*sizeof(unsigned long)); 179 } 180 EXPORT_SYMBOL(__bitmap_shift_left); 181 182 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 183 const unsigned long *bitmap2, int bits) 184 { 185 int k; 186 int nr = BITS_TO_LONGS(bits); 187 unsigned long result = 0; 188 189 for (k = 0; k < nr; k++) 190 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 191 return result != 0; 192 } 193 EXPORT_SYMBOL(__bitmap_and); 194 195 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 196 const unsigned long *bitmap2, int bits) 197 { 198 int k; 199 int nr = BITS_TO_LONGS(bits); 200 201 for (k = 0; k < nr; k++) 202 dst[k] = bitmap1[k] | bitmap2[k]; 203 } 204 EXPORT_SYMBOL(__bitmap_or); 205 206 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 207 const unsigned long *bitmap2, int bits) 208 { 209 int k; 210 int nr = BITS_TO_LONGS(bits); 211 212 for (k = 0; k < nr; k++) 213 dst[k] = bitmap1[k] ^ bitmap2[k]; 214 } 215 EXPORT_SYMBOL(__bitmap_xor); 216 217 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 218 const unsigned long *bitmap2, int bits) 219 { 220 int k; 221 int nr = BITS_TO_LONGS(bits); 222 unsigned long result = 0; 223 224 for (k = 0; k < nr; k++) 225 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 226 return result != 0; 227 } 228 EXPORT_SYMBOL(__bitmap_andnot); 229 230 int __bitmap_intersects(const unsigned long *bitmap1, 231 const unsigned long *bitmap2, int bits) 232 { 233 int k, lim = bits/BITS_PER_LONG; 234 for (k = 0; k < lim; ++k) 235 if (bitmap1[k] & bitmap2[k]) 236 return 1; 237 238 if (bits % BITS_PER_LONG) 239 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 240 return 1; 241 return 0; 242 } 243 EXPORT_SYMBOL(__bitmap_intersects); 244 245 int __bitmap_subset(const unsigned long *bitmap1, 246 const unsigned long *bitmap2, int bits) 247 { 248 int k, lim = bits/BITS_PER_LONG; 249 for (k = 0; k < lim; ++k) 250 if (bitmap1[k] & ~bitmap2[k]) 251 return 0; 252 253 if (bits % BITS_PER_LONG) 254 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 255 return 0; 256 return 1; 257 } 258 EXPORT_SYMBOL(__bitmap_subset); 259 260 int __bitmap_weight(const unsigned long *bitmap, int bits) 261 { 262 int k, w = 0, lim = bits/BITS_PER_LONG; 263 264 for (k = 0; k < lim; k++) 265 w += hweight_long(bitmap[k]); 266 267 if (bits % BITS_PER_LONG) 268 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 269 270 return w; 271 } 272 EXPORT_SYMBOL(__bitmap_weight); 273 274 void bitmap_set(unsigned long *map, int start, int nr) 275 { 276 unsigned long *p = map + BIT_WORD(start); 277 const int size = start + nr; 278 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 279 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 280 281 while (nr - bits_to_set >= 0) { 282 *p |= mask_to_set; 283 nr -= bits_to_set; 284 bits_to_set = BITS_PER_LONG; 285 mask_to_set = ~0UL; 286 p++; 287 } 288 if (nr) { 289 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 290 *p |= mask_to_set; 291 } 292 } 293 EXPORT_SYMBOL(bitmap_set); 294 295 void bitmap_clear(unsigned long *map, int start, int nr) 296 { 297 unsigned long *p = map + BIT_WORD(start); 298 const int size = start + nr; 299 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 300 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 301 302 while (nr - bits_to_clear >= 0) { 303 *p &= ~mask_to_clear; 304 nr -= bits_to_clear; 305 bits_to_clear = BITS_PER_LONG; 306 mask_to_clear = ~0UL; 307 p++; 308 } 309 if (nr) { 310 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 311 *p &= ~mask_to_clear; 312 } 313 } 314 EXPORT_SYMBOL(bitmap_clear); 315 316 /* 317 * bitmap_find_next_zero_area - find a contiguous aligned zero area 318 * @map: The address to base the search on 319 * @size: The bitmap size in bits 320 * @start: The bitnumber to start searching at 321 * @nr: The number of zeroed bits we're looking for 322 * @align_mask: Alignment mask for zero area 323 * 324 * The @align_mask should be one less than a power of 2; the effect is that 325 * the bit offset of all zero areas this function finds is multiples of that 326 * power of 2. A @align_mask of 0 means no alignment is required. 327 */ 328 unsigned long bitmap_find_next_zero_area(unsigned long *map, 329 unsigned long size, 330 unsigned long start, 331 unsigned int nr, 332 unsigned long align_mask) 333 { 334 unsigned long index, end, i; 335 again: 336 index = find_next_zero_bit(map, size, start); 337 338 /* Align allocation */ 339 index = __ALIGN_MASK(index, align_mask); 340 341 end = index + nr; 342 if (end > size) 343 return end; 344 i = find_next_bit(map, end, index); 345 if (i < end) { 346 start = i + 1; 347 goto again; 348 } 349 return index; 350 } 351 EXPORT_SYMBOL(bitmap_find_next_zero_area); 352 353 /* 354 * Bitmap printing & parsing functions: first version by Bill Irwin, 355 * second version by Paul Jackson, third by Joe Korty. 356 */ 357 358 #define CHUNKSZ 32 359 #define nbits_to_hold_value(val) fls(val) 360 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 361 362 /** 363 * bitmap_scnprintf - convert bitmap to an ASCII hex string. 364 * @buf: byte buffer into which string is placed 365 * @buflen: reserved size of @buf, in bytes 366 * @maskp: pointer to bitmap to convert 367 * @nmaskbits: size of bitmap, in bits 368 * 369 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into 370 * comma-separated sets of eight digits per set. 371 */ 372 int bitmap_scnprintf(char *buf, unsigned int buflen, 373 const unsigned long *maskp, int nmaskbits) 374 { 375 int i, word, bit, len = 0; 376 unsigned long val; 377 const char *sep = ""; 378 int chunksz; 379 u32 chunkmask; 380 381 chunksz = nmaskbits & (CHUNKSZ - 1); 382 if (chunksz == 0) 383 chunksz = CHUNKSZ; 384 385 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; 386 for (; i >= 0; i -= CHUNKSZ) { 387 chunkmask = ((1ULL << chunksz) - 1); 388 word = i / BITS_PER_LONG; 389 bit = i % BITS_PER_LONG; 390 val = (maskp[word] >> bit) & chunkmask; 391 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, 392 (chunksz+3)/4, val); 393 chunksz = CHUNKSZ; 394 sep = ","; 395 } 396 return len; 397 } 398 EXPORT_SYMBOL(bitmap_scnprintf); 399 400 /** 401 * __bitmap_parse - convert an ASCII hex string into a bitmap. 402 * @buf: pointer to buffer containing string. 403 * @buflen: buffer size in bytes. If string is smaller than this 404 * then it must be terminated with a \0. 405 * @is_user: location of buffer, 0 indicates kernel space 406 * @maskp: pointer to bitmap array that will contain result. 407 * @nmaskbits: size of bitmap, in bits. 408 * 409 * Commas group hex digits into chunks. Each chunk defines exactly 32 410 * bits of the resultant bitmask. No chunk may specify a value larger 411 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 412 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 413 * characters and for grouping errors such as "1,,5", ",44", "," and "". 414 * Leading and trailing whitespace accepted, but not embedded whitespace. 415 */ 416 int __bitmap_parse(const char *buf, unsigned int buflen, 417 int is_user, unsigned long *maskp, 418 int nmaskbits) 419 { 420 int c, old_c, totaldigits, ndigits, nchunks, nbits; 421 u32 chunk; 422 const char __user __force *ubuf = (const char __user __force *)buf; 423 424 bitmap_zero(maskp, nmaskbits); 425 426 nchunks = nbits = totaldigits = c = 0; 427 do { 428 chunk = ndigits = 0; 429 430 /* Get the next chunk of the bitmap */ 431 while (buflen) { 432 old_c = c; 433 if (is_user) { 434 if (__get_user(c, ubuf++)) 435 return -EFAULT; 436 } 437 else 438 c = *buf++; 439 buflen--; 440 if (isspace(c)) 441 continue; 442 443 /* 444 * If the last character was a space and the current 445 * character isn't '\0', we've got embedded whitespace. 446 * This is a no-no, so throw an error. 447 */ 448 if (totaldigits && c && isspace(old_c)) 449 return -EINVAL; 450 451 /* A '\0' or a ',' signal the end of the chunk */ 452 if (c == '\0' || c == ',') 453 break; 454 455 if (!isxdigit(c)) 456 return -EINVAL; 457 458 /* 459 * Make sure there are at least 4 free bits in 'chunk'. 460 * If not, this hexdigit will overflow 'chunk', so 461 * throw an error. 462 */ 463 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 464 return -EOVERFLOW; 465 466 chunk = (chunk << 4) | hex_to_bin(c); 467 ndigits++; totaldigits++; 468 } 469 if (ndigits == 0) 470 return -EINVAL; 471 if (nchunks == 0 && chunk == 0) 472 continue; 473 474 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 475 *maskp |= chunk; 476 nchunks++; 477 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 478 if (nbits > nmaskbits) 479 return -EOVERFLOW; 480 } while (buflen && c == ','); 481 482 return 0; 483 } 484 EXPORT_SYMBOL(__bitmap_parse); 485 486 /** 487 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 488 * 489 * @ubuf: pointer to user buffer containing string. 490 * @ulen: buffer size in bytes. If string is smaller than this 491 * then it must be terminated with a \0. 492 * @maskp: pointer to bitmap array that will contain result. 493 * @nmaskbits: size of bitmap, in bits. 494 * 495 * Wrapper for __bitmap_parse(), providing it with user buffer. 496 * 497 * We cannot have this as an inline function in bitmap.h because it needs 498 * linux/uaccess.h to get the access_ok() declaration and this causes 499 * cyclic dependencies. 500 */ 501 int bitmap_parse_user(const char __user *ubuf, 502 unsigned int ulen, unsigned long *maskp, 503 int nmaskbits) 504 { 505 if (!access_ok(VERIFY_READ, ubuf, ulen)) 506 return -EFAULT; 507 return __bitmap_parse((const char __force *)ubuf, 508 ulen, 1, maskp, nmaskbits); 509 510 } 511 EXPORT_SYMBOL(bitmap_parse_user); 512 513 /* 514 * bscnl_emit(buf, buflen, rbot, rtop, bp) 515 * 516 * Helper routine for bitmap_scnlistprintf(). Write decimal number 517 * or range to buf, suppressing output past buf+buflen, with optional 518 * comma-prefix. Return len of what would be written to buf, if it 519 * all fit. 520 */ 521 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) 522 { 523 if (len > 0) 524 len += scnprintf(buf + len, buflen - len, ","); 525 if (rbot == rtop) 526 len += scnprintf(buf + len, buflen - len, "%d", rbot); 527 else 528 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); 529 return len; 530 } 531 532 /** 533 * bitmap_scnlistprintf - convert bitmap to list format ASCII string 534 * @buf: byte buffer into which string is placed 535 * @buflen: reserved size of @buf, in bytes 536 * @maskp: pointer to bitmap to convert 537 * @nmaskbits: size of bitmap, in bits 538 * 539 * Output format is a comma-separated list of decimal numbers and 540 * ranges. Consecutively set bits are shown as two hyphen-separated 541 * decimal numbers, the smallest and largest bit numbers set in 542 * the range. Output format is compatible with the format 543 * accepted as input by bitmap_parselist(). 544 * 545 * The return value is the number of characters which would be 546 * generated for the given input, excluding the trailing '\0', as 547 * per ISO C99. 548 */ 549 int bitmap_scnlistprintf(char *buf, unsigned int buflen, 550 const unsigned long *maskp, int nmaskbits) 551 { 552 int len = 0; 553 /* current bit is 'cur', most recently seen range is [rbot, rtop] */ 554 int cur, rbot, rtop; 555 556 if (buflen == 0) 557 return 0; 558 buf[0] = 0; 559 560 rbot = cur = find_first_bit(maskp, nmaskbits); 561 while (cur < nmaskbits) { 562 rtop = cur; 563 cur = find_next_bit(maskp, nmaskbits, cur+1); 564 if (cur >= nmaskbits || cur > rtop + 1) { 565 len = bscnl_emit(buf, buflen, rbot, rtop, len); 566 rbot = cur; 567 } 568 } 569 return len; 570 } 571 EXPORT_SYMBOL(bitmap_scnlistprintf); 572 573 /** 574 * __bitmap_parselist - convert list format ASCII string to bitmap 575 * @buf: read nul-terminated user string from this buffer 576 * @buflen: buffer size in bytes. If string is smaller than this 577 * then it must be terminated with a \0. 578 * @is_user: location of buffer, 0 indicates kernel space 579 * @maskp: write resulting mask here 580 * @nmaskbits: number of bits in mask to be written 581 * 582 * Input format is a comma-separated list of decimal numbers and 583 * ranges. Consecutively set bits are shown as two hyphen-separated 584 * decimal numbers, the smallest and largest bit numbers set in 585 * the range. 586 * 587 * Returns 0 on success, -errno on invalid input strings. 588 * Error values: 589 * %-EINVAL: second number in range smaller than first 590 * %-EINVAL: invalid character in string 591 * %-ERANGE: bit number specified too large for mask 592 */ 593 static int __bitmap_parselist(const char *buf, unsigned int buflen, 594 int is_user, unsigned long *maskp, 595 int nmaskbits) 596 { 597 unsigned a, b; 598 int c, old_c, totaldigits; 599 const char __user __force *ubuf = (const char __user __force *)buf; 600 int exp_digit, in_range; 601 602 totaldigits = c = 0; 603 bitmap_zero(maskp, nmaskbits); 604 do { 605 exp_digit = 1; 606 in_range = 0; 607 a = b = 0; 608 609 /* Get the next cpu# or a range of cpu#'s */ 610 while (buflen) { 611 old_c = c; 612 if (is_user) { 613 if (__get_user(c, ubuf++)) 614 return -EFAULT; 615 } else 616 c = *buf++; 617 buflen--; 618 if (isspace(c)) 619 continue; 620 621 /* 622 * If the last character was a space and the current 623 * character isn't '\0', we've got embedded whitespace. 624 * This is a no-no, so throw an error. 625 */ 626 if (totaldigits && c && isspace(old_c)) 627 return -EINVAL; 628 629 /* A '\0' or a ',' signal the end of a cpu# or range */ 630 if (c == '\0' || c == ',') 631 break; 632 633 if (c == '-') { 634 if (exp_digit || in_range) 635 return -EINVAL; 636 b = 0; 637 in_range = 1; 638 exp_digit = 1; 639 continue; 640 } 641 642 if (!isdigit(c)) 643 return -EINVAL; 644 645 b = b * 10 + (c - '0'); 646 if (!in_range) 647 a = b; 648 exp_digit = 0; 649 totaldigits++; 650 } 651 if (!(a <= b)) 652 return -EINVAL; 653 if (b >= nmaskbits) 654 return -ERANGE; 655 while (a <= b) { 656 set_bit(a, maskp); 657 a++; 658 } 659 } while (buflen && c == ','); 660 return 0; 661 } 662 663 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 664 { 665 char *nl = strchr(bp, '\n'); 666 int len; 667 668 if (nl) 669 len = nl - bp; 670 else 671 len = strlen(bp); 672 673 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 674 } 675 EXPORT_SYMBOL(bitmap_parselist); 676 677 678 /** 679 * bitmap_parselist_user() 680 * 681 * @ubuf: pointer to user buffer containing string. 682 * @ulen: buffer size in bytes. If string is smaller than this 683 * then it must be terminated with a \0. 684 * @maskp: pointer to bitmap array that will contain result. 685 * @nmaskbits: size of bitmap, in bits. 686 * 687 * Wrapper for bitmap_parselist(), providing it with user buffer. 688 * 689 * We cannot have this as an inline function in bitmap.h because it needs 690 * linux/uaccess.h to get the access_ok() declaration and this causes 691 * cyclic dependencies. 692 */ 693 int bitmap_parselist_user(const char __user *ubuf, 694 unsigned int ulen, unsigned long *maskp, 695 int nmaskbits) 696 { 697 if (!access_ok(VERIFY_READ, ubuf, ulen)) 698 return -EFAULT; 699 return __bitmap_parselist((const char __force *)ubuf, 700 ulen, 1, maskp, nmaskbits); 701 } 702 EXPORT_SYMBOL(bitmap_parselist_user); 703 704 705 /** 706 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 707 * @buf: pointer to a bitmap 708 * @pos: a bit position in @buf (0 <= @pos < @bits) 709 * @bits: number of valid bit positions in @buf 710 * 711 * Map the bit at position @pos in @buf (of length @bits) to the 712 * ordinal of which set bit it is. If it is not set or if @pos 713 * is not a valid bit position, map to -1. 714 * 715 * If for example, just bits 4 through 7 are set in @buf, then @pos 716 * values 4 through 7 will get mapped to 0 through 3, respectively, 717 * and other @pos values will get mapped to 0. When @pos value 7 718 * gets mapped to (returns) @ord value 3 in this example, that means 719 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 720 * 721 * The bit positions 0 through @bits are valid positions in @buf. 722 */ 723 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) 724 { 725 int i, ord; 726 727 if (pos < 0 || pos >= bits || !test_bit(pos, buf)) 728 return -1; 729 730 i = find_first_bit(buf, bits); 731 ord = 0; 732 while (i < pos) { 733 i = find_next_bit(buf, bits, i + 1); 734 ord++; 735 } 736 BUG_ON(i != pos); 737 738 return ord; 739 } 740 741 /** 742 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 743 * @buf: pointer to bitmap 744 * @ord: ordinal bit position (n-th set bit, n >= 0) 745 * @bits: number of valid bit positions in @buf 746 * 747 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 748 * Value of @ord should be in range 0 <= @ord < weight(buf), else 749 * results are undefined. 750 * 751 * If for example, just bits 4 through 7 are set in @buf, then @ord 752 * values 0 through 3 will get mapped to 4 through 7, respectively, 753 * and all other @ord values return undefined values. When @ord value 3 754 * gets mapped to (returns) @pos value 7 in this example, that means 755 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 756 * 757 * The bit positions 0 through @bits are valid positions in @buf. 758 */ 759 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) 760 { 761 int pos = 0; 762 763 if (ord >= 0 && ord < bits) { 764 int i; 765 766 for (i = find_first_bit(buf, bits); 767 i < bits && ord > 0; 768 i = find_next_bit(buf, bits, i + 1)) 769 ord--; 770 if (i < bits && ord == 0) 771 pos = i; 772 } 773 774 return pos; 775 } 776 777 /** 778 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 779 * @dst: remapped result 780 * @src: subset to be remapped 781 * @old: defines domain of map 782 * @new: defines range of map 783 * @bits: number of bits in each of these bitmaps 784 * 785 * Let @old and @new define a mapping of bit positions, such that 786 * whatever position is held by the n-th set bit in @old is mapped 787 * to the n-th set bit in @new. In the more general case, allowing 788 * for the possibility that the weight 'w' of @new is less than the 789 * weight of @old, map the position of the n-th set bit in @old to 790 * the position of the m-th set bit in @new, where m == n % w. 791 * 792 * If either of the @old and @new bitmaps are empty, or if @src and 793 * @dst point to the same location, then this routine copies @src 794 * to @dst. 795 * 796 * The positions of unset bits in @old are mapped to themselves 797 * (the identify map). 798 * 799 * Apply the above specified mapping to @src, placing the result in 800 * @dst, clearing any bits previously set in @dst. 801 * 802 * For example, lets say that @old has bits 4 through 7 set, and 803 * @new has bits 12 through 15 set. This defines the mapping of bit 804 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 805 * bit positions unchanged. So if say @src comes into this routine 806 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 807 * 13 and 15 set. 808 */ 809 void bitmap_remap(unsigned long *dst, const unsigned long *src, 810 const unsigned long *old, const unsigned long *new, 811 int bits) 812 { 813 int oldbit, w; 814 815 if (dst == src) /* following doesn't handle inplace remaps */ 816 return; 817 bitmap_zero(dst, bits); 818 819 w = bitmap_weight(new, bits); 820 for_each_set_bit(oldbit, src, bits) { 821 int n = bitmap_pos_to_ord(old, oldbit, bits); 822 823 if (n < 0 || w == 0) 824 set_bit(oldbit, dst); /* identity map */ 825 else 826 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); 827 } 828 } 829 EXPORT_SYMBOL(bitmap_remap); 830 831 /** 832 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 833 * @oldbit: bit position to be mapped 834 * @old: defines domain of map 835 * @new: defines range of map 836 * @bits: number of bits in each of these bitmaps 837 * 838 * Let @old and @new define a mapping of bit positions, such that 839 * whatever position is held by the n-th set bit in @old is mapped 840 * to the n-th set bit in @new. In the more general case, allowing 841 * for the possibility that the weight 'w' of @new is less than the 842 * weight of @old, map the position of the n-th set bit in @old to 843 * the position of the m-th set bit in @new, where m == n % w. 844 * 845 * The positions of unset bits in @old are mapped to themselves 846 * (the identify map). 847 * 848 * Apply the above specified mapping to bit position @oldbit, returning 849 * the new bit position. 850 * 851 * For example, lets say that @old has bits 4 through 7 set, and 852 * @new has bits 12 through 15 set. This defines the mapping of bit 853 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 854 * bit positions unchanged. So if say @oldbit is 5, then this routine 855 * returns 13. 856 */ 857 int bitmap_bitremap(int oldbit, const unsigned long *old, 858 const unsigned long *new, int bits) 859 { 860 int w = bitmap_weight(new, bits); 861 int n = bitmap_pos_to_ord(old, oldbit, bits); 862 if (n < 0 || w == 0) 863 return oldbit; 864 else 865 return bitmap_ord_to_pos(new, n % w, bits); 866 } 867 EXPORT_SYMBOL(bitmap_bitremap); 868 869 /** 870 * bitmap_onto - translate one bitmap relative to another 871 * @dst: resulting translated bitmap 872 * @orig: original untranslated bitmap 873 * @relmap: bitmap relative to which translated 874 * @bits: number of bits in each of these bitmaps 875 * 876 * Set the n-th bit of @dst iff there exists some m such that the 877 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 878 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 879 * (If you understood the previous sentence the first time your 880 * read it, you're overqualified for your current job.) 881 * 882 * In other words, @orig is mapped onto (surjectively) @dst, 883 * using the the map { <n, m> | the n-th bit of @relmap is the 884 * m-th set bit of @relmap }. 885 * 886 * Any set bits in @orig above bit number W, where W is the 887 * weight of (number of set bits in) @relmap are mapped nowhere. 888 * In particular, if for all bits m set in @orig, m >= W, then 889 * @dst will end up empty. In situations where the possibility 890 * of such an empty result is not desired, one way to avoid it is 891 * to use the bitmap_fold() operator, below, to first fold the 892 * @orig bitmap over itself so that all its set bits x are in the 893 * range 0 <= x < W. The bitmap_fold() operator does this by 894 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 895 * 896 * Example [1] for bitmap_onto(): 897 * Let's say @relmap has bits 30-39 set, and @orig has bits 898 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 899 * @dst will have bits 31, 33, 35, 37 and 39 set. 900 * 901 * When bit 0 is set in @orig, it means turn on the bit in 902 * @dst corresponding to whatever is the first bit (if any) 903 * that is turned on in @relmap. Since bit 0 was off in the 904 * above example, we leave off that bit (bit 30) in @dst. 905 * 906 * When bit 1 is set in @orig (as in the above example), it 907 * means turn on the bit in @dst corresponding to whatever 908 * is the second bit that is turned on in @relmap. The second 909 * bit in @relmap that was turned on in the above example was 910 * bit 31, so we turned on bit 31 in @dst. 911 * 912 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 913 * because they were the 4th, 6th, 8th and 10th set bits 914 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 915 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 916 * 917 * When bit 11 is set in @orig, it means turn on the bit in 918 * @dst corresponding to whatever is the twelfth bit that is 919 * turned on in @relmap. In the above example, there were 920 * only ten bits turned on in @relmap (30..39), so that bit 921 * 11 was set in @orig had no affect on @dst. 922 * 923 * Example [2] for bitmap_fold() + bitmap_onto(): 924 * Let's say @relmap has these ten bits set: 925 * 40 41 42 43 45 48 53 61 74 95 926 * (for the curious, that's 40 plus the first ten terms of the 927 * Fibonacci sequence.) 928 * 929 * Further lets say we use the following code, invoking 930 * bitmap_fold() then bitmap_onto, as suggested above to 931 * avoid the possitility of an empty @dst result: 932 * 933 * unsigned long *tmp; // a temporary bitmap's bits 934 * 935 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 936 * bitmap_onto(dst, tmp, relmap, bits); 937 * 938 * Then this table shows what various values of @dst would be, for 939 * various @orig's. I list the zero-based positions of each set bit. 940 * The tmp column shows the intermediate result, as computed by 941 * using bitmap_fold() to fold the @orig bitmap modulo ten 942 * (the weight of @relmap). 943 * 944 * @orig tmp @dst 945 * 0 0 40 946 * 1 1 41 947 * 9 9 95 948 * 10 0 40 (*) 949 * 1 3 5 7 1 3 5 7 41 43 48 61 950 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 951 * 0 9 18 27 0 9 8 7 40 61 74 95 952 * 0 10 20 30 0 40 953 * 0 11 22 33 0 1 2 3 40 41 42 43 954 * 0 12 24 36 0 2 4 6 40 42 45 53 955 * 78 102 211 1 2 8 41 42 74 (*) 956 * 957 * (*) For these marked lines, if we hadn't first done bitmap_fold() 958 * into tmp, then the @dst result would have been empty. 959 * 960 * If either of @orig or @relmap is empty (no set bits), then @dst 961 * will be returned empty. 962 * 963 * If (as explained above) the only set bits in @orig are in positions 964 * m where m >= W, (where W is the weight of @relmap) then @dst will 965 * once again be returned empty. 966 * 967 * All bits in @dst not set by the above rule are cleared. 968 */ 969 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 970 const unsigned long *relmap, int bits) 971 { 972 int n, m; /* same meaning as in above comment */ 973 974 if (dst == orig) /* following doesn't handle inplace mappings */ 975 return; 976 bitmap_zero(dst, bits); 977 978 /* 979 * The following code is a more efficient, but less 980 * obvious, equivalent to the loop: 981 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 982 * n = bitmap_ord_to_pos(orig, m, bits); 983 * if (test_bit(m, orig)) 984 * set_bit(n, dst); 985 * } 986 */ 987 988 m = 0; 989 for_each_set_bit(n, relmap, bits) { 990 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 991 if (test_bit(m, orig)) 992 set_bit(n, dst); 993 m++; 994 } 995 } 996 EXPORT_SYMBOL(bitmap_onto); 997 998 /** 999 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1000 * @dst: resulting smaller bitmap 1001 * @orig: original larger bitmap 1002 * @sz: specified size 1003 * @bits: number of bits in each of these bitmaps 1004 * 1005 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1006 * Clear all other bits in @dst. See further the comment and 1007 * Example [2] for bitmap_onto() for why and how to use this. 1008 */ 1009 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1010 int sz, int bits) 1011 { 1012 int oldbit; 1013 1014 if (dst == orig) /* following doesn't handle inplace mappings */ 1015 return; 1016 bitmap_zero(dst, bits); 1017 1018 for_each_set_bit(oldbit, orig, bits) 1019 set_bit(oldbit % sz, dst); 1020 } 1021 EXPORT_SYMBOL(bitmap_fold); 1022 1023 /* 1024 * Common code for bitmap_*_region() routines. 1025 * bitmap: array of unsigned longs corresponding to the bitmap 1026 * pos: the beginning of the region 1027 * order: region size (log base 2 of number of bits) 1028 * reg_op: operation(s) to perform on that region of bitmap 1029 * 1030 * Can set, verify and/or release a region of bits in a bitmap, 1031 * depending on which combination of REG_OP_* flag bits is set. 1032 * 1033 * A region of a bitmap is a sequence of bits in the bitmap, of 1034 * some size '1 << order' (a power of two), aligned to that same 1035 * '1 << order' power of two. 1036 * 1037 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1038 * Returns 0 in all other cases and reg_ops. 1039 */ 1040 1041 enum { 1042 REG_OP_ISFREE, /* true if region is all zero bits */ 1043 REG_OP_ALLOC, /* set all bits in region */ 1044 REG_OP_RELEASE, /* clear all bits in region */ 1045 }; 1046 1047 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) 1048 { 1049 int nbits_reg; /* number of bits in region */ 1050 int index; /* index first long of region in bitmap */ 1051 int offset; /* bit offset region in bitmap[index] */ 1052 int nlongs_reg; /* num longs spanned by region in bitmap */ 1053 int nbitsinlong; /* num bits of region in each spanned long */ 1054 unsigned long mask; /* bitmask for one long of region */ 1055 int i; /* scans bitmap by longs */ 1056 int ret = 0; /* return value */ 1057 1058 /* 1059 * Either nlongs_reg == 1 (for small orders that fit in one long) 1060 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1061 */ 1062 nbits_reg = 1 << order; 1063 index = pos / BITS_PER_LONG; 1064 offset = pos - (index * BITS_PER_LONG); 1065 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1066 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1067 1068 /* 1069 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1070 * overflows if nbitsinlong == BITS_PER_LONG. 1071 */ 1072 mask = (1UL << (nbitsinlong - 1)); 1073 mask += mask - 1; 1074 mask <<= offset; 1075 1076 switch (reg_op) { 1077 case REG_OP_ISFREE: 1078 for (i = 0; i < nlongs_reg; i++) { 1079 if (bitmap[index + i] & mask) 1080 goto done; 1081 } 1082 ret = 1; /* all bits in region free (zero) */ 1083 break; 1084 1085 case REG_OP_ALLOC: 1086 for (i = 0; i < nlongs_reg; i++) 1087 bitmap[index + i] |= mask; 1088 break; 1089 1090 case REG_OP_RELEASE: 1091 for (i = 0; i < nlongs_reg; i++) 1092 bitmap[index + i] &= ~mask; 1093 break; 1094 } 1095 done: 1096 return ret; 1097 } 1098 1099 /** 1100 * bitmap_find_free_region - find a contiguous aligned mem region 1101 * @bitmap: array of unsigned longs corresponding to the bitmap 1102 * @bits: number of bits in the bitmap 1103 * @order: region size (log base 2 of number of bits) to find 1104 * 1105 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1106 * allocate them (set them to one). Only consider regions of length 1107 * a power (@order) of two, aligned to that power of two, which 1108 * makes the search algorithm much faster. 1109 * 1110 * Return the bit offset in bitmap of the allocated region, 1111 * or -errno on failure. 1112 */ 1113 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) 1114 { 1115 int pos, end; /* scans bitmap by regions of size order */ 1116 1117 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) { 1118 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1119 continue; 1120 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1121 return pos; 1122 } 1123 return -ENOMEM; 1124 } 1125 EXPORT_SYMBOL(bitmap_find_free_region); 1126 1127 /** 1128 * bitmap_release_region - release allocated bitmap region 1129 * @bitmap: array of unsigned longs corresponding to the bitmap 1130 * @pos: beginning of bit region to release 1131 * @order: region size (log base 2 of number of bits) to release 1132 * 1133 * This is the complement to __bitmap_find_free_region() and releases 1134 * the found region (by clearing it in the bitmap). 1135 * 1136 * No return value. 1137 */ 1138 void bitmap_release_region(unsigned long *bitmap, int pos, int order) 1139 { 1140 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1141 } 1142 EXPORT_SYMBOL(bitmap_release_region); 1143 1144 /** 1145 * bitmap_allocate_region - allocate bitmap region 1146 * @bitmap: array of unsigned longs corresponding to the bitmap 1147 * @pos: beginning of bit region to allocate 1148 * @order: region size (log base 2 of number of bits) to allocate 1149 * 1150 * Allocate (set bits in) a specified region of a bitmap. 1151 * 1152 * Return 0 on success, or %-EBUSY if specified region wasn't 1153 * free (not all bits were zero). 1154 */ 1155 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) 1156 { 1157 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1158 return -EBUSY; 1159 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1160 return 0; 1161 } 1162 EXPORT_SYMBOL(bitmap_allocate_region); 1163 1164 /** 1165 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1166 * @dst: destination buffer 1167 * @src: bitmap to copy 1168 * @nbits: number of bits in the bitmap 1169 * 1170 * Require nbits % BITS_PER_LONG == 0. 1171 */ 1172 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) 1173 { 1174 unsigned long *d = dst; 1175 int i; 1176 1177 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1178 if (BITS_PER_LONG == 64) 1179 d[i] = cpu_to_le64(src[i]); 1180 else 1181 d[i] = cpu_to_le32(src[i]); 1182 } 1183 } 1184 EXPORT_SYMBOL(bitmap_copy_le); 1185