xref: /openbmc/linux/lib/bitmap.c (revision 171f1bc7)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40 
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43 	int k, lim = bits/BITS_PER_LONG;
44 	for (k = 0; k < lim; ++k)
45 		if (bitmap[k])
46 			return 0;
47 
48 	if (bits % BITS_PER_LONG)
49 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 			return 0;
51 
52 	return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55 
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58 	int k, lim = bits/BITS_PER_LONG;
59 	for (k = 0; k < lim; ++k)
60 		if (~bitmap[k])
61 			return 0;
62 
63 	if (bits % BITS_PER_LONG)
64 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 			return 0;
66 
67 	return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70 
71 int __bitmap_equal(const unsigned long *bitmap1,
72 		const unsigned long *bitmap2, int bits)
73 {
74 	int k, lim = bits/BITS_PER_LONG;
75 	for (k = 0; k < lim; ++k)
76 		if (bitmap1[k] != bitmap2[k])
77 			return 0;
78 
79 	if (bits % BITS_PER_LONG)
80 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 			return 0;
82 
83 	return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86 
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89 	int k, lim = bits/BITS_PER_LONG;
90 	for (k = 0; k < lim; ++k)
91 		dst[k] = ~src[k];
92 
93 	if (bits % BITS_PER_LONG)
94 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97 
98 /**
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst : destination bitmap
101  *   @src : source bitmap
102  *   @shift : shift by this many bits
103  *   @bits : bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110 			const unsigned long *src, int shift, int bits)
111 {
112 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 	unsigned long mask = (1UL << left) - 1;
115 	for (k = 0; off + k < lim; ++k) {
116 		unsigned long upper, lower;
117 
118 		/*
119 		 * If shift is not word aligned, take lower rem bits of
120 		 * word above and make them the top rem bits of result.
121 		 */
122 		if (!rem || off + k + 1 >= lim)
123 			upper = 0;
124 		else {
125 			upper = src[off + k + 1];
126 			if (off + k + 1 == lim - 1 && left)
127 				upper &= mask;
128 		}
129 		lower = src[off + k];
130 		if (left && off + k == lim - 1)
131 			lower &= mask;
132 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 		if (left && k == lim - 1)
134 			dst[k] &= mask;
135 	}
136 	if (off)
137 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140 
141 
142 /**
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst : destination bitmap
145  *   @src : source bitmap
146  *   @shift : shift by this many bits
147  *   @bits : bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153 
154 void __bitmap_shift_left(unsigned long *dst,
155 			const unsigned long *src, int shift, int bits)
156 {
157 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 	for (k = lim - off - 1; k >= 0; --k) {
160 		unsigned long upper, lower;
161 
162 		/*
163 		 * If shift is not word aligned, take upper rem bits of
164 		 * word below and make them the bottom rem bits of result.
165 		 */
166 		if (rem && k > 0)
167 			lower = src[k - 1];
168 		else
169 			lower = 0;
170 		upper = src[k];
171 		if (left && k == lim - 1)
172 			upper &= (1UL << left) - 1;
173 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174 		if (left && k + off == lim - 1)
175 			dst[k + off] &= (1UL << left) - 1;
176 	}
177 	if (off)
178 		memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181 
182 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, int bits)
184 {
185 	int k;
186 	int nr = BITS_TO_LONGS(bits);
187 	unsigned long result = 0;
188 
189 	for (k = 0; k < nr; k++)
190 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191 	return result != 0;
192 }
193 EXPORT_SYMBOL(__bitmap_and);
194 
195 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
196 				const unsigned long *bitmap2, int bits)
197 {
198 	int k;
199 	int nr = BITS_TO_LONGS(bits);
200 
201 	for (k = 0; k < nr; k++)
202 		dst[k] = bitmap1[k] | bitmap2[k];
203 }
204 EXPORT_SYMBOL(__bitmap_or);
205 
206 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
207 				const unsigned long *bitmap2, int bits)
208 {
209 	int k;
210 	int nr = BITS_TO_LONGS(bits);
211 
212 	for (k = 0; k < nr; k++)
213 		dst[k] = bitmap1[k] ^ bitmap2[k];
214 }
215 EXPORT_SYMBOL(__bitmap_xor);
216 
217 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
218 				const unsigned long *bitmap2, int bits)
219 {
220 	int k;
221 	int nr = BITS_TO_LONGS(bits);
222 	unsigned long result = 0;
223 
224 	for (k = 0; k < nr; k++)
225 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
226 	return result != 0;
227 }
228 EXPORT_SYMBOL(__bitmap_andnot);
229 
230 int __bitmap_intersects(const unsigned long *bitmap1,
231 				const unsigned long *bitmap2, int bits)
232 {
233 	int k, lim = bits/BITS_PER_LONG;
234 	for (k = 0; k < lim; ++k)
235 		if (bitmap1[k] & bitmap2[k])
236 			return 1;
237 
238 	if (bits % BITS_PER_LONG)
239 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
240 			return 1;
241 	return 0;
242 }
243 EXPORT_SYMBOL(__bitmap_intersects);
244 
245 int __bitmap_subset(const unsigned long *bitmap1,
246 				const unsigned long *bitmap2, int bits)
247 {
248 	int k, lim = bits/BITS_PER_LONG;
249 	for (k = 0; k < lim; ++k)
250 		if (bitmap1[k] & ~bitmap2[k])
251 			return 0;
252 
253 	if (bits % BITS_PER_LONG)
254 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
255 			return 0;
256 	return 1;
257 }
258 EXPORT_SYMBOL(__bitmap_subset);
259 
260 int __bitmap_weight(const unsigned long *bitmap, int bits)
261 {
262 	int k, w = 0, lim = bits/BITS_PER_LONG;
263 
264 	for (k = 0; k < lim; k++)
265 		w += hweight_long(bitmap[k]);
266 
267 	if (bits % BITS_PER_LONG)
268 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
269 
270 	return w;
271 }
272 EXPORT_SYMBOL(__bitmap_weight);
273 
274 void bitmap_set(unsigned long *map, int start, int nr)
275 {
276 	unsigned long *p = map + BIT_WORD(start);
277 	const int size = start + nr;
278 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
279 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
280 
281 	while (nr - bits_to_set >= 0) {
282 		*p |= mask_to_set;
283 		nr -= bits_to_set;
284 		bits_to_set = BITS_PER_LONG;
285 		mask_to_set = ~0UL;
286 		p++;
287 	}
288 	if (nr) {
289 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
290 		*p |= mask_to_set;
291 	}
292 }
293 EXPORT_SYMBOL(bitmap_set);
294 
295 void bitmap_clear(unsigned long *map, int start, int nr)
296 {
297 	unsigned long *p = map + BIT_WORD(start);
298 	const int size = start + nr;
299 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
300 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
301 
302 	while (nr - bits_to_clear >= 0) {
303 		*p &= ~mask_to_clear;
304 		nr -= bits_to_clear;
305 		bits_to_clear = BITS_PER_LONG;
306 		mask_to_clear = ~0UL;
307 		p++;
308 	}
309 	if (nr) {
310 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
311 		*p &= ~mask_to_clear;
312 	}
313 }
314 EXPORT_SYMBOL(bitmap_clear);
315 
316 /*
317  * bitmap_find_next_zero_area - find a contiguous aligned zero area
318  * @map: The address to base the search on
319  * @size: The bitmap size in bits
320  * @start: The bitnumber to start searching at
321  * @nr: The number of zeroed bits we're looking for
322  * @align_mask: Alignment mask for zero area
323  *
324  * The @align_mask should be one less than a power of 2; the effect is that
325  * the bit offset of all zero areas this function finds is multiples of that
326  * power of 2. A @align_mask of 0 means no alignment is required.
327  */
328 unsigned long bitmap_find_next_zero_area(unsigned long *map,
329 					 unsigned long size,
330 					 unsigned long start,
331 					 unsigned int nr,
332 					 unsigned long align_mask)
333 {
334 	unsigned long index, end, i;
335 again:
336 	index = find_next_zero_bit(map, size, start);
337 
338 	/* Align allocation */
339 	index = __ALIGN_MASK(index, align_mask);
340 
341 	end = index + nr;
342 	if (end > size)
343 		return end;
344 	i = find_next_bit(map, end, index);
345 	if (i < end) {
346 		start = i + 1;
347 		goto again;
348 	}
349 	return index;
350 }
351 EXPORT_SYMBOL(bitmap_find_next_zero_area);
352 
353 /*
354  * Bitmap printing & parsing functions: first version by Bill Irwin,
355  * second version by Paul Jackson, third by Joe Korty.
356  */
357 
358 #define CHUNKSZ				32
359 #define nbits_to_hold_value(val)	fls(val)
360 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
361 
362 /**
363  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
364  * @buf: byte buffer into which string is placed
365  * @buflen: reserved size of @buf, in bytes
366  * @maskp: pointer to bitmap to convert
367  * @nmaskbits: size of bitmap, in bits
368  *
369  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
370  * comma-separated sets of eight digits per set.
371  */
372 int bitmap_scnprintf(char *buf, unsigned int buflen,
373 	const unsigned long *maskp, int nmaskbits)
374 {
375 	int i, word, bit, len = 0;
376 	unsigned long val;
377 	const char *sep = "";
378 	int chunksz;
379 	u32 chunkmask;
380 
381 	chunksz = nmaskbits & (CHUNKSZ - 1);
382 	if (chunksz == 0)
383 		chunksz = CHUNKSZ;
384 
385 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
386 	for (; i >= 0; i -= CHUNKSZ) {
387 		chunkmask = ((1ULL << chunksz) - 1);
388 		word = i / BITS_PER_LONG;
389 		bit = i % BITS_PER_LONG;
390 		val = (maskp[word] >> bit) & chunkmask;
391 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
392 			(chunksz+3)/4, val);
393 		chunksz = CHUNKSZ;
394 		sep = ",";
395 	}
396 	return len;
397 }
398 EXPORT_SYMBOL(bitmap_scnprintf);
399 
400 /**
401  * __bitmap_parse - convert an ASCII hex string into a bitmap.
402  * @buf: pointer to buffer containing string.
403  * @buflen: buffer size in bytes.  If string is smaller than this
404  *    then it must be terminated with a \0.
405  * @is_user: location of buffer, 0 indicates kernel space
406  * @maskp: pointer to bitmap array that will contain result.
407  * @nmaskbits: size of bitmap, in bits.
408  *
409  * Commas group hex digits into chunks.  Each chunk defines exactly 32
410  * bits of the resultant bitmask.  No chunk may specify a value larger
411  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
412  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
413  * characters and for grouping errors such as "1,,5", ",44", "," and "".
414  * Leading and trailing whitespace accepted, but not embedded whitespace.
415  */
416 int __bitmap_parse(const char *buf, unsigned int buflen,
417 		int is_user, unsigned long *maskp,
418 		int nmaskbits)
419 {
420 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
421 	u32 chunk;
422 	const char __user __force *ubuf = (const char __user __force *)buf;
423 
424 	bitmap_zero(maskp, nmaskbits);
425 
426 	nchunks = nbits = totaldigits = c = 0;
427 	do {
428 		chunk = ndigits = 0;
429 
430 		/* Get the next chunk of the bitmap */
431 		while (buflen) {
432 			old_c = c;
433 			if (is_user) {
434 				if (__get_user(c, ubuf++))
435 					return -EFAULT;
436 			}
437 			else
438 				c = *buf++;
439 			buflen--;
440 			if (isspace(c))
441 				continue;
442 
443 			/*
444 			 * If the last character was a space and the current
445 			 * character isn't '\0', we've got embedded whitespace.
446 			 * This is a no-no, so throw an error.
447 			 */
448 			if (totaldigits && c && isspace(old_c))
449 				return -EINVAL;
450 
451 			/* A '\0' or a ',' signal the end of the chunk */
452 			if (c == '\0' || c == ',')
453 				break;
454 
455 			if (!isxdigit(c))
456 				return -EINVAL;
457 
458 			/*
459 			 * Make sure there are at least 4 free bits in 'chunk'.
460 			 * If not, this hexdigit will overflow 'chunk', so
461 			 * throw an error.
462 			 */
463 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
464 				return -EOVERFLOW;
465 
466 			chunk = (chunk << 4) | hex_to_bin(c);
467 			ndigits++; totaldigits++;
468 		}
469 		if (ndigits == 0)
470 			return -EINVAL;
471 		if (nchunks == 0 && chunk == 0)
472 			continue;
473 
474 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
475 		*maskp |= chunk;
476 		nchunks++;
477 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
478 		if (nbits > nmaskbits)
479 			return -EOVERFLOW;
480 	} while (buflen && c == ',');
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL(__bitmap_parse);
485 
486 /**
487  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
488  *
489  * @ubuf: pointer to user buffer containing string.
490  * @ulen: buffer size in bytes.  If string is smaller than this
491  *    then it must be terminated with a \0.
492  * @maskp: pointer to bitmap array that will contain result.
493  * @nmaskbits: size of bitmap, in bits.
494  *
495  * Wrapper for __bitmap_parse(), providing it with user buffer.
496  *
497  * We cannot have this as an inline function in bitmap.h because it needs
498  * linux/uaccess.h to get the access_ok() declaration and this causes
499  * cyclic dependencies.
500  */
501 int bitmap_parse_user(const char __user *ubuf,
502 			unsigned int ulen, unsigned long *maskp,
503 			int nmaskbits)
504 {
505 	if (!access_ok(VERIFY_READ, ubuf, ulen))
506 		return -EFAULT;
507 	return __bitmap_parse((const char __force *)ubuf,
508 				ulen, 1, maskp, nmaskbits);
509 
510 }
511 EXPORT_SYMBOL(bitmap_parse_user);
512 
513 /*
514  * bscnl_emit(buf, buflen, rbot, rtop, bp)
515  *
516  * Helper routine for bitmap_scnlistprintf().  Write decimal number
517  * or range to buf, suppressing output past buf+buflen, with optional
518  * comma-prefix.  Return len of what would be written to buf, if it
519  * all fit.
520  */
521 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
522 {
523 	if (len > 0)
524 		len += scnprintf(buf + len, buflen - len, ",");
525 	if (rbot == rtop)
526 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
527 	else
528 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
529 	return len;
530 }
531 
532 /**
533  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
534  * @buf: byte buffer into which string is placed
535  * @buflen: reserved size of @buf, in bytes
536  * @maskp: pointer to bitmap to convert
537  * @nmaskbits: size of bitmap, in bits
538  *
539  * Output format is a comma-separated list of decimal numbers and
540  * ranges.  Consecutively set bits are shown as two hyphen-separated
541  * decimal numbers, the smallest and largest bit numbers set in
542  * the range.  Output format is compatible with the format
543  * accepted as input by bitmap_parselist().
544  *
545  * The return value is the number of characters which would be
546  * generated for the given input, excluding the trailing '\0', as
547  * per ISO C99.
548  */
549 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
550 	const unsigned long *maskp, int nmaskbits)
551 {
552 	int len = 0;
553 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
554 	int cur, rbot, rtop;
555 
556 	if (buflen == 0)
557 		return 0;
558 	buf[0] = 0;
559 
560 	rbot = cur = find_first_bit(maskp, nmaskbits);
561 	while (cur < nmaskbits) {
562 		rtop = cur;
563 		cur = find_next_bit(maskp, nmaskbits, cur+1);
564 		if (cur >= nmaskbits || cur > rtop + 1) {
565 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
566 			rbot = cur;
567 		}
568 	}
569 	return len;
570 }
571 EXPORT_SYMBOL(bitmap_scnlistprintf);
572 
573 /**
574  * __bitmap_parselist - convert list format ASCII string to bitmap
575  * @buf: read nul-terminated user string from this buffer
576  * @buflen: buffer size in bytes.  If string is smaller than this
577  *    then it must be terminated with a \0.
578  * @is_user: location of buffer, 0 indicates kernel space
579  * @maskp: write resulting mask here
580  * @nmaskbits: number of bits in mask to be written
581  *
582  * Input format is a comma-separated list of decimal numbers and
583  * ranges.  Consecutively set bits are shown as two hyphen-separated
584  * decimal numbers, the smallest and largest bit numbers set in
585  * the range.
586  *
587  * Returns 0 on success, -errno on invalid input strings.
588  * Error values:
589  *    %-EINVAL: second number in range smaller than first
590  *    %-EINVAL: invalid character in string
591  *    %-ERANGE: bit number specified too large for mask
592  */
593 static int __bitmap_parselist(const char *buf, unsigned int buflen,
594 		int is_user, unsigned long *maskp,
595 		int nmaskbits)
596 {
597 	unsigned a, b;
598 	int c, old_c, totaldigits;
599 	const char __user __force *ubuf = (const char __user __force *)buf;
600 	int exp_digit, in_range;
601 
602 	totaldigits = c = 0;
603 	bitmap_zero(maskp, nmaskbits);
604 	do {
605 		exp_digit = 1;
606 		in_range = 0;
607 		a = b = 0;
608 
609 		/* Get the next cpu# or a range of cpu#'s */
610 		while (buflen) {
611 			old_c = c;
612 			if (is_user) {
613 				if (__get_user(c, ubuf++))
614 					return -EFAULT;
615 			} else
616 				c = *buf++;
617 			buflen--;
618 			if (isspace(c))
619 				continue;
620 
621 			/*
622 			 * If the last character was a space and the current
623 			 * character isn't '\0', we've got embedded whitespace.
624 			 * This is a no-no, so throw an error.
625 			 */
626 			if (totaldigits && c && isspace(old_c))
627 				return -EINVAL;
628 
629 			/* A '\0' or a ',' signal the end of a cpu# or range */
630 			if (c == '\0' || c == ',')
631 				break;
632 
633 			if (c == '-') {
634 				if (exp_digit || in_range)
635 					return -EINVAL;
636 				b = 0;
637 				in_range = 1;
638 				exp_digit = 1;
639 				continue;
640 			}
641 
642 			if (!isdigit(c))
643 				return -EINVAL;
644 
645 			b = b * 10 + (c - '0');
646 			if (!in_range)
647 				a = b;
648 			exp_digit = 0;
649 			totaldigits++;
650 		}
651 		if (!(a <= b))
652 			return -EINVAL;
653 		if (b >= nmaskbits)
654 			return -ERANGE;
655 		while (a <= b) {
656 			set_bit(a, maskp);
657 			a++;
658 		}
659 	} while (buflen && c == ',');
660 	return 0;
661 }
662 
663 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
664 {
665 	char *nl  = strchr(bp, '\n');
666 	int len;
667 
668 	if (nl)
669 		len = nl - bp;
670 	else
671 		len = strlen(bp);
672 
673 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
674 }
675 EXPORT_SYMBOL(bitmap_parselist);
676 
677 
678 /**
679  * bitmap_parselist_user()
680  *
681  * @ubuf: pointer to user buffer containing string.
682  * @ulen: buffer size in bytes.  If string is smaller than this
683  *    then it must be terminated with a \0.
684  * @maskp: pointer to bitmap array that will contain result.
685  * @nmaskbits: size of bitmap, in bits.
686  *
687  * Wrapper for bitmap_parselist(), providing it with user buffer.
688  *
689  * We cannot have this as an inline function in bitmap.h because it needs
690  * linux/uaccess.h to get the access_ok() declaration and this causes
691  * cyclic dependencies.
692  */
693 int bitmap_parselist_user(const char __user *ubuf,
694 			unsigned int ulen, unsigned long *maskp,
695 			int nmaskbits)
696 {
697 	if (!access_ok(VERIFY_READ, ubuf, ulen))
698 		return -EFAULT;
699 	return __bitmap_parselist((const char __force *)ubuf,
700 					ulen, 1, maskp, nmaskbits);
701 }
702 EXPORT_SYMBOL(bitmap_parselist_user);
703 
704 
705 /**
706  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
707  *	@buf: pointer to a bitmap
708  *	@pos: a bit position in @buf (0 <= @pos < @bits)
709  *	@bits: number of valid bit positions in @buf
710  *
711  * Map the bit at position @pos in @buf (of length @bits) to the
712  * ordinal of which set bit it is.  If it is not set or if @pos
713  * is not a valid bit position, map to -1.
714  *
715  * If for example, just bits 4 through 7 are set in @buf, then @pos
716  * values 4 through 7 will get mapped to 0 through 3, respectively,
717  * and other @pos values will get mapped to 0.  When @pos value 7
718  * gets mapped to (returns) @ord value 3 in this example, that means
719  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
720  *
721  * The bit positions 0 through @bits are valid positions in @buf.
722  */
723 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
724 {
725 	int i, ord;
726 
727 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
728 		return -1;
729 
730 	i = find_first_bit(buf, bits);
731 	ord = 0;
732 	while (i < pos) {
733 		i = find_next_bit(buf, bits, i + 1);
734 	     	ord++;
735 	}
736 	BUG_ON(i != pos);
737 
738 	return ord;
739 }
740 
741 /**
742  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
743  *	@buf: pointer to bitmap
744  *	@ord: ordinal bit position (n-th set bit, n >= 0)
745  *	@bits: number of valid bit positions in @buf
746  *
747  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
748  * Value of @ord should be in range 0 <= @ord < weight(buf), else
749  * results are undefined.
750  *
751  * If for example, just bits 4 through 7 are set in @buf, then @ord
752  * values 0 through 3 will get mapped to 4 through 7, respectively,
753  * and all other @ord values return undefined values.  When @ord value 3
754  * gets mapped to (returns) @pos value 7 in this example, that means
755  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
756  *
757  * The bit positions 0 through @bits are valid positions in @buf.
758  */
759 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
760 {
761 	int pos = 0;
762 
763 	if (ord >= 0 && ord < bits) {
764 		int i;
765 
766 		for (i = find_first_bit(buf, bits);
767 		     i < bits && ord > 0;
768 		     i = find_next_bit(buf, bits, i + 1))
769 	     		ord--;
770 		if (i < bits && ord == 0)
771 			pos = i;
772 	}
773 
774 	return pos;
775 }
776 
777 /**
778  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
779  *	@dst: remapped result
780  *	@src: subset to be remapped
781  *	@old: defines domain of map
782  *	@new: defines range of map
783  *	@bits: number of bits in each of these bitmaps
784  *
785  * Let @old and @new define a mapping of bit positions, such that
786  * whatever position is held by the n-th set bit in @old is mapped
787  * to the n-th set bit in @new.  In the more general case, allowing
788  * for the possibility that the weight 'w' of @new is less than the
789  * weight of @old, map the position of the n-th set bit in @old to
790  * the position of the m-th set bit in @new, where m == n % w.
791  *
792  * If either of the @old and @new bitmaps are empty, or if @src and
793  * @dst point to the same location, then this routine copies @src
794  * to @dst.
795  *
796  * The positions of unset bits in @old are mapped to themselves
797  * (the identify map).
798  *
799  * Apply the above specified mapping to @src, placing the result in
800  * @dst, clearing any bits previously set in @dst.
801  *
802  * For example, lets say that @old has bits 4 through 7 set, and
803  * @new has bits 12 through 15 set.  This defines the mapping of bit
804  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
805  * bit positions unchanged.  So if say @src comes into this routine
806  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
807  * 13 and 15 set.
808  */
809 void bitmap_remap(unsigned long *dst, const unsigned long *src,
810 		const unsigned long *old, const unsigned long *new,
811 		int bits)
812 {
813 	int oldbit, w;
814 
815 	if (dst == src)		/* following doesn't handle inplace remaps */
816 		return;
817 	bitmap_zero(dst, bits);
818 
819 	w = bitmap_weight(new, bits);
820 	for_each_set_bit(oldbit, src, bits) {
821 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
822 
823 		if (n < 0 || w == 0)
824 			set_bit(oldbit, dst);	/* identity map */
825 		else
826 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
827 	}
828 }
829 EXPORT_SYMBOL(bitmap_remap);
830 
831 /**
832  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
833  *	@oldbit: bit position to be mapped
834  *	@old: defines domain of map
835  *	@new: defines range of map
836  *	@bits: number of bits in each of these bitmaps
837  *
838  * Let @old and @new define a mapping of bit positions, such that
839  * whatever position is held by the n-th set bit in @old is mapped
840  * to the n-th set bit in @new.  In the more general case, allowing
841  * for the possibility that the weight 'w' of @new is less than the
842  * weight of @old, map the position of the n-th set bit in @old to
843  * the position of the m-th set bit in @new, where m == n % w.
844  *
845  * The positions of unset bits in @old are mapped to themselves
846  * (the identify map).
847  *
848  * Apply the above specified mapping to bit position @oldbit, returning
849  * the new bit position.
850  *
851  * For example, lets say that @old has bits 4 through 7 set, and
852  * @new has bits 12 through 15 set.  This defines the mapping of bit
853  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
854  * bit positions unchanged.  So if say @oldbit is 5, then this routine
855  * returns 13.
856  */
857 int bitmap_bitremap(int oldbit, const unsigned long *old,
858 				const unsigned long *new, int bits)
859 {
860 	int w = bitmap_weight(new, bits);
861 	int n = bitmap_pos_to_ord(old, oldbit, bits);
862 	if (n < 0 || w == 0)
863 		return oldbit;
864 	else
865 		return bitmap_ord_to_pos(new, n % w, bits);
866 }
867 EXPORT_SYMBOL(bitmap_bitremap);
868 
869 /**
870  * bitmap_onto - translate one bitmap relative to another
871  *	@dst: resulting translated bitmap
872  * 	@orig: original untranslated bitmap
873  * 	@relmap: bitmap relative to which translated
874  *	@bits: number of bits in each of these bitmaps
875  *
876  * Set the n-th bit of @dst iff there exists some m such that the
877  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
878  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
879  * (If you understood the previous sentence the first time your
880  * read it, you're overqualified for your current job.)
881  *
882  * In other words, @orig is mapped onto (surjectively) @dst,
883  * using the the map { <n, m> | the n-th bit of @relmap is the
884  * m-th set bit of @relmap }.
885  *
886  * Any set bits in @orig above bit number W, where W is the
887  * weight of (number of set bits in) @relmap are mapped nowhere.
888  * In particular, if for all bits m set in @orig, m >= W, then
889  * @dst will end up empty.  In situations where the possibility
890  * of such an empty result is not desired, one way to avoid it is
891  * to use the bitmap_fold() operator, below, to first fold the
892  * @orig bitmap over itself so that all its set bits x are in the
893  * range 0 <= x < W.  The bitmap_fold() operator does this by
894  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
895  *
896  * Example [1] for bitmap_onto():
897  *  Let's say @relmap has bits 30-39 set, and @orig has bits
898  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
899  *  @dst will have bits 31, 33, 35, 37 and 39 set.
900  *
901  *  When bit 0 is set in @orig, it means turn on the bit in
902  *  @dst corresponding to whatever is the first bit (if any)
903  *  that is turned on in @relmap.  Since bit 0 was off in the
904  *  above example, we leave off that bit (bit 30) in @dst.
905  *
906  *  When bit 1 is set in @orig (as in the above example), it
907  *  means turn on the bit in @dst corresponding to whatever
908  *  is the second bit that is turned on in @relmap.  The second
909  *  bit in @relmap that was turned on in the above example was
910  *  bit 31, so we turned on bit 31 in @dst.
911  *
912  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
913  *  because they were the 4th, 6th, 8th and 10th set bits
914  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
915  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
916  *
917  *  When bit 11 is set in @orig, it means turn on the bit in
918  *  @dst corresponding to whatever is the twelfth bit that is
919  *  turned on in @relmap.  In the above example, there were
920  *  only ten bits turned on in @relmap (30..39), so that bit
921  *  11 was set in @orig had no affect on @dst.
922  *
923  * Example [2] for bitmap_fold() + bitmap_onto():
924  *  Let's say @relmap has these ten bits set:
925  *		40 41 42 43 45 48 53 61 74 95
926  *  (for the curious, that's 40 plus the first ten terms of the
927  *  Fibonacci sequence.)
928  *
929  *  Further lets say we use the following code, invoking
930  *  bitmap_fold() then bitmap_onto, as suggested above to
931  *  avoid the possitility of an empty @dst result:
932  *
933  *	unsigned long *tmp;	// a temporary bitmap's bits
934  *
935  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
936  *	bitmap_onto(dst, tmp, relmap, bits);
937  *
938  *  Then this table shows what various values of @dst would be, for
939  *  various @orig's.  I list the zero-based positions of each set bit.
940  *  The tmp column shows the intermediate result, as computed by
941  *  using bitmap_fold() to fold the @orig bitmap modulo ten
942  *  (the weight of @relmap).
943  *
944  *      @orig           tmp            @dst
945  *      0                0             40
946  *      1                1             41
947  *      9                9             95
948  *      10               0             40 (*)
949  *      1 3 5 7          1 3 5 7       41 43 48 61
950  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
951  *      0 9 18 27        0 9 8 7       40 61 74 95
952  *      0 10 20 30       0             40
953  *      0 11 22 33       0 1 2 3       40 41 42 43
954  *      0 12 24 36       0 2 4 6       40 42 45 53
955  *      78 102 211       1 2 8         41 42 74 (*)
956  *
957  * (*) For these marked lines, if we hadn't first done bitmap_fold()
958  *     into tmp, then the @dst result would have been empty.
959  *
960  * If either of @orig or @relmap is empty (no set bits), then @dst
961  * will be returned empty.
962  *
963  * If (as explained above) the only set bits in @orig are in positions
964  * m where m >= W, (where W is the weight of @relmap) then @dst will
965  * once again be returned empty.
966  *
967  * All bits in @dst not set by the above rule are cleared.
968  */
969 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
970 			const unsigned long *relmap, int bits)
971 {
972 	int n, m;       	/* same meaning as in above comment */
973 
974 	if (dst == orig)	/* following doesn't handle inplace mappings */
975 		return;
976 	bitmap_zero(dst, bits);
977 
978 	/*
979 	 * The following code is a more efficient, but less
980 	 * obvious, equivalent to the loop:
981 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
982 	 *		n = bitmap_ord_to_pos(orig, m, bits);
983 	 *		if (test_bit(m, orig))
984 	 *			set_bit(n, dst);
985 	 *	}
986 	 */
987 
988 	m = 0;
989 	for_each_set_bit(n, relmap, bits) {
990 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
991 		if (test_bit(m, orig))
992 			set_bit(n, dst);
993 		m++;
994 	}
995 }
996 EXPORT_SYMBOL(bitmap_onto);
997 
998 /**
999  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1000  *	@dst: resulting smaller bitmap
1001  *	@orig: original larger bitmap
1002  *	@sz: specified size
1003  *	@bits: number of bits in each of these bitmaps
1004  *
1005  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1006  * Clear all other bits in @dst.  See further the comment and
1007  * Example [2] for bitmap_onto() for why and how to use this.
1008  */
1009 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1010 			int sz, int bits)
1011 {
1012 	int oldbit;
1013 
1014 	if (dst == orig)	/* following doesn't handle inplace mappings */
1015 		return;
1016 	bitmap_zero(dst, bits);
1017 
1018 	for_each_set_bit(oldbit, orig, bits)
1019 		set_bit(oldbit % sz, dst);
1020 }
1021 EXPORT_SYMBOL(bitmap_fold);
1022 
1023 /*
1024  * Common code for bitmap_*_region() routines.
1025  *	bitmap: array of unsigned longs corresponding to the bitmap
1026  *	pos: the beginning of the region
1027  *	order: region size (log base 2 of number of bits)
1028  *	reg_op: operation(s) to perform on that region of bitmap
1029  *
1030  * Can set, verify and/or release a region of bits in a bitmap,
1031  * depending on which combination of REG_OP_* flag bits is set.
1032  *
1033  * A region of a bitmap is a sequence of bits in the bitmap, of
1034  * some size '1 << order' (a power of two), aligned to that same
1035  * '1 << order' power of two.
1036  *
1037  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1038  * Returns 0 in all other cases and reg_ops.
1039  */
1040 
1041 enum {
1042 	REG_OP_ISFREE,		/* true if region is all zero bits */
1043 	REG_OP_ALLOC,		/* set all bits in region */
1044 	REG_OP_RELEASE,		/* clear all bits in region */
1045 };
1046 
1047 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1048 {
1049 	int nbits_reg;		/* number of bits in region */
1050 	int index;		/* index first long of region in bitmap */
1051 	int offset;		/* bit offset region in bitmap[index] */
1052 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1053 	int nbitsinlong;	/* num bits of region in each spanned long */
1054 	unsigned long mask;	/* bitmask for one long of region */
1055 	int i;			/* scans bitmap by longs */
1056 	int ret = 0;		/* return value */
1057 
1058 	/*
1059 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1060 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1061 	 */
1062 	nbits_reg = 1 << order;
1063 	index = pos / BITS_PER_LONG;
1064 	offset = pos - (index * BITS_PER_LONG);
1065 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1066 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1067 
1068 	/*
1069 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1070 	 * overflows if nbitsinlong == BITS_PER_LONG.
1071 	 */
1072 	mask = (1UL << (nbitsinlong - 1));
1073 	mask += mask - 1;
1074 	mask <<= offset;
1075 
1076 	switch (reg_op) {
1077 	case REG_OP_ISFREE:
1078 		for (i = 0; i < nlongs_reg; i++) {
1079 			if (bitmap[index + i] & mask)
1080 				goto done;
1081 		}
1082 		ret = 1;	/* all bits in region free (zero) */
1083 		break;
1084 
1085 	case REG_OP_ALLOC:
1086 		for (i = 0; i < nlongs_reg; i++)
1087 			bitmap[index + i] |= mask;
1088 		break;
1089 
1090 	case REG_OP_RELEASE:
1091 		for (i = 0; i < nlongs_reg; i++)
1092 			bitmap[index + i] &= ~mask;
1093 		break;
1094 	}
1095 done:
1096 	return ret;
1097 }
1098 
1099 /**
1100  * bitmap_find_free_region - find a contiguous aligned mem region
1101  *	@bitmap: array of unsigned longs corresponding to the bitmap
1102  *	@bits: number of bits in the bitmap
1103  *	@order: region size (log base 2 of number of bits) to find
1104  *
1105  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1106  * allocate them (set them to one).  Only consider regions of length
1107  * a power (@order) of two, aligned to that power of two, which
1108  * makes the search algorithm much faster.
1109  *
1110  * Return the bit offset in bitmap of the allocated region,
1111  * or -errno on failure.
1112  */
1113 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1114 {
1115 	int pos, end;		/* scans bitmap by regions of size order */
1116 
1117 	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1118 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1119 			continue;
1120 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1121 		return pos;
1122 	}
1123 	return -ENOMEM;
1124 }
1125 EXPORT_SYMBOL(bitmap_find_free_region);
1126 
1127 /**
1128  * bitmap_release_region - release allocated bitmap region
1129  *	@bitmap: array of unsigned longs corresponding to the bitmap
1130  *	@pos: beginning of bit region to release
1131  *	@order: region size (log base 2 of number of bits) to release
1132  *
1133  * This is the complement to __bitmap_find_free_region() and releases
1134  * the found region (by clearing it in the bitmap).
1135  *
1136  * No return value.
1137  */
1138 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1139 {
1140 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1141 }
1142 EXPORT_SYMBOL(bitmap_release_region);
1143 
1144 /**
1145  * bitmap_allocate_region - allocate bitmap region
1146  *	@bitmap: array of unsigned longs corresponding to the bitmap
1147  *	@pos: beginning of bit region to allocate
1148  *	@order: region size (log base 2 of number of bits) to allocate
1149  *
1150  * Allocate (set bits in) a specified region of a bitmap.
1151  *
1152  * Return 0 on success, or %-EBUSY if specified region wasn't
1153  * free (not all bits were zero).
1154  */
1155 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1156 {
1157 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1158 		return -EBUSY;
1159 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(bitmap_allocate_region);
1163 
1164 /**
1165  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1166  * @dst:   destination buffer
1167  * @src:   bitmap to copy
1168  * @nbits: number of bits in the bitmap
1169  *
1170  * Require nbits % BITS_PER_LONG == 0.
1171  */
1172 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1173 {
1174 	unsigned long *d = dst;
1175 	int i;
1176 
1177 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1178 		if (BITS_PER_LONG == 64)
1179 			d[i] = cpu_to_le64(src[i]);
1180 		else
1181 			d[i] = cpu_to_le32(src[i]);
1182 	}
1183 }
1184 EXPORT_SYMBOL(bitmap_copy_le);
1185