xref: /openbmc/linux/lib/bitmap.c (revision 0d4bb5e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/ctype.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/thread_info.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/page.h>
22 
23 #include "kstrtox.h"
24 
25 /**
26  * DOC: bitmap introduction
27  *
28  * bitmaps provide an array of bits, implemented using an
29  * array of unsigned longs.  The number of valid bits in a
30  * given bitmap does _not_ need to be an exact multiple of
31  * BITS_PER_LONG.
32  *
33  * The possible unused bits in the last, partially used word
34  * of a bitmap are 'don't care'.  The implementation makes
35  * no particular effort to keep them zero.  It ensures that
36  * their value will not affect the results of any operation.
37  * The bitmap operations that return Boolean (bitmap_empty,
38  * for example) or scalar (bitmap_weight, for example) results
39  * carefully filter out these unused bits from impacting their
40  * results.
41  *
42  * The byte ordering of bitmaps is more natural on little
43  * endian architectures.  See the big-endian headers
44  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45  * for the best explanations of this ordering.
46  */
47 
48 bool __bitmap_equal(const unsigned long *bitmap1,
49 		    const unsigned long *bitmap2, unsigned int bits)
50 {
51 	unsigned int k, lim = bits/BITS_PER_LONG;
52 	for (k = 0; k < lim; ++k)
53 		if (bitmap1[k] != bitmap2[k])
54 			return false;
55 
56 	if (bits % BITS_PER_LONG)
57 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 			return false;
59 
60 	return true;
61 }
62 EXPORT_SYMBOL(__bitmap_equal);
63 
64 bool __bitmap_or_equal(const unsigned long *bitmap1,
65 		       const unsigned long *bitmap2,
66 		       const unsigned long *bitmap3,
67 		       unsigned int bits)
68 {
69 	unsigned int k, lim = bits / BITS_PER_LONG;
70 	unsigned long tmp;
71 
72 	for (k = 0; k < lim; ++k) {
73 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
74 			return false;
75 	}
76 
77 	if (!(bits % BITS_PER_LONG))
78 		return true;
79 
80 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82 }
83 
84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
85 {
86 	unsigned int k, lim = BITS_TO_LONGS(bits);
87 	for (k = 0; k < lim; ++k)
88 		dst[k] = ~src[k];
89 }
90 EXPORT_SYMBOL(__bitmap_complement);
91 
92 /**
93  * __bitmap_shift_right - logical right shift of the bits in a bitmap
94  *   @dst : destination bitmap
95  *   @src : source bitmap
96  *   @shift : shift by this many bits
97  *   @nbits : bitmap size, in bits
98  *
99  * Shifting right (dividing) means moving bits in the MS -> LS bit
100  * direction.  Zeros are fed into the vacated MS positions and the
101  * LS bits shifted off the bottom are lost.
102  */
103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104 			unsigned shift, unsigned nbits)
105 {
106 	unsigned k, lim = BITS_TO_LONGS(nbits);
107 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
108 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
109 	for (k = 0; off + k < lim; ++k) {
110 		unsigned long upper, lower;
111 
112 		/*
113 		 * If shift is not word aligned, take lower rem bits of
114 		 * word above and make them the top rem bits of result.
115 		 */
116 		if (!rem || off + k + 1 >= lim)
117 			upper = 0;
118 		else {
119 			upper = src[off + k + 1];
120 			if (off + k + 1 == lim - 1)
121 				upper &= mask;
122 			upper <<= (BITS_PER_LONG - rem);
123 		}
124 		lower = src[off + k];
125 		if (off + k == lim - 1)
126 			lower &= mask;
127 		lower >>= rem;
128 		dst[k] = lower | upper;
129 	}
130 	if (off)
131 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
132 }
133 EXPORT_SYMBOL(__bitmap_shift_right);
134 
135 
136 /**
137  * __bitmap_shift_left - logical left shift of the bits in a bitmap
138  *   @dst : destination bitmap
139  *   @src : source bitmap
140  *   @shift : shift by this many bits
141  *   @nbits : bitmap size, in bits
142  *
143  * Shifting left (multiplying) means moving bits in the LS -> MS
144  * direction.  Zeros are fed into the vacated LS bit positions
145  * and those MS bits shifted off the top are lost.
146  */
147 
148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 			unsigned int shift, unsigned int nbits)
150 {
151 	int k;
152 	unsigned int lim = BITS_TO_LONGS(nbits);
153 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
154 	for (k = lim - off - 1; k >= 0; --k) {
155 		unsigned long upper, lower;
156 
157 		/*
158 		 * If shift is not word aligned, take upper rem bits of
159 		 * word below and make them the bottom rem bits of result.
160 		 */
161 		if (rem && k > 0)
162 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
163 		else
164 			lower = 0;
165 		upper = src[k] << rem;
166 		dst[k + off] = lower | upper;
167 	}
168 	if (off)
169 		memset(dst, 0, off*sizeof(unsigned long));
170 }
171 EXPORT_SYMBOL(__bitmap_shift_left);
172 
173 /**
174  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175  * @dst: destination bitmap, might overlap with src
176  * @src: source bitmap
177  * @first: start bit of region to be removed
178  * @cut: number of bits to remove
179  * @nbits: bitmap size, in bits
180  *
181  * Set the n-th bit of @dst iff the n-th bit of @src is set and
182  * n is less than @first, or the m-th bit of @src is set for any
183  * m such that @first <= n < nbits, and m = n + @cut.
184  *
185  * In pictures, example for a big-endian 32-bit architecture:
186  *
187  * The @src bitmap is::
188  *
189  *   31                                   63
190  *   |                                    |
191  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
192  *                   |  |              |                                    |
193  *                  16  14             0                                   32
194  *
195  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
196  *
197  *   31                                   63
198  *   |                                    |
199  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
200  *                      |              |                                    |
201  *                      14 (bit 17     0                                   32
202  *                          from @src)
203  *
204  * Note that @dst and @src might overlap partially or entirely.
205  *
206  * This is implemented in the obvious way, with a shift and carry
207  * step for each moved bit. Optimisation is left as an exercise
208  * for the compiler.
209  */
210 void bitmap_cut(unsigned long *dst, const unsigned long *src,
211 		unsigned int first, unsigned int cut, unsigned int nbits)
212 {
213 	unsigned int len = BITS_TO_LONGS(nbits);
214 	unsigned long keep = 0, carry;
215 	int i;
216 
217 	if (first % BITS_PER_LONG) {
218 		keep = src[first / BITS_PER_LONG] &
219 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220 	}
221 
222 	memmove(dst, src, len * sizeof(*dst));
223 
224 	while (cut--) {
225 		for (i = first / BITS_PER_LONG; i < len; i++) {
226 			if (i < len - 1)
227 				carry = dst[i + 1] & 1UL;
228 			else
229 				carry = 0;
230 
231 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
232 		}
233 	}
234 
235 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236 	dst[first / BITS_PER_LONG] |= keep;
237 }
238 EXPORT_SYMBOL(bitmap_cut);
239 
240 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
241 				const unsigned long *bitmap2, unsigned int bits)
242 {
243 	unsigned int k;
244 	unsigned int lim = bits/BITS_PER_LONG;
245 	unsigned long result = 0;
246 
247 	for (k = 0; k < lim; k++)
248 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
249 	if (bits % BITS_PER_LONG)
250 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251 			   BITMAP_LAST_WORD_MASK(bits));
252 	return result != 0;
253 }
254 EXPORT_SYMBOL(__bitmap_and);
255 
256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
257 				const unsigned long *bitmap2, unsigned int bits)
258 {
259 	unsigned int k;
260 	unsigned int nr = BITS_TO_LONGS(bits);
261 
262 	for (k = 0; k < nr; k++)
263 		dst[k] = bitmap1[k] | bitmap2[k];
264 }
265 EXPORT_SYMBOL(__bitmap_or);
266 
267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
268 				const unsigned long *bitmap2, unsigned int bits)
269 {
270 	unsigned int k;
271 	unsigned int nr = BITS_TO_LONGS(bits);
272 
273 	for (k = 0; k < nr; k++)
274 		dst[k] = bitmap1[k] ^ bitmap2[k];
275 }
276 EXPORT_SYMBOL(__bitmap_xor);
277 
278 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
279 				const unsigned long *bitmap2, unsigned int bits)
280 {
281 	unsigned int k;
282 	unsigned int lim = bits/BITS_PER_LONG;
283 	unsigned long result = 0;
284 
285 	for (k = 0; k < lim; k++)
286 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
287 	if (bits % BITS_PER_LONG)
288 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289 			   BITMAP_LAST_WORD_MASK(bits));
290 	return result != 0;
291 }
292 EXPORT_SYMBOL(__bitmap_andnot);
293 
294 void __bitmap_replace(unsigned long *dst,
295 		      const unsigned long *old, const unsigned long *new,
296 		      const unsigned long *mask, unsigned int nbits)
297 {
298 	unsigned int k;
299 	unsigned int nr = BITS_TO_LONGS(nbits);
300 
301 	for (k = 0; k < nr; k++)
302 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
303 }
304 EXPORT_SYMBOL(__bitmap_replace);
305 
306 bool __bitmap_intersects(const unsigned long *bitmap1,
307 			 const unsigned long *bitmap2, unsigned int bits)
308 {
309 	unsigned int k, lim = bits/BITS_PER_LONG;
310 	for (k = 0; k < lim; ++k)
311 		if (bitmap1[k] & bitmap2[k])
312 			return true;
313 
314 	if (bits % BITS_PER_LONG)
315 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
316 			return true;
317 	return false;
318 }
319 EXPORT_SYMBOL(__bitmap_intersects);
320 
321 bool __bitmap_subset(const unsigned long *bitmap1,
322 		     const unsigned long *bitmap2, unsigned int bits)
323 {
324 	unsigned int k, lim = bits/BITS_PER_LONG;
325 	for (k = 0; k < lim; ++k)
326 		if (bitmap1[k] & ~bitmap2[k])
327 			return false;
328 
329 	if (bits % BITS_PER_LONG)
330 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
331 			return false;
332 	return true;
333 }
334 EXPORT_SYMBOL(__bitmap_subset);
335 
336 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
337 {
338 	unsigned int k, lim = bits/BITS_PER_LONG, w = 0;
339 
340 	for (k = 0; k < lim; k++)
341 		w += hweight_long(bitmap[k]);
342 
343 	if (bits % BITS_PER_LONG)
344 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
345 
346 	return w;
347 }
348 EXPORT_SYMBOL(__bitmap_weight);
349 
350 void __bitmap_set(unsigned long *map, unsigned int start, int len)
351 {
352 	unsigned long *p = map + BIT_WORD(start);
353 	const unsigned int size = start + len;
354 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
355 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
356 
357 	while (len - bits_to_set >= 0) {
358 		*p |= mask_to_set;
359 		len -= bits_to_set;
360 		bits_to_set = BITS_PER_LONG;
361 		mask_to_set = ~0UL;
362 		p++;
363 	}
364 	if (len) {
365 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
366 		*p |= mask_to_set;
367 	}
368 }
369 EXPORT_SYMBOL(__bitmap_set);
370 
371 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
372 {
373 	unsigned long *p = map + BIT_WORD(start);
374 	const unsigned int size = start + len;
375 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
376 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
377 
378 	while (len - bits_to_clear >= 0) {
379 		*p &= ~mask_to_clear;
380 		len -= bits_to_clear;
381 		bits_to_clear = BITS_PER_LONG;
382 		mask_to_clear = ~0UL;
383 		p++;
384 	}
385 	if (len) {
386 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
387 		*p &= ~mask_to_clear;
388 	}
389 }
390 EXPORT_SYMBOL(__bitmap_clear);
391 
392 /**
393  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
394  * @map: The address to base the search on
395  * @size: The bitmap size in bits
396  * @start: The bitnumber to start searching at
397  * @nr: The number of zeroed bits we're looking for
398  * @align_mask: Alignment mask for zero area
399  * @align_offset: Alignment offset for zero area.
400  *
401  * The @align_mask should be one less than a power of 2; the effect is that
402  * the bit offset of all zero areas this function finds plus @align_offset
403  * is multiple of that power of 2.
404  */
405 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
406 					     unsigned long size,
407 					     unsigned long start,
408 					     unsigned int nr,
409 					     unsigned long align_mask,
410 					     unsigned long align_offset)
411 {
412 	unsigned long index, end, i;
413 again:
414 	index = find_next_zero_bit(map, size, start);
415 
416 	/* Align allocation */
417 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
418 
419 	end = index + nr;
420 	if (end > size)
421 		return end;
422 	i = find_next_bit(map, end, index);
423 	if (i < end) {
424 		start = i + 1;
425 		goto again;
426 	}
427 	return index;
428 }
429 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
430 
431 /*
432  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
433  * second version by Paul Jackson, third by Joe Korty.
434  */
435 
436 /**
437  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
438  *
439  * @ubuf: pointer to user buffer containing string.
440  * @ulen: buffer size in bytes.  If string is smaller than this
441  *    then it must be terminated with a \0.
442  * @maskp: pointer to bitmap array that will contain result.
443  * @nmaskbits: size of bitmap, in bits.
444  */
445 int bitmap_parse_user(const char __user *ubuf,
446 			unsigned int ulen, unsigned long *maskp,
447 			int nmaskbits)
448 {
449 	char *buf;
450 	int ret;
451 
452 	buf = memdup_user_nul(ubuf, ulen);
453 	if (IS_ERR(buf))
454 		return PTR_ERR(buf);
455 
456 	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
457 
458 	kfree(buf);
459 	return ret;
460 }
461 EXPORT_SYMBOL(bitmap_parse_user);
462 
463 /**
464  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
465  * @list: indicates whether the bitmap must be list
466  * @buf: page aligned buffer into which string is placed
467  * @maskp: pointer to bitmap to convert
468  * @nmaskbits: size of bitmap, in bits
469  *
470  * Output format is a comma-separated list of decimal numbers and
471  * ranges if list is specified or hex digits grouped into comma-separated
472  * sets of 8 digits/set. Returns the number of characters written to buf.
473  *
474  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
475  * area and that sufficient storage remains at @buf to accommodate the
476  * bitmap_print_to_pagebuf() output. Returns the number of characters
477  * actually printed to @buf, excluding terminating '\0'.
478  */
479 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
480 			    int nmaskbits)
481 {
482 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
483 
484 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
485 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
486 }
487 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
488 
489 /**
490  * bitmap_print_to_buf  - convert bitmap to list or hex format ASCII string
491  * @list: indicates whether the bitmap must be list
492  *      true:  print in decimal list format
493  *      false: print in hexadecimal bitmask format
494  * @buf: buffer into which string is placed
495  * @maskp: pointer to bitmap to convert
496  * @nmaskbits: size of bitmap, in bits
497  * @off: in the string from which we are copying, We copy to @buf
498  * @count: the maximum number of bytes to print
499  */
500 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
501 		int nmaskbits, loff_t off, size_t count)
502 {
503 	const char *fmt = list ? "%*pbl\n" : "%*pb\n";
504 	ssize_t size;
505 	void *data;
506 
507 	data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
508 	if (!data)
509 		return -ENOMEM;
510 
511 	size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
512 	kfree(data);
513 
514 	return size;
515 }
516 
517 /**
518  * bitmap_print_bitmask_to_buf  - convert bitmap to hex bitmask format ASCII string
519  * @buf: buffer into which string is placed
520  * @maskp: pointer to bitmap to convert
521  * @nmaskbits: size of bitmap, in bits
522  * @off: in the string from which we are copying, We copy to @buf
523  * @count: the maximum number of bytes to print
524  *
525  * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
526  * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
527  * bitmask and decimal list to userspace by sysfs ABI.
528  * Drivers might be using a normal attribute for this kind of ABIs. A
529  * normal attribute typically has show entry as below::
530  *
531  *   static ssize_t example_attribute_show(struct device *dev,
532  * 		struct device_attribute *attr, char *buf)
533  *   {
534  * 	...
535  * 	return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
536  *   }
537  *
538  * show entry of attribute has no offset and count parameters and this
539  * means the file is limited to one page only.
540  * bitmap_print_to_pagebuf() API works terribly well for this kind of
541  * normal attribute with buf parameter and without offset, count::
542  *
543  *   bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
544  * 			   int nmaskbits)
545  *   {
546  *   }
547  *
548  * The problem is once we have a large bitmap, we have a chance to get a
549  * bitmask or list more than one page. Especially for list, it could be
550  * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
551  * It turns out bin_attribute is a way to break this limit. bin_attribute
552  * has show entry as below::
553  *
554  *   static ssize_t
555  *   example_bin_attribute_show(struct file *filp, struct kobject *kobj,
556  * 		struct bin_attribute *attr, char *buf,
557  * 		loff_t offset, size_t count)
558  *   {
559  * 	...
560  *   }
561  *
562  * With the new offset and count parameters, this makes sysfs ABI be able
563  * to support file size more than one page. For example, offset could be
564  * >= 4096.
565  * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
566  * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
567  * make those drivers be able to support large bitmask and list after they
568  * move to use bin_attribute. In result, we have to pass the corresponding
569  * parameters such as off, count from bin_attribute show entry to this API.
570  *
571  * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
572  * is similar with cpumap_print_to_pagebuf(),  the difference is that
573  * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
574  * the destination buffer is exactly one page and won't be more than one page.
575  * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
576  * hand, mainly serves bin_attribute which doesn't work with exact one page,
577  * and it can break the size limit of converted decimal list and hexadecimal
578  * bitmask.
579  *
580  * WARNING!
581  *
582  * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
583  * It is intended to workaround sysfs limitations discussed above and should be
584  * used carefully in general case for the following reasons:
585  *
586  *  - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
587  *  - Memory complexity is O(nbits), comparing to O(1) for snprintf().
588  *  - @off and @count are NOT offset and number of bits to print.
589  *  - If printing part of bitmap as list, the resulting string is not a correct
590  *    list representation of bitmap. Particularly, some bits within or out of
591  *    related interval may be erroneously set or unset. The format of the string
592  *    may be broken, so bitmap_parselist-like parser may fail parsing it.
593  *  - If printing the whole bitmap as list by parts, user must ensure the order
594  *    of calls of the function such that the offset is incremented linearly.
595  *  - If printing the whole bitmap as list by parts, user must keep bitmap
596  *    unchanged between the very first and very last call. Otherwise concatenated
597  *    result may be incorrect, and format may be broken.
598  *
599  * Returns the number of characters actually printed to @buf
600  */
601 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
602 				int nmaskbits, loff_t off, size_t count)
603 {
604 	return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
605 }
606 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
607 
608 /**
609  * bitmap_print_list_to_buf  - convert bitmap to decimal list format ASCII string
610  * @buf: buffer into which string is placed
611  * @maskp: pointer to bitmap to convert
612  * @nmaskbits: size of bitmap, in bits
613  * @off: in the string from which we are copying, We copy to @buf
614  * @count: the maximum number of bytes to print
615  *
616  * Everything is same with the above bitmap_print_bitmask_to_buf() except
617  * the print format.
618  */
619 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
620 			     int nmaskbits, loff_t off, size_t count)
621 {
622 	return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
623 }
624 EXPORT_SYMBOL(bitmap_print_list_to_buf);
625 
626 /*
627  * Region 9-38:4/10 describes the following bitmap structure:
628  * 0	   9  12    18			38	     N
629  * .........****......****......****..................
630  *	    ^  ^     ^			 ^	     ^
631  *      start  off   group_len	       end	 nbits
632  */
633 struct region {
634 	unsigned int start;
635 	unsigned int off;
636 	unsigned int group_len;
637 	unsigned int end;
638 	unsigned int nbits;
639 };
640 
641 static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
642 {
643 	unsigned int start;
644 
645 	for (start = r->start; start <= r->end; start += r->group_len)
646 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
647 }
648 
649 static int bitmap_check_region(const struct region *r)
650 {
651 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
652 		return -EINVAL;
653 
654 	if (r->end >= r->nbits)
655 		return -ERANGE;
656 
657 	return 0;
658 }
659 
660 static const char *bitmap_getnum(const char *str, unsigned int *num,
661 				 unsigned int lastbit)
662 {
663 	unsigned long long n;
664 	unsigned int len;
665 
666 	if (str[0] == 'N') {
667 		*num = lastbit;
668 		return str + 1;
669 	}
670 
671 	len = _parse_integer(str, 10, &n);
672 	if (!len)
673 		return ERR_PTR(-EINVAL);
674 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
675 		return ERR_PTR(-EOVERFLOW);
676 
677 	*num = n;
678 	return str + len;
679 }
680 
681 static inline bool end_of_str(char c)
682 {
683 	return c == '\0' || c == '\n';
684 }
685 
686 static inline bool __end_of_region(char c)
687 {
688 	return isspace(c) || c == ',';
689 }
690 
691 static inline bool end_of_region(char c)
692 {
693 	return __end_of_region(c) || end_of_str(c);
694 }
695 
696 /*
697  * The format allows commas and whitespaces at the beginning
698  * of the region.
699  */
700 static const char *bitmap_find_region(const char *str)
701 {
702 	while (__end_of_region(*str))
703 		str++;
704 
705 	return end_of_str(*str) ? NULL : str;
706 }
707 
708 static const char *bitmap_find_region_reverse(const char *start, const char *end)
709 {
710 	while (start <= end && __end_of_region(*end))
711 		end--;
712 
713 	return end;
714 }
715 
716 static const char *bitmap_parse_region(const char *str, struct region *r)
717 {
718 	unsigned int lastbit = r->nbits - 1;
719 
720 	if (!strncasecmp(str, "all", 3)) {
721 		r->start = 0;
722 		r->end = lastbit;
723 		str += 3;
724 
725 		goto check_pattern;
726 	}
727 
728 	str = bitmap_getnum(str, &r->start, lastbit);
729 	if (IS_ERR(str))
730 		return str;
731 
732 	if (end_of_region(*str))
733 		goto no_end;
734 
735 	if (*str != '-')
736 		return ERR_PTR(-EINVAL);
737 
738 	str = bitmap_getnum(str + 1, &r->end, lastbit);
739 	if (IS_ERR(str))
740 		return str;
741 
742 check_pattern:
743 	if (end_of_region(*str))
744 		goto no_pattern;
745 
746 	if (*str != ':')
747 		return ERR_PTR(-EINVAL);
748 
749 	str = bitmap_getnum(str + 1, &r->off, lastbit);
750 	if (IS_ERR(str))
751 		return str;
752 
753 	if (*str != '/')
754 		return ERR_PTR(-EINVAL);
755 
756 	return bitmap_getnum(str + 1, &r->group_len, lastbit);
757 
758 no_end:
759 	r->end = r->start;
760 no_pattern:
761 	r->off = r->end + 1;
762 	r->group_len = r->end + 1;
763 
764 	return end_of_str(*str) ? NULL : str;
765 }
766 
767 /**
768  * bitmap_parselist - convert list format ASCII string to bitmap
769  * @buf: read user string from this buffer; must be terminated
770  *    with a \0 or \n.
771  * @maskp: write resulting mask here
772  * @nmaskbits: number of bits in mask to be written
773  *
774  * Input format is a comma-separated list of decimal numbers and
775  * ranges.  Consecutively set bits are shown as two hyphen-separated
776  * decimal numbers, the smallest and largest bit numbers set in
777  * the range.
778  * Optionally each range can be postfixed to denote that only parts of it
779  * should be set. The range will divided to groups of specific size.
780  * From each group will be used only defined amount of bits.
781  * Syntax: range:used_size/group_size
782  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
783  * The value 'N' can be used as a dynamically substituted token for the
784  * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
785  * dynamic, so if system changes cause the bitmap width to change, such
786  * as more cores in a CPU list, then any ranges using N will also change.
787  *
788  * Returns: 0 on success, -errno on invalid input strings. Error values:
789  *
790  *   - ``-EINVAL``: wrong region format
791  *   - ``-EINVAL``: invalid character in string
792  *   - ``-ERANGE``: bit number specified too large for mask
793  *   - ``-EOVERFLOW``: integer overflow in the input parameters
794  */
795 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
796 {
797 	struct region r;
798 	long ret;
799 
800 	r.nbits = nmaskbits;
801 	bitmap_zero(maskp, r.nbits);
802 
803 	while (buf) {
804 		buf = bitmap_find_region(buf);
805 		if (buf == NULL)
806 			return 0;
807 
808 		buf = bitmap_parse_region(buf, &r);
809 		if (IS_ERR(buf))
810 			return PTR_ERR(buf);
811 
812 		ret = bitmap_check_region(&r);
813 		if (ret)
814 			return ret;
815 
816 		bitmap_set_region(&r, maskp);
817 	}
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL(bitmap_parselist);
822 
823 
824 /**
825  * bitmap_parselist_user() - convert user buffer's list format ASCII
826  * string to bitmap
827  *
828  * @ubuf: pointer to user buffer containing string.
829  * @ulen: buffer size in bytes.  If string is smaller than this
830  *    then it must be terminated with a \0.
831  * @maskp: pointer to bitmap array that will contain result.
832  * @nmaskbits: size of bitmap, in bits.
833  *
834  * Wrapper for bitmap_parselist(), providing it with user buffer.
835  */
836 int bitmap_parselist_user(const char __user *ubuf,
837 			unsigned int ulen, unsigned long *maskp,
838 			int nmaskbits)
839 {
840 	char *buf;
841 	int ret;
842 
843 	buf = memdup_user_nul(ubuf, ulen);
844 	if (IS_ERR(buf))
845 		return PTR_ERR(buf);
846 
847 	ret = bitmap_parselist(buf, maskp, nmaskbits);
848 
849 	kfree(buf);
850 	return ret;
851 }
852 EXPORT_SYMBOL(bitmap_parselist_user);
853 
854 static const char *bitmap_get_x32_reverse(const char *start,
855 					const char *end, u32 *num)
856 {
857 	u32 ret = 0;
858 	int c, i;
859 
860 	for (i = 0; i < 32; i += 4) {
861 		c = hex_to_bin(*end--);
862 		if (c < 0)
863 			return ERR_PTR(-EINVAL);
864 
865 		ret |= c << i;
866 
867 		if (start > end || __end_of_region(*end))
868 			goto out;
869 	}
870 
871 	if (hex_to_bin(*end--) >= 0)
872 		return ERR_PTR(-EOVERFLOW);
873 out:
874 	*num = ret;
875 	return end;
876 }
877 
878 /**
879  * bitmap_parse - convert an ASCII hex string into a bitmap.
880  * @start: pointer to buffer containing string.
881  * @buflen: buffer size in bytes.  If string is smaller than this
882  *    then it must be terminated with a \0 or \n. In that case,
883  *    UINT_MAX may be provided instead of string length.
884  * @maskp: pointer to bitmap array that will contain result.
885  * @nmaskbits: size of bitmap, in bits.
886  *
887  * Commas group hex digits into chunks.  Each chunk defines exactly 32
888  * bits of the resultant bitmask.  No chunk may specify a value larger
889  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
890  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
891  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
892  * Leading, embedded and trailing whitespace accepted.
893  */
894 int bitmap_parse(const char *start, unsigned int buflen,
895 		unsigned long *maskp, int nmaskbits)
896 {
897 	const char *end = strnchrnul(start, buflen, '\n') - 1;
898 	int chunks = BITS_TO_U32(nmaskbits);
899 	u32 *bitmap = (u32 *)maskp;
900 	int unset_bit;
901 	int chunk;
902 
903 	for (chunk = 0; ; chunk++) {
904 		end = bitmap_find_region_reverse(start, end);
905 		if (start > end)
906 			break;
907 
908 		if (!chunks--)
909 			return -EOVERFLOW;
910 
911 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
912 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
913 #else
914 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
915 #endif
916 		if (IS_ERR(end))
917 			return PTR_ERR(end);
918 	}
919 
920 	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
921 	if (unset_bit < nmaskbits) {
922 		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
923 		return 0;
924 	}
925 
926 	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
927 		return -EOVERFLOW;
928 
929 	return 0;
930 }
931 EXPORT_SYMBOL(bitmap_parse);
932 
933 /**
934  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
935  *	@buf: pointer to a bitmap
936  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
937  *	@nbits: number of valid bit positions in @buf
938  *
939  * Map the bit at position @pos in @buf (of length @nbits) to the
940  * ordinal of which set bit it is.  If it is not set or if @pos
941  * is not a valid bit position, map to -1.
942  *
943  * If for example, just bits 4 through 7 are set in @buf, then @pos
944  * values 4 through 7 will get mapped to 0 through 3, respectively,
945  * and other @pos values will get mapped to -1.  When @pos value 7
946  * gets mapped to (returns) @ord value 3 in this example, that means
947  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
948  *
949  * The bit positions 0 through @bits are valid positions in @buf.
950  */
951 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
952 {
953 	if (pos >= nbits || !test_bit(pos, buf))
954 		return -1;
955 
956 	return __bitmap_weight(buf, pos);
957 }
958 
959 /**
960  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
961  *	@buf: pointer to bitmap
962  *	@ord: ordinal bit position (n-th set bit, n >= 0)
963  *	@nbits: number of valid bit positions in @buf
964  *
965  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
966  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
967  * >= weight(buf), returns @nbits.
968  *
969  * If for example, just bits 4 through 7 are set in @buf, then @ord
970  * values 0 through 3 will get mapped to 4 through 7, respectively,
971  * and all other @ord values returns @nbits.  When @ord value 3
972  * gets mapped to (returns) @pos value 7 in this example, that means
973  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
974  *
975  * The bit positions 0 through @nbits-1 are valid positions in @buf.
976  */
977 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
978 {
979 	unsigned int pos;
980 
981 	for (pos = find_first_bit(buf, nbits);
982 	     pos < nbits && ord;
983 	     pos = find_next_bit(buf, nbits, pos + 1))
984 		ord--;
985 
986 	return pos;
987 }
988 
989 /**
990  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
991  *	@dst: remapped result
992  *	@src: subset to be remapped
993  *	@old: defines domain of map
994  *	@new: defines range of map
995  *	@nbits: number of bits in each of these bitmaps
996  *
997  * Let @old and @new define a mapping of bit positions, such that
998  * whatever position is held by the n-th set bit in @old is mapped
999  * to the n-th set bit in @new.  In the more general case, allowing
1000  * for the possibility that the weight 'w' of @new is less than the
1001  * weight of @old, map the position of the n-th set bit in @old to
1002  * the position of the m-th set bit in @new, where m == n % w.
1003  *
1004  * If either of the @old and @new bitmaps are empty, or if @src and
1005  * @dst point to the same location, then this routine copies @src
1006  * to @dst.
1007  *
1008  * The positions of unset bits in @old are mapped to themselves
1009  * (the identify map).
1010  *
1011  * Apply the above specified mapping to @src, placing the result in
1012  * @dst, clearing any bits previously set in @dst.
1013  *
1014  * For example, lets say that @old has bits 4 through 7 set, and
1015  * @new has bits 12 through 15 set.  This defines the mapping of bit
1016  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1017  * bit positions unchanged.  So if say @src comes into this routine
1018  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
1019  * 13 and 15 set.
1020  */
1021 void bitmap_remap(unsigned long *dst, const unsigned long *src,
1022 		const unsigned long *old, const unsigned long *new,
1023 		unsigned int nbits)
1024 {
1025 	unsigned int oldbit, w;
1026 
1027 	if (dst == src)		/* following doesn't handle inplace remaps */
1028 		return;
1029 	bitmap_zero(dst, nbits);
1030 
1031 	w = bitmap_weight(new, nbits);
1032 	for_each_set_bit(oldbit, src, nbits) {
1033 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
1034 
1035 		if (n < 0 || w == 0)
1036 			set_bit(oldbit, dst);	/* identity map */
1037 		else
1038 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
1039 	}
1040 }
1041 EXPORT_SYMBOL(bitmap_remap);
1042 
1043 /**
1044  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
1045  *	@oldbit: bit position to be mapped
1046  *	@old: defines domain of map
1047  *	@new: defines range of map
1048  *	@bits: number of bits in each of these bitmaps
1049  *
1050  * Let @old and @new define a mapping of bit positions, such that
1051  * whatever position is held by the n-th set bit in @old is mapped
1052  * to the n-th set bit in @new.  In the more general case, allowing
1053  * for the possibility that the weight 'w' of @new is less than the
1054  * weight of @old, map the position of the n-th set bit in @old to
1055  * the position of the m-th set bit in @new, where m == n % w.
1056  *
1057  * The positions of unset bits in @old are mapped to themselves
1058  * (the identify map).
1059  *
1060  * Apply the above specified mapping to bit position @oldbit, returning
1061  * the new bit position.
1062  *
1063  * For example, lets say that @old has bits 4 through 7 set, and
1064  * @new has bits 12 through 15 set.  This defines the mapping of bit
1065  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1066  * bit positions unchanged.  So if say @oldbit is 5, then this routine
1067  * returns 13.
1068  */
1069 int bitmap_bitremap(int oldbit, const unsigned long *old,
1070 				const unsigned long *new, int bits)
1071 {
1072 	int w = bitmap_weight(new, bits);
1073 	int n = bitmap_pos_to_ord(old, oldbit, bits);
1074 	if (n < 0 || w == 0)
1075 		return oldbit;
1076 	else
1077 		return bitmap_ord_to_pos(new, n % w, bits);
1078 }
1079 EXPORT_SYMBOL(bitmap_bitremap);
1080 
1081 #ifdef CONFIG_NUMA
1082 /**
1083  * bitmap_onto - translate one bitmap relative to another
1084  *	@dst: resulting translated bitmap
1085  * 	@orig: original untranslated bitmap
1086  * 	@relmap: bitmap relative to which translated
1087  *	@bits: number of bits in each of these bitmaps
1088  *
1089  * Set the n-th bit of @dst iff there exists some m such that the
1090  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
1091  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
1092  * (If you understood the previous sentence the first time your
1093  * read it, you're overqualified for your current job.)
1094  *
1095  * In other words, @orig is mapped onto (surjectively) @dst,
1096  * using the map { <n, m> | the n-th bit of @relmap is the
1097  * m-th set bit of @relmap }.
1098  *
1099  * Any set bits in @orig above bit number W, where W is the
1100  * weight of (number of set bits in) @relmap are mapped nowhere.
1101  * In particular, if for all bits m set in @orig, m >= W, then
1102  * @dst will end up empty.  In situations where the possibility
1103  * of such an empty result is not desired, one way to avoid it is
1104  * to use the bitmap_fold() operator, below, to first fold the
1105  * @orig bitmap over itself so that all its set bits x are in the
1106  * range 0 <= x < W.  The bitmap_fold() operator does this by
1107  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
1108  *
1109  * Example [1] for bitmap_onto():
1110  *  Let's say @relmap has bits 30-39 set, and @orig has bits
1111  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
1112  *  @dst will have bits 31, 33, 35, 37 and 39 set.
1113  *
1114  *  When bit 0 is set in @orig, it means turn on the bit in
1115  *  @dst corresponding to whatever is the first bit (if any)
1116  *  that is turned on in @relmap.  Since bit 0 was off in the
1117  *  above example, we leave off that bit (bit 30) in @dst.
1118  *
1119  *  When bit 1 is set in @orig (as in the above example), it
1120  *  means turn on the bit in @dst corresponding to whatever
1121  *  is the second bit that is turned on in @relmap.  The second
1122  *  bit in @relmap that was turned on in the above example was
1123  *  bit 31, so we turned on bit 31 in @dst.
1124  *
1125  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
1126  *  because they were the 4th, 6th, 8th and 10th set bits
1127  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
1128  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
1129  *
1130  *  When bit 11 is set in @orig, it means turn on the bit in
1131  *  @dst corresponding to whatever is the twelfth bit that is
1132  *  turned on in @relmap.  In the above example, there were
1133  *  only ten bits turned on in @relmap (30..39), so that bit
1134  *  11 was set in @orig had no affect on @dst.
1135  *
1136  * Example [2] for bitmap_fold() + bitmap_onto():
1137  *  Let's say @relmap has these ten bits set::
1138  *
1139  *		40 41 42 43 45 48 53 61 74 95
1140  *
1141  *  (for the curious, that's 40 plus the first ten terms of the
1142  *  Fibonacci sequence.)
1143  *
1144  *  Further lets say we use the following code, invoking
1145  *  bitmap_fold() then bitmap_onto, as suggested above to
1146  *  avoid the possibility of an empty @dst result::
1147  *
1148  *	unsigned long *tmp;	// a temporary bitmap's bits
1149  *
1150  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1151  *	bitmap_onto(dst, tmp, relmap, bits);
1152  *
1153  *  Then this table shows what various values of @dst would be, for
1154  *  various @orig's.  I list the zero-based positions of each set bit.
1155  *  The tmp column shows the intermediate result, as computed by
1156  *  using bitmap_fold() to fold the @orig bitmap modulo ten
1157  *  (the weight of @relmap):
1158  *
1159  *      =============== ============== =================
1160  *      @orig           tmp            @dst
1161  *      0                0             40
1162  *      1                1             41
1163  *      9                9             95
1164  *      10               0             40 [#f1]_
1165  *      1 3 5 7          1 3 5 7       41 43 48 61
1166  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1167  *      0 9 18 27        0 9 8 7       40 61 74 95
1168  *      0 10 20 30       0             40
1169  *      0 11 22 33       0 1 2 3       40 41 42 43
1170  *      0 12 24 36       0 2 4 6       40 42 45 53
1171  *      78 102 211       1 2 8         41 42 74 [#f1]_
1172  *      =============== ============== =================
1173  *
1174  * .. [#f1]
1175  *
1176  *     For these marked lines, if we hadn't first done bitmap_fold()
1177  *     into tmp, then the @dst result would have been empty.
1178  *
1179  * If either of @orig or @relmap is empty (no set bits), then @dst
1180  * will be returned empty.
1181  *
1182  * If (as explained above) the only set bits in @orig are in positions
1183  * m where m >= W, (where W is the weight of @relmap) then @dst will
1184  * once again be returned empty.
1185  *
1186  * All bits in @dst not set by the above rule are cleared.
1187  */
1188 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1189 			const unsigned long *relmap, unsigned int bits)
1190 {
1191 	unsigned int n, m;	/* same meaning as in above comment */
1192 
1193 	if (dst == orig)	/* following doesn't handle inplace mappings */
1194 		return;
1195 	bitmap_zero(dst, bits);
1196 
1197 	/*
1198 	 * The following code is a more efficient, but less
1199 	 * obvious, equivalent to the loop:
1200 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1201 	 *		n = bitmap_ord_to_pos(orig, m, bits);
1202 	 *		if (test_bit(m, orig))
1203 	 *			set_bit(n, dst);
1204 	 *	}
1205 	 */
1206 
1207 	m = 0;
1208 	for_each_set_bit(n, relmap, bits) {
1209 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1210 		if (test_bit(m, orig))
1211 			set_bit(n, dst);
1212 		m++;
1213 	}
1214 }
1215 
1216 /**
1217  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1218  *	@dst: resulting smaller bitmap
1219  *	@orig: original larger bitmap
1220  *	@sz: specified size
1221  *	@nbits: number of bits in each of these bitmaps
1222  *
1223  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1224  * Clear all other bits in @dst.  See further the comment and
1225  * Example [2] for bitmap_onto() for why and how to use this.
1226  */
1227 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1228 			unsigned int sz, unsigned int nbits)
1229 {
1230 	unsigned int oldbit;
1231 
1232 	if (dst == orig)	/* following doesn't handle inplace mappings */
1233 		return;
1234 	bitmap_zero(dst, nbits);
1235 
1236 	for_each_set_bit(oldbit, orig, nbits)
1237 		set_bit(oldbit % sz, dst);
1238 }
1239 #endif /* CONFIG_NUMA */
1240 
1241 /*
1242  * Common code for bitmap_*_region() routines.
1243  *	bitmap: array of unsigned longs corresponding to the bitmap
1244  *	pos: the beginning of the region
1245  *	order: region size (log base 2 of number of bits)
1246  *	reg_op: operation(s) to perform on that region of bitmap
1247  *
1248  * Can set, verify and/or release a region of bits in a bitmap,
1249  * depending on which combination of REG_OP_* flag bits is set.
1250  *
1251  * A region of a bitmap is a sequence of bits in the bitmap, of
1252  * some size '1 << order' (a power of two), aligned to that same
1253  * '1 << order' power of two.
1254  *
1255  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1256  * Returns 0 in all other cases and reg_ops.
1257  */
1258 
1259 enum {
1260 	REG_OP_ISFREE,		/* true if region is all zero bits */
1261 	REG_OP_ALLOC,		/* set all bits in region */
1262 	REG_OP_RELEASE,		/* clear all bits in region */
1263 };
1264 
1265 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1266 {
1267 	int nbits_reg;		/* number of bits in region */
1268 	int index;		/* index first long of region in bitmap */
1269 	int offset;		/* bit offset region in bitmap[index] */
1270 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1271 	int nbitsinlong;	/* num bits of region in each spanned long */
1272 	unsigned long mask;	/* bitmask for one long of region */
1273 	int i;			/* scans bitmap by longs */
1274 	int ret = 0;		/* return value */
1275 
1276 	/*
1277 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1278 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1279 	 */
1280 	nbits_reg = 1 << order;
1281 	index = pos / BITS_PER_LONG;
1282 	offset = pos - (index * BITS_PER_LONG);
1283 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1284 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1285 
1286 	/*
1287 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1288 	 * overflows if nbitsinlong == BITS_PER_LONG.
1289 	 */
1290 	mask = (1UL << (nbitsinlong - 1));
1291 	mask += mask - 1;
1292 	mask <<= offset;
1293 
1294 	switch (reg_op) {
1295 	case REG_OP_ISFREE:
1296 		for (i = 0; i < nlongs_reg; i++) {
1297 			if (bitmap[index + i] & mask)
1298 				goto done;
1299 		}
1300 		ret = 1;	/* all bits in region free (zero) */
1301 		break;
1302 
1303 	case REG_OP_ALLOC:
1304 		for (i = 0; i < nlongs_reg; i++)
1305 			bitmap[index + i] |= mask;
1306 		break;
1307 
1308 	case REG_OP_RELEASE:
1309 		for (i = 0; i < nlongs_reg; i++)
1310 			bitmap[index + i] &= ~mask;
1311 		break;
1312 	}
1313 done:
1314 	return ret;
1315 }
1316 
1317 /**
1318  * bitmap_find_free_region - find a contiguous aligned mem region
1319  *	@bitmap: array of unsigned longs corresponding to the bitmap
1320  *	@bits: number of bits in the bitmap
1321  *	@order: region size (log base 2 of number of bits) to find
1322  *
1323  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1324  * allocate them (set them to one).  Only consider regions of length
1325  * a power (@order) of two, aligned to that power of two, which
1326  * makes the search algorithm much faster.
1327  *
1328  * Return the bit offset in bitmap of the allocated region,
1329  * or -errno on failure.
1330  */
1331 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1332 {
1333 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1334 
1335 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1336 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1337 			continue;
1338 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1339 		return pos;
1340 	}
1341 	return -ENOMEM;
1342 }
1343 EXPORT_SYMBOL(bitmap_find_free_region);
1344 
1345 /**
1346  * bitmap_release_region - release allocated bitmap region
1347  *	@bitmap: array of unsigned longs corresponding to the bitmap
1348  *	@pos: beginning of bit region to release
1349  *	@order: region size (log base 2 of number of bits) to release
1350  *
1351  * This is the complement to __bitmap_find_free_region() and releases
1352  * the found region (by clearing it in the bitmap).
1353  *
1354  * No return value.
1355  */
1356 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1357 {
1358 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1359 }
1360 EXPORT_SYMBOL(bitmap_release_region);
1361 
1362 /**
1363  * bitmap_allocate_region - allocate bitmap region
1364  *	@bitmap: array of unsigned longs corresponding to the bitmap
1365  *	@pos: beginning of bit region to allocate
1366  *	@order: region size (log base 2 of number of bits) to allocate
1367  *
1368  * Allocate (set bits in) a specified region of a bitmap.
1369  *
1370  * Return 0 on success, or %-EBUSY if specified region wasn't
1371  * free (not all bits were zero).
1372  */
1373 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1374 {
1375 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1376 		return -EBUSY;
1377 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1378 }
1379 EXPORT_SYMBOL(bitmap_allocate_region);
1380 
1381 /**
1382  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1383  * @dst:   destination buffer
1384  * @src:   bitmap to copy
1385  * @nbits: number of bits in the bitmap
1386  *
1387  * Require nbits % BITS_PER_LONG == 0.
1388  */
1389 #ifdef __BIG_ENDIAN
1390 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1391 {
1392 	unsigned int i;
1393 
1394 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1395 		if (BITS_PER_LONG == 64)
1396 			dst[i] = cpu_to_le64(src[i]);
1397 		else
1398 			dst[i] = cpu_to_le32(src[i]);
1399 	}
1400 }
1401 EXPORT_SYMBOL(bitmap_copy_le);
1402 #endif
1403 
1404 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1405 {
1406 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1407 			     flags);
1408 }
1409 EXPORT_SYMBOL(bitmap_alloc);
1410 
1411 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1412 {
1413 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1414 }
1415 EXPORT_SYMBOL(bitmap_zalloc);
1416 
1417 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
1418 {
1419 	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1420 				  flags, node);
1421 }
1422 EXPORT_SYMBOL(bitmap_alloc_node);
1423 
1424 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
1425 {
1426 	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
1427 }
1428 EXPORT_SYMBOL(bitmap_zalloc_node);
1429 
1430 void bitmap_free(const unsigned long *bitmap)
1431 {
1432 	kfree(bitmap);
1433 }
1434 EXPORT_SYMBOL(bitmap_free);
1435 
1436 static void devm_bitmap_free(void *data)
1437 {
1438 	unsigned long *bitmap = data;
1439 
1440 	bitmap_free(bitmap);
1441 }
1442 
1443 unsigned long *devm_bitmap_alloc(struct device *dev,
1444 				 unsigned int nbits, gfp_t flags)
1445 {
1446 	unsigned long *bitmap;
1447 	int ret;
1448 
1449 	bitmap = bitmap_alloc(nbits, flags);
1450 	if (!bitmap)
1451 		return NULL;
1452 
1453 	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1454 	if (ret)
1455 		return NULL;
1456 
1457 	return bitmap;
1458 }
1459 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1460 
1461 unsigned long *devm_bitmap_zalloc(struct device *dev,
1462 				  unsigned int nbits, gfp_t flags)
1463 {
1464 	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1465 }
1466 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1467 
1468 #if BITS_PER_LONG == 64
1469 /**
1470  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1471  *	@bitmap: array of unsigned longs, the destination bitmap
1472  *	@buf: array of u32 (in host byte order), the source bitmap
1473  *	@nbits: number of bits in @bitmap
1474  */
1475 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1476 {
1477 	unsigned int i, halfwords;
1478 
1479 	halfwords = DIV_ROUND_UP(nbits, 32);
1480 	for (i = 0; i < halfwords; i++) {
1481 		bitmap[i/2] = (unsigned long) buf[i];
1482 		if (++i < halfwords)
1483 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1484 	}
1485 
1486 	/* Clear tail bits in last word beyond nbits. */
1487 	if (nbits % BITS_PER_LONG)
1488 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1489 }
1490 EXPORT_SYMBOL(bitmap_from_arr32);
1491 
1492 /**
1493  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1494  *	@buf: array of u32 (in host byte order), the dest bitmap
1495  *	@bitmap: array of unsigned longs, the source bitmap
1496  *	@nbits: number of bits in @bitmap
1497  */
1498 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1499 {
1500 	unsigned int i, halfwords;
1501 
1502 	halfwords = DIV_ROUND_UP(nbits, 32);
1503 	for (i = 0; i < halfwords; i++) {
1504 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1505 		if (++i < halfwords)
1506 			buf[i] = (u32) (bitmap[i/2] >> 32);
1507 	}
1508 
1509 	/* Clear tail bits in last element of array beyond nbits. */
1510 	if (nbits % BITS_PER_LONG)
1511 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1512 }
1513 EXPORT_SYMBOL(bitmap_to_arr32);
1514 #endif
1515 
1516 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
1517 /**
1518  * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
1519  *	@bitmap: array of unsigned longs, the destination bitmap
1520  *	@buf: array of u64 (in host byte order), the source bitmap
1521  *	@nbits: number of bits in @bitmap
1522  */
1523 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
1524 {
1525 	int n;
1526 
1527 	for (n = nbits; n > 0; n -= 64) {
1528 		u64 val = *buf++;
1529 
1530 		*bitmap++ = val;
1531 		if (n > 32)
1532 			*bitmap++ = val >> 32;
1533 	}
1534 
1535 	/*
1536 	 * Clear tail bits in the last word beyond nbits.
1537 	 *
1538 	 * Negative index is OK because here we point to the word next
1539 	 * to the last word of the bitmap, except for nbits == 0, which
1540 	 * is tested implicitly.
1541 	 */
1542 	if (nbits % BITS_PER_LONG)
1543 		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
1544 }
1545 EXPORT_SYMBOL(bitmap_from_arr64);
1546 
1547 /**
1548  * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
1549  *	@buf: array of u64 (in host byte order), the dest bitmap
1550  *	@bitmap: array of unsigned longs, the source bitmap
1551  *	@nbits: number of bits in @bitmap
1552  */
1553 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
1554 {
1555 	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
1556 
1557 	while (bitmap < end) {
1558 		*buf = *bitmap++;
1559 		if (bitmap < end)
1560 			*buf |= (u64)(*bitmap++) << 32;
1561 		buf++;
1562 	}
1563 
1564 	/* Clear tail bits in the last element of array beyond nbits. */
1565 	if (nbits % 64)
1566 		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
1567 }
1568 EXPORT_SYMBOL(bitmap_to_arr64);
1569 #endif
1570