xref: /openbmc/linux/lib/bitmap.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/ctype.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/thread_info.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/page.h>
22 
23 #include "kstrtox.h"
24 
25 /**
26  * DOC: bitmap introduction
27  *
28  * bitmaps provide an array of bits, implemented using an
29  * array of unsigned longs.  The number of valid bits in a
30  * given bitmap does _not_ need to be an exact multiple of
31  * BITS_PER_LONG.
32  *
33  * The possible unused bits in the last, partially used word
34  * of a bitmap are 'don't care'.  The implementation makes
35  * no particular effort to keep them zero.  It ensures that
36  * their value will not affect the results of any operation.
37  * The bitmap operations that return Boolean (bitmap_empty,
38  * for example) or scalar (bitmap_weight, for example) results
39  * carefully filter out these unused bits from impacting their
40  * results.
41  *
42  * The byte ordering of bitmaps is more natural on little
43  * endian architectures.  See the big-endian headers
44  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45  * for the best explanations of this ordering.
46  */
47 
48 int __bitmap_equal(const unsigned long *bitmap1,
49 		const unsigned long *bitmap2, unsigned int bits)
50 {
51 	unsigned int k, lim = bits/BITS_PER_LONG;
52 	for (k = 0; k < lim; ++k)
53 		if (bitmap1[k] != bitmap2[k])
54 			return 0;
55 
56 	if (bits % BITS_PER_LONG)
57 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 			return 0;
59 
60 	return 1;
61 }
62 EXPORT_SYMBOL(__bitmap_equal);
63 
64 bool __bitmap_or_equal(const unsigned long *bitmap1,
65 		       const unsigned long *bitmap2,
66 		       const unsigned long *bitmap3,
67 		       unsigned int bits)
68 {
69 	unsigned int k, lim = bits / BITS_PER_LONG;
70 	unsigned long tmp;
71 
72 	for (k = 0; k < lim; ++k) {
73 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
74 			return false;
75 	}
76 
77 	if (!(bits % BITS_PER_LONG))
78 		return true;
79 
80 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82 }
83 
84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
85 {
86 	unsigned int k, lim = BITS_TO_LONGS(bits);
87 	for (k = 0; k < lim; ++k)
88 		dst[k] = ~src[k];
89 }
90 EXPORT_SYMBOL(__bitmap_complement);
91 
92 /**
93  * __bitmap_shift_right - logical right shift of the bits in a bitmap
94  *   @dst : destination bitmap
95  *   @src : source bitmap
96  *   @shift : shift by this many bits
97  *   @nbits : bitmap size, in bits
98  *
99  * Shifting right (dividing) means moving bits in the MS -> LS bit
100  * direction.  Zeros are fed into the vacated MS positions and the
101  * LS bits shifted off the bottom are lost.
102  */
103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104 			unsigned shift, unsigned nbits)
105 {
106 	unsigned k, lim = BITS_TO_LONGS(nbits);
107 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
108 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
109 	for (k = 0; off + k < lim; ++k) {
110 		unsigned long upper, lower;
111 
112 		/*
113 		 * If shift is not word aligned, take lower rem bits of
114 		 * word above and make them the top rem bits of result.
115 		 */
116 		if (!rem || off + k + 1 >= lim)
117 			upper = 0;
118 		else {
119 			upper = src[off + k + 1];
120 			if (off + k + 1 == lim - 1)
121 				upper &= mask;
122 			upper <<= (BITS_PER_LONG - rem);
123 		}
124 		lower = src[off + k];
125 		if (off + k == lim - 1)
126 			lower &= mask;
127 		lower >>= rem;
128 		dst[k] = lower | upper;
129 	}
130 	if (off)
131 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
132 }
133 EXPORT_SYMBOL(__bitmap_shift_right);
134 
135 
136 /**
137  * __bitmap_shift_left - logical left shift of the bits in a bitmap
138  *   @dst : destination bitmap
139  *   @src : source bitmap
140  *   @shift : shift by this many bits
141  *   @nbits : bitmap size, in bits
142  *
143  * Shifting left (multiplying) means moving bits in the LS -> MS
144  * direction.  Zeros are fed into the vacated LS bit positions
145  * and those MS bits shifted off the top are lost.
146  */
147 
148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 			unsigned int shift, unsigned int nbits)
150 {
151 	int k;
152 	unsigned int lim = BITS_TO_LONGS(nbits);
153 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
154 	for (k = lim - off - 1; k >= 0; --k) {
155 		unsigned long upper, lower;
156 
157 		/*
158 		 * If shift is not word aligned, take upper rem bits of
159 		 * word below and make them the bottom rem bits of result.
160 		 */
161 		if (rem && k > 0)
162 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
163 		else
164 			lower = 0;
165 		upper = src[k] << rem;
166 		dst[k + off] = lower | upper;
167 	}
168 	if (off)
169 		memset(dst, 0, off*sizeof(unsigned long));
170 }
171 EXPORT_SYMBOL(__bitmap_shift_left);
172 
173 /**
174  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175  * @dst: destination bitmap, might overlap with src
176  * @src: source bitmap
177  * @first: start bit of region to be removed
178  * @cut: number of bits to remove
179  * @nbits: bitmap size, in bits
180  *
181  * Set the n-th bit of @dst iff the n-th bit of @src is set and
182  * n is less than @first, or the m-th bit of @src is set for any
183  * m such that @first <= n < nbits, and m = n + @cut.
184  *
185  * In pictures, example for a big-endian 32-bit architecture:
186  *
187  * The @src bitmap is::
188  *
189  *   31                                   63
190  *   |                                    |
191  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
192  *                   |  |              |                                    |
193  *                  16  14             0                                   32
194  *
195  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
196  *
197  *   31                                   63
198  *   |                                    |
199  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
200  *                      |              |                                    |
201  *                      14 (bit 17     0                                   32
202  *                          from @src)
203  *
204  * Note that @dst and @src might overlap partially or entirely.
205  *
206  * This is implemented in the obvious way, with a shift and carry
207  * step for each moved bit. Optimisation is left as an exercise
208  * for the compiler.
209  */
210 void bitmap_cut(unsigned long *dst, const unsigned long *src,
211 		unsigned int first, unsigned int cut, unsigned int nbits)
212 {
213 	unsigned int len = BITS_TO_LONGS(nbits);
214 	unsigned long keep = 0, carry;
215 	int i;
216 
217 	if (first % BITS_PER_LONG) {
218 		keep = src[first / BITS_PER_LONG] &
219 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220 	}
221 
222 	memmove(dst, src, len * sizeof(*dst));
223 
224 	while (cut--) {
225 		for (i = first / BITS_PER_LONG; i < len; i++) {
226 			if (i < len - 1)
227 				carry = dst[i + 1] & 1UL;
228 			else
229 				carry = 0;
230 
231 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
232 		}
233 	}
234 
235 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236 	dst[first / BITS_PER_LONG] |= keep;
237 }
238 EXPORT_SYMBOL(bitmap_cut);
239 
240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
241 				const unsigned long *bitmap2, unsigned int bits)
242 {
243 	unsigned int k;
244 	unsigned int lim = bits/BITS_PER_LONG;
245 	unsigned long result = 0;
246 
247 	for (k = 0; k < lim; k++)
248 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
249 	if (bits % BITS_PER_LONG)
250 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251 			   BITMAP_LAST_WORD_MASK(bits));
252 	return result != 0;
253 }
254 EXPORT_SYMBOL(__bitmap_and);
255 
256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
257 				const unsigned long *bitmap2, unsigned int bits)
258 {
259 	unsigned int k;
260 	unsigned int nr = BITS_TO_LONGS(bits);
261 
262 	for (k = 0; k < nr; k++)
263 		dst[k] = bitmap1[k] | bitmap2[k];
264 }
265 EXPORT_SYMBOL(__bitmap_or);
266 
267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
268 				const unsigned long *bitmap2, unsigned int bits)
269 {
270 	unsigned int k;
271 	unsigned int nr = BITS_TO_LONGS(bits);
272 
273 	for (k = 0; k < nr; k++)
274 		dst[k] = bitmap1[k] ^ bitmap2[k];
275 }
276 EXPORT_SYMBOL(__bitmap_xor);
277 
278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
279 				const unsigned long *bitmap2, unsigned int bits)
280 {
281 	unsigned int k;
282 	unsigned int lim = bits/BITS_PER_LONG;
283 	unsigned long result = 0;
284 
285 	for (k = 0; k < lim; k++)
286 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
287 	if (bits % BITS_PER_LONG)
288 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289 			   BITMAP_LAST_WORD_MASK(bits));
290 	return result != 0;
291 }
292 EXPORT_SYMBOL(__bitmap_andnot);
293 
294 void __bitmap_replace(unsigned long *dst,
295 		      const unsigned long *old, const unsigned long *new,
296 		      const unsigned long *mask, unsigned int nbits)
297 {
298 	unsigned int k;
299 	unsigned int nr = BITS_TO_LONGS(nbits);
300 
301 	for (k = 0; k < nr; k++)
302 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
303 }
304 EXPORT_SYMBOL(__bitmap_replace);
305 
306 int __bitmap_intersects(const unsigned long *bitmap1,
307 			const unsigned long *bitmap2, unsigned int bits)
308 {
309 	unsigned int k, lim = bits/BITS_PER_LONG;
310 	for (k = 0; k < lim; ++k)
311 		if (bitmap1[k] & bitmap2[k])
312 			return 1;
313 
314 	if (bits % BITS_PER_LONG)
315 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
316 			return 1;
317 	return 0;
318 }
319 EXPORT_SYMBOL(__bitmap_intersects);
320 
321 int __bitmap_subset(const unsigned long *bitmap1,
322 		    const unsigned long *bitmap2, unsigned int bits)
323 {
324 	unsigned int k, lim = bits/BITS_PER_LONG;
325 	for (k = 0; k < lim; ++k)
326 		if (bitmap1[k] & ~bitmap2[k])
327 			return 0;
328 
329 	if (bits % BITS_PER_LONG)
330 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
331 			return 0;
332 	return 1;
333 }
334 EXPORT_SYMBOL(__bitmap_subset);
335 
336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
337 {
338 	unsigned int k, lim = bits/BITS_PER_LONG;
339 	int w = 0;
340 
341 	for (k = 0; k < lim; k++)
342 		w += hweight_long(bitmap[k]);
343 
344 	if (bits % BITS_PER_LONG)
345 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
346 
347 	return w;
348 }
349 EXPORT_SYMBOL(__bitmap_weight);
350 
351 void __bitmap_set(unsigned long *map, unsigned int start, int len)
352 {
353 	unsigned long *p = map + BIT_WORD(start);
354 	const unsigned int size = start + len;
355 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357 
358 	while (len - bits_to_set >= 0) {
359 		*p |= mask_to_set;
360 		len -= bits_to_set;
361 		bits_to_set = BITS_PER_LONG;
362 		mask_to_set = ~0UL;
363 		p++;
364 	}
365 	if (len) {
366 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367 		*p |= mask_to_set;
368 	}
369 }
370 EXPORT_SYMBOL(__bitmap_set);
371 
372 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373 {
374 	unsigned long *p = map + BIT_WORD(start);
375 	const unsigned int size = start + len;
376 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378 
379 	while (len - bits_to_clear >= 0) {
380 		*p &= ~mask_to_clear;
381 		len -= bits_to_clear;
382 		bits_to_clear = BITS_PER_LONG;
383 		mask_to_clear = ~0UL;
384 		p++;
385 	}
386 	if (len) {
387 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388 		*p &= ~mask_to_clear;
389 	}
390 }
391 EXPORT_SYMBOL(__bitmap_clear);
392 
393 /**
394  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395  * @map: The address to base the search on
396  * @size: The bitmap size in bits
397  * @start: The bitnumber to start searching at
398  * @nr: The number of zeroed bits we're looking for
399  * @align_mask: Alignment mask for zero area
400  * @align_offset: Alignment offset for zero area.
401  *
402  * The @align_mask should be one less than a power of 2; the effect is that
403  * the bit offset of all zero areas this function finds plus @align_offset
404  * is multiple of that power of 2.
405  */
406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407 					     unsigned long size,
408 					     unsigned long start,
409 					     unsigned int nr,
410 					     unsigned long align_mask,
411 					     unsigned long align_offset)
412 {
413 	unsigned long index, end, i;
414 again:
415 	index = find_next_zero_bit(map, size, start);
416 
417 	/* Align allocation */
418 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419 
420 	end = index + nr;
421 	if (end > size)
422 		return end;
423 	i = find_next_bit(map, end, index);
424 	if (i < end) {
425 		start = i + 1;
426 		goto again;
427 	}
428 	return index;
429 }
430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431 
432 /*
433  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
434  * second version by Paul Jackson, third by Joe Korty.
435  */
436 
437 /**
438  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
439  *
440  * @ubuf: pointer to user buffer containing string.
441  * @ulen: buffer size in bytes.  If string is smaller than this
442  *    then it must be terminated with a \0.
443  * @maskp: pointer to bitmap array that will contain result.
444  * @nmaskbits: size of bitmap, in bits.
445  */
446 int bitmap_parse_user(const char __user *ubuf,
447 			unsigned int ulen, unsigned long *maskp,
448 			int nmaskbits)
449 {
450 	char *buf;
451 	int ret;
452 
453 	buf = memdup_user_nul(ubuf, ulen);
454 	if (IS_ERR(buf))
455 		return PTR_ERR(buf);
456 
457 	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
458 
459 	kfree(buf);
460 	return ret;
461 }
462 EXPORT_SYMBOL(bitmap_parse_user);
463 
464 /**
465  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
466  * @list: indicates whether the bitmap must be list
467  * @buf: page aligned buffer into which string is placed
468  * @maskp: pointer to bitmap to convert
469  * @nmaskbits: size of bitmap, in bits
470  *
471  * Output format is a comma-separated list of decimal numbers and
472  * ranges if list is specified or hex digits grouped into comma-separated
473  * sets of 8 digits/set. Returns the number of characters written to buf.
474  *
475  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
476  * area and that sufficient storage remains at @buf to accommodate the
477  * bitmap_print_to_pagebuf() output. Returns the number of characters
478  * actually printed to @buf, excluding terminating '\0'.
479  */
480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
481 			    int nmaskbits)
482 {
483 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
484 
485 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
486 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
487 }
488 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
489 
490 /*
491  * Region 9-38:4/10 describes the following bitmap structure:
492  * 0	   9  12    18			38	     N
493  * .........****......****......****..................
494  *	    ^  ^     ^			 ^	     ^
495  *      start  off   group_len	       end	 nbits
496  */
497 struct region {
498 	unsigned int start;
499 	unsigned int off;
500 	unsigned int group_len;
501 	unsigned int end;
502 	unsigned int nbits;
503 };
504 
505 static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
506 {
507 	unsigned int start;
508 
509 	for (start = r->start; start <= r->end; start += r->group_len)
510 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
511 }
512 
513 static int bitmap_check_region(const struct region *r)
514 {
515 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
516 		return -EINVAL;
517 
518 	if (r->end >= r->nbits)
519 		return -ERANGE;
520 
521 	return 0;
522 }
523 
524 static const char *bitmap_getnum(const char *str, unsigned int *num,
525 				 unsigned int lastbit)
526 {
527 	unsigned long long n;
528 	unsigned int len;
529 
530 	if (str[0] == 'N') {
531 		*num = lastbit;
532 		return str + 1;
533 	}
534 
535 	len = _parse_integer(str, 10, &n);
536 	if (!len)
537 		return ERR_PTR(-EINVAL);
538 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
539 		return ERR_PTR(-EOVERFLOW);
540 
541 	*num = n;
542 	return str + len;
543 }
544 
545 static inline bool end_of_str(char c)
546 {
547 	return c == '\0' || c == '\n';
548 }
549 
550 static inline bool __end_of_region(char c)
551 {
552 	return isspace(c) || c == ',';
553 }
554 
555 static inline bool end_of_region(char c)
556 {
557 	return __end_of_region(c) || end_of_str(c);
558 }
559 
560 /*
561  * The format allows commas and whitespaces at the beginning
562  * of the region.
563  */
564 static const char *bitmap_find_region(const char *str)
565 {
566 	while (__end_of_region(*str))
567 		str++;
568 
569 	return end_of_str(*str) ? NULL : str;
570 }
571 
572 static const char *bitmap_find_region_reverse(const char *start, const char *end)
573 {
574 	while (start <= end && __end_of_region(*end))
575 		end--;
576 
577 	return end;
578 }
579 
580 static const char *bitmap_parse_region(const char *str, struct region *r)
581 {
582 	unsigned int lastbit = r->nbits - 1;
583 
584 	if (!strncasecmp(str, "all", 3)) {
585 		r->start = 0;
586 		r->end = lastbit;
587 		str += 3;
588 
589 		goto check_pattern;
590 	}
591 
592 	str = bitmap_getnum(str, &r->start, lastbit);
593 	if (IS_ERR(str))
594 		return str;
595 
596 	if (end_of_region(*str))
597 		goto no_end;
598 
599 	if (*str != '-')
600 		return ERR_PTR(-EINVAL);
601 
602 	str = bitmap_getnum(str + 1, &r->end, lastbit);
603 	if (IS_ERR(str))
604 		return str;
605 
606 check_pattern:
607 	if (end_of_region(*str))
608 		goto no_pattern;
609 
610 	if (*str != ':')
611 		return ERR_PTR(-EINVAL);
612 
613 	str = bitmap_getnum(str + 1, &r->off, lastbit);
614 	if (IS_ERR(str))
615 		return str;
616 
617 	if (*str != '/')
618 		return ERR_PTR(-EINVAL);
619 
620 	return bitmap_getnum(str + 1, &r->group_len, lastbit);
621 
622 no_end:
623 	r->end = r->start;
624 no_pattern:
625 	r->off = r->end + 1;
626 	r->group_len = r->end + 1;
627 
628 	return end_of_str(*str) ? NULL : str;
629 }
630 
631 /**
632  * bitmap_parselist - convert list format ASCII string to bitmap
633  * @buf: read user string from this buffer; must be terminated
634  *    with a \0 or \n.
635  * @maskp: write resulting mask here
636  * @nmaskbits: number of bits in mask to be written
637  *
638  * Input format is a comma-separated list of decimal numbers and
639  * ranges.  Consecutively set bits are shown as two hyphen-separated
640  * decimal numbers, the smallest and largest bit numbers set in
641  * the range.
642  * Optionally each range can be postfixed to denote that only parts of it
643  * should be set. The range will divided to groups of specific size.
644  * From each group will be used only defined amount of bits.
645  * Syntax: range:used_size/group_size
646  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
647  * The value 'N' can be used as a dynamically substituted token for the
648  * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
649  * dynamic, so if system changes cause the bitmap width to change, such
650  * as more cores in a CPU list, then any ranges using N will also change.
651  *
652  * Returns: 0 on success, -errno on invalid input strings. Error values:
653  *
654  *   - ``-EINVAL``: wrong region format
655  *   - ``-EINVAL``: invalid character in string
656  *   - ``-ERANGE``: bit number specified too large for mask
657  *   - ``-EOVERFLOW``: integer overflow in the input parameters
658  */
659 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
660 {
661 	struct region r;
662 	long ret;
663 
664 	r.nbits = nmaskbits;
665 	bitmap_zero(maskp, r.nbits);
666 
667 	while (buf) {
668 		buf = bitmap_find_region(buf);
669 		if (buf == NULL)
670 			return 0;
671 
672 		buf = bitmap_parse_region(buf, &r);
673 		if (IS_ERR(buf))
674 			return PTR_ERR(buf);
675 
676 		ret = bitmap_check_region(&r);
677 		if (ret)
678 			return ret;
679 
680 		bitmap_set_region(&r, maskp);
681 	}
682 
683 	return 0;
684 }
685 EXPORT_SYMBOL(bitmap_parselist);
686 
687 
688 /**
689  * bitmap_parselist_user()
690  *
691  * @ubuf: pointer to user buffer containing string.
692  * @ulen: buffer size in bytes.  If string is smaller than this
693  *    then it must be terminated with a \0.
694  * @maskp: pointer to bitmap array that will contain result.
695  * @nmaskbits: size of bitmap, in bits.
696  *
697  * Wrapper for bitmap_parselist(), providing it with user buffer.
698  */
699 int bitmap_parselist_user(const char __user *ubuf,
700 			unsigned int ulen, unsigned long *maskp,
701 			int nmaskbits)
702 {
703 	char *buf;
704 	int ret;
705 
706 	buf = memdup_user_nul(ubuf, ulen);
707 	if (IS_ERR(buf))
708 		return PTR_ERR(buf);
709 
710 	ret = bitmap_parselist(buf, maskp, nmaskbits);
711 
712 	kfree(buf);
713 	return ret;
714 }
715 EXPORT_SYMBOL(bitmap_parselist_user);
716 
717 static const char *bitmap_get_x32_reverse(const char *start,
718 					const char *end, u32 *num)
719 {
720 	u32 ret = 0;
721 	int c, i;
722 
723 	for (i = 0; i < 32; i += 4) {
724 		c = hex_to_bin(*end--);
725 		if (c < 0)
726 			return ERR_PTR(-EINVAL);
727 
728 		ret |= c << i;
729 
730 		if (start > end || __end_of_region(*end))
731 			goto out;
732 	}
733 
734 	if (hex_to_bin(*end--) >= 0)
735 		return ERR_PTR(-EOVERFLOW);
736 out:
737 	*num = ret;
738 	return end;
739 }
740 
741 /**
742  * bitmap_parse - convert an ASCII hex string into a bitmap.
743  * @start: pointer to buffer containing string.
744  * @buflen: buffer size in bytes.  If string is smaller than this
745  *    then it must be terminated with a \0 or \n. In that case,
746  *    UINT_MAX may be provided instead of string length.
747  * @maskp: pointer to bitmap array that will contain result.
748  * @nmaskbits: size of bitmap, in bits.
749  *
750  * Commas group hex digits into chunks.  Each chunk defines exactly 32
751  * bits of the resultant bitmask.  No chunk may specify a value larger
752  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
753  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
754  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
755  * Leading, embedded and trailing whitespace accepted.
756  */
757 int bitmap_parse(const char *start, unsigned int buflen,
758 		unsigned long *maskp, int nmaskbits)
759 {
760 	const char *end = strnchrnul(start, buflen, '\n') - 1;
761 	int chunks = BITS_TO_U32(nmaskbits);
762 	u32 *bitmap = (u32 *)maskp;
763 	int unset_bit;
764 	int chunk;
765 
766 	for (chunk = 0; ; chunk++) {
767 		end = bitmap_find_region_reverse(start, end);
768 		if (start > end)
769 			break;
770 
771 		if (!chunks--)
772 			return -EOVERFLOW;
773 
774 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
775 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
776 #else
777 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
778 #endif
779 		if (IS_ERR(end))
780 			return PTR_ERR(end);
781 	}
782 
783 	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
784 	if (unset_bit < nmaskbits) {
785 		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
786 		return 0;
787 	}
788 
789 	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
790 		return -EOVERFLOW;
791 
792 	return 0;
793 }
794 EXPORT_SYMBOL(bitmap_parse);
795 
796 /**
797  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
798  *	@buf: pointer to a bitmap
799  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
800  *	@nbits: number of valid bit positions in @buf
801  *
802  * Map the bit at position @pos in @buf (of length @nbits) to the
803  * ordinal of which set bit it is.  If it is not set or if @pos
804  * is not a valid bit position, map to -1.
805  *
806  * If for example, just bits 4 through 7 are set in @buf, then @pos
807  * values 4 through 7 will get mapped to 0 through 3, respectively,
808  * and other @pos values will get mapped to -1.  When @pos value 7
809  * gets mapped to (returns) @ord value 3 in this example, that means
810  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
811  *
812  * The bit positions 0 through @bits are valid positions in @buf.
813  */
814 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
815 {
816 	if (pos >= nbits || !test_bit(pos, buf))
817 		return -1;
818 
819 	return __bitmap_weight(buf, pos);
820 }
821 
822 /**
823  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
824  *	@buf: pointer to bitmap
825  *	@ord: ordinal bit position (n-th set bit, n >= 0)
826  *	@nbits: number of valid bit positions in @buf
827  *
828  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
829  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
830  * >= weight(buf), returns @nbits.
831  *
832  * If for example, just bits 4 through 7 are set in @buf, then @ord
833  * values 0 through 3 will get mapped to 4 through 7, respectively,
834  * and all other @ord values returns @nbits.  When @ord value 3
835  * gets mapped to (returns) @pos value 7 in this example, that means
836  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
837  *
838  * The bit positions 0 through @nbits-1 are valid positions in @buf.
839  */
840 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
841 {
842 	unsigned int pos;
843 
844 	for (pos = find_first_bit(buf, nbits);
845 	     pos < nbits && ord;
846 	     pos = find_next_bit(buf, nbits, pos + 1))
847 		ord--;
848 
849 	return pos;
850 }
851 
852 /**
853  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
854  *	@dst: remapped result
855  *	@src: subset to be remapped
856  *	@old: defines domain of map
857  *	@new: defines range of map
858  *	@nbits: number of bits in each of these bitmaps
859  *
860  * Let @old and @new define a mapping of bit positions, such that
861  * whatever position is held by the n-th set bit in @old is mapped
862  * to the n-th set bit in @new.  In the more general case, allowing
863  * for the possibility that the weight 'w' of @new is less than the
864  * weight of @old, map the position of the n-th set bit in @old to
865  * the position of the m-th set bit in @new, where m == n % w.
866  *
867  * If either of the @old and @new bitmaps are empty, or if @src and
868  * @dst point to the same location, then this routine copies @src
869  * to @dst.
870  *
871  * The positions of unset bits in @old are mapped to themselves
872  * (the identify map).
873  *
874  * Apply the above specified mapping to @src, placing the result in
875  * @dst, clearing any bits previously set in @dst.
876  *
877  * For example, lets say that @old has bits 4 through 7 set, and
878  * @new has bits 12 through 15 set.  This defines the mapping of bit
879  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
880  * bit positions unchanged.  So if say @src comes into this routine
881  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
882  * 13 and 15 set.
883  */
884 void bitmap_remap(unsigned long *dst, const unsigned long *src,
885 		const unsigned long *old, const unsigned long *new,
886 		unsigned int nbits)
887 {
888 	unsigned int oldbit, w;
889 
890 	if (dst == src)		/* following doesn't handle inplace remaps */
891 		return;
892 	bitmap_zero(dst, nbits);
893 
894 	w = bitmap_weight(new, nbits);
895 	for_each_set_bit(oldbit, src, nbits) {
896 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
897 
898 		if (n < 0 || w == 0)
899 			set_bit(oldbit, dst);	/* identity map */
900 		else
901 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
902 	}
903 }
904 EXPORT_SYMBOL(bitmap_remap);
905 
906 /**
907  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
908  *	@oldbit: bit position to be mapped
909  *	@old: defines domain of map
910  *	@new: defines range of map
911  *	@bits: number of bits in each of these bitmaps
912  *
913  * Let @old and @new define a mapping of bit positions, such that
914  * whatever position is held by the n-th set bit in @old is mapped
915  * to the n-th set bit in @new.  In the more general case, allowing
916  * for the possibility that the weight 'w' of @new is less than the
917  * weight of @old, map the position of the n-th set bit in @old to
918  * the position of the m-th set bit in @new, where m == n % w.
919  *
920  * The positions of unset bits in @old are mapped to themselves
921  * (the identify map).
922  *
923  * Apply the above specified mapping to bit position @oldbit, returning
924  * the new bit position.
925  *
926  * For example, lets say that @old has bits 4 through 7 set, and
927  * @new has bits 12 through 15 set.  This defines the mapping of bit
928  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
929  * bit positions unchanged.  So if say @oldbit is 5, then this routine
930  * returns 13.
931  */
932 int bitmap_bitremap(int oldbit, const unsigned long *old,
933 				const unsigned long *new, int bits)
934 {
935 	int w = bitmap_weight(new, bits);
936 	int n = bitmap_pos_to_ord(old, oldbit, bits);
937 	if (n < 0 || w == 0)
938 		return oldbit;
939 	else
940 		return bitmap_ord_to_pos(new, n % w, bits);
941 }
942 EXPORT_SYMBOL(bitmap_bitremap);
943 
944 #ifdef CONFIG_NUMA
945 /**
946  * bitmap_onto - translate one bitmap relative to another
947  *	@dst: resulting translated bitmap
948  * 	@orig: original untranslated bitmap
949  * 	@relmap: bitmap relative to which translated
950  *	@bits: number of bits in each of these bitmaps
951  *
952  * Set the n-th bit of @dst iff there exists some m such that the
953  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
954  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
955  * (If you understood the previous sentence the first time your
956  * read it, you're overqualified for your current job.)
957  *
958  * In other words, @orig is mapped onto (surjectively) @dst,
959  * using the map { <n, m> | the n-th bit of @relmap is the
960  * m-th set bit of @relmap }.
961  *
962  * Any set bits in @orig above bit number W, where W is the
963  * weight of (number of set bits in) @relmap are mapped nowhere.
964  * In particular, if for all bits m set in @orig, m >= W, then
965  * @dst will end up empty.  In situations where the possibility
966  * of such an empty result is not desired, one way to avoid it is
967  * to use the bitmap_fold() operator, below, to first fold the
968  * @orig bitmap over itself so that all its set bits x are in the
969  * range 0 <= x < W.  The bitmap_fold() operator does this by
970  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
971  *
972  * Example [1] for bitmap_onto():
973  *  Let's say @relmap has bits 30-39 set, and @orig has bits
974  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
975  *  @dst will have bits 31, 33, 35, 37 and 39 set.
976  *
977  *  When bit 0 is set in @orig, it means turn on the bit in
978  *  @dst corresponding to whatever is the first bit (if any)
979  *  that is turned on in @relmap.  Since bit 0 was off in the
980  *  above example, we leave off that bit (bit 30) in @dst.
981  *
982  *  When bit 1 is set in @orig (as in the above example), it
983  *  means turn on the bit in @dst corresponding to whatever
984  *  is the second bit that is turned on in @relmap.  The second
985  *  bit in @relmap that was turned on in the above example was
986  *  bit 31, so we turned on bit 31 in @dst.
987  *
988  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
989  *  because they were the 4th, 6th, 8th and 10th set bits
990  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
991  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
992  *
993  *  When bit 11 is set in @orig, it means turn on the bit in
994  *  @dst corresponding to whatever is the twelfth bit that is
995  *  turned on in @relmap.  In the above example, there were
996  *  only ten bits turned on in @relmap (30..39), so that bit
997  *  11 was set in @orig had no affect on @dst.
998  *
999  * Example [2] for bitmap_fold() + bitmap_onto():
1000  *  Let's say @relmap has these ten bits set::
1001  *
1002  *		40 41 42 43 45 48 53 61 74 95
1003  *
1004  *  (for the curious, that's 40 plus the first ten terms of the
1005  *  Fibonacci sequence.)
1006  *
1007  *  Further lets say we use the following code, invoking
1008  *  bitmap_fold() then bitmap_onto, as suggested above to
1009  *  avoid the possibility of an empty @dst result::
1010  *
1011  *	unsigned long *tmp;	// a temporary bitmap's bits
1012  *
1013  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1014  *	bitmap_onto(dst, tmp, relmap, bits);
1015  *
1016  *  Then this table shows what various values of @dst would be, for
1017  *  various @orig's.  I list the zero-based positions of each set bit.
1018  *  The tmp column shows the intermediate result, as computed by
1019  *  using bitmap_fold() to fold the @orig bitmap modulo ten
1020  *  (the weight of @relmap):
1021  *
1022  *      =============== ============== =================
1023  *      @orig           tmp            @dst
1024  *      0                0             40
1025  *      1                1             41
1026  *      9                9             95
1027  *      10               0             40 [#f1]_
1028  *      1 3 5 7          1 3 5 7       41 43 48 61
1029  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1030  *      0 9 18 27        0 9 8 7       40 61 74 95
1031  *      0 10 20 30       0             40
1032  *      0 11 22 33       0 1 2 3       40 41 42 43
1033  *      0 12 24 36       0 2 4 6       40 42 45 53
1034  *      78 102 211       1 2 8         41 42 74 [#f1]_
1035  *      =============== ============== =================
1036  *
1037  * .. [#f1]
1038  *
1039  *     For these marked lines, if we hadn't first done bitmap_fold()
1040  *     into tmp, then the @dst result would have been empty.
1041  *
1042  * If either of @orig or @relmap is empty (no set bits), then @dst
1043  * will be returned empty.
1044  *
1045  * If (as explained above) the only set bits in @orig are in positions
1046  * m where m >= W, (where W is the weight of @relmap) then @dst will
1047  * once again be returned empty.
1048  *
1049  * All bits in @dst not set by the above rule are cleared.
1050  */
1051 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1052 			const unsigned long *relmap, unsigned int bits)
1053 {
1054 	unsigned int n, m;	/* same meaning as in above comment */
1055 
1056 	if (dst == orig)	/* following doesn't handle inplace mappings */
1057 		return;
1058 	bitmap_zero(dst, bits);
1059 
1060 	/*
1061 	 * The following code is a more efficient, but less
1062 	 * obvious, equivalent to the loop:
1063 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1064 	 *		n = bitmap_ord_to_pos(orig, m, bits);
1065 	 *		if (test_bit(m, orig))
1066 	 *			set_bit(n, dst);
1067 	 *	}
1068 	 */
1069 
1070 	m = 0;
1071 	for_each_set_bit(n, relmap, bits) {
1072 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1073 		if (test_bit(m, orig))
1074 			set_bit(n, dst);
1075 		m++;
1076 	}
1077 }
1078 
1079 /**
1080  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1081  *	@dst: resulting smaller bitmap
1082  *	@orig: original larger bitmap
1083  *	@sz: specified size
1084  *	@nbits: number of bits in each of these bitmaps
1085  *
1086  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1087  * Clear all other bits in @dst.  See further the comment and
1088  * Example [2] for bitmap_onto() for why and how to use this.
1089  */
1090 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1091 			unsigned int sz, unsigned int nbits)
1092 {
1093 	unsigned int oldbit;
1094 
1095 	if (dst == orig)	/* following doesn't handle inplace mappings */
1096 		return;
1097 	bitmap_zero(dst, nbits);
1098 
1099 	for_each_set_bit(oldbit, orig, nbits)
1100 		set_bit(oldbit % sz, dst);
1101 }
1102 #endif /* CONFIG_NUMA */
1103 
1104 /*
1105  * Common code for bitmap_*_region() routines.
1106  *	bitmap: array of unsigned longs corresponding to the bitmap
1107  *	pos: the beginning of the region
1108  *	order: region size (log base 2 of number of bits)
1109  *	reg_op: operation(s) to perform on that region of bitmap
1110  *
1111  * Can set, verify and/or release a region of bits in a bitmap,
1112  * depending on which combination of REG_OP_* flag bits is set.
1113  *
1114  * A region of a bitmap is a sequence of bits in the bitmap, of
1115  * some size '1 << order' (a power of two), aligned to that same
1116  * '1 << order' power of two.
1117  *
1118  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1119  * Returns 0 in all other cases and reg_ops.
1120  */
1121 
1122 enum {
1123 	REG_OP_ISFREE,		/* true if region is all zero bits */
1124 	REG_OP_ALLOC,		/* set all bits in region */
1125 	REG_OP_RELEASE,		/* clear all bits in region */
1126 };
1127 
1128 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1129 {
1130 	int nbits_reg;		/* number of bits in region */
1131 	int index;		/* index first long of region in bitmap */
1132 	int offset;		/* bit offset region in bitmap[index] */
1133 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1134 	int nbitsinlong;	/* num bits of region in each spanned long */
1135 	unsigned long mask;	/* bitmask for one long of region */
1136 	int i;			/* scans bitmap by longs */
1137 	int ret = 0;		/* return value */
1138 
1139 	/*
1140 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1141 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1142 	 */
1143 	nbits_reg = 1 << order;
1144 	index = pos / BITS_PER_LONG;
1145 	offset = pos - (index * BITS_PER_LONG);
1146 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1147 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1148 
1149 	/*
1150 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1151 	 * overflows if nbitsinlong == BITS_PER_LONG.
1152 	 */
1153 	mask = (1UL << (nbitsinlong - 1));
1154 	mask += mask - 1;
1155 	mask <<= offset;
1156 
1157 	switch (reg_op) {
1158 	case REG_OP_ISFREE:
1159 		for (i = 0; i < nlongs_reg; i++) {
1160 			if (bitmap[index + i] & mask)
1161 				goto done;
1162 		}
1163 		ret = 1;	/* all bits in region free (zero) */
1164 		break;
1165 
1166 	case REG_OP_ALLOC:
1167 		for (i = 0; i < nlongs_reg; i++)
1168 			bitmap[index + i] |= mask;
1169 		break;
1170 
1171 	case REG_OP_RELEASE:
1172 		for (i = 0; i < nlongs_reg; i++)
1173 			bitmap[index + i] &= ~mask;
1174 		break;
1175 	}
1176 done:
1177 	return ret;
1178 }
1179 
1180 /**
1181  * bitmap_find_free_region - find a contiguous aligned mem region
1182  *	@bitmap: array of unsigned longs corresponding to the bitmap
1183  *	@bits: number of bits in the bitmap
1184  *	@order: region size (log base 2 of number of bits) to find
1185  *
1186  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1187  * allocate them (set them to one).  Only consider regions of length
1188  * a power (@order) of two, aligned to that power of two, which
1189  * makes the search algorithm much faster.
1190  *
1191  * Return the bit offset in bitmap of the allocated region,
1192  * or -errno on failure.
1193  */
1194 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1195 {
1196 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1197 
1198 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1199 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1200 			continue;
1201 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1202 		return pos;
1203 	}
1204 	return -ENOMEM;
1205 }
1206 EXPORT_SYMBOL(bitmap_find_free_region);
1207 
1208 /**
1209  * bitmap_release_region - release allocated bitmap region
1210  *	@bitmap: array of unsigned longs corresponding to the bitmap
1211  *	@pos: beginning of bit region to release
1212  *	@order: region size (log base 2 of number of bits) to release
1213  *
1214  * This is the complement to __bitmap_find_free_region() and releases
1215  * the found region (by clearing it in the bitmap).
1216  *
1217  * No return value.
1218  */
1219 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1220 {
1221 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1222 }
1223 EXPORT_SYMBOL(bitmap_release_region);
1224 
1225 /**
1226  * bitmap_allocate_region - allocate bitmap region
1227  *	@bitmap: array of unsigned longs corresponding to the bitmap
1228  *	@pos: beginning of bit region to allocate
1229  *	@order: region size (log base 2 of number of bits) to allocate
1230  *
1231  * Allocate (set bits in) a specified region of a bitmap.
1232  *
1233  * Return 0 on success, or %-EBUSY if specified region wasn't
1234  * free (not all bits were zero).
1235  */
1236 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1237 {
1238 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1239 		return -EBUSY;
1240 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1241 }
1242 EXPORT_SYMBOL(bitmap_allocate_region);
1243 
1244 /**
1245  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1246  * @dst:   destination buffer
1247  * @src:   bitmap to copy
1248  * @nbits: number of bits in the bitmap
1249  *
1250  * Require nbits % BITS_PER_LONG == 0.
1251  */
1252 #ifdef __BIG_ENDIAN
1253 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1254 {
1255 	unsigned int i;
1256 
1257 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1258 		if (BITS_PER_LONG == 64)
1259 			dst[i] = cpu_to_le64(src[i]);
1260 		else
1261 			dst[i] = cpu_to_le32(src[i]);
1262 	}
1263 }
1264 EXPORT_SYMBOL(bitmap_copy_le);
1265 #endif
1266 
1267 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1268 {
1269 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1270 			     flags);
1271 }
1272 EXPORT_SYMBOL(bitmap_alloc);
1273 
1274 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1275 {
1276 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1277 }
1278 EXPORT_SYMBOL(bitmap_zalloc);
1279 
1280 void bitmap_free(const unsigned long *bitmap)
1281 {
1282 	kfree(bitmap);
1283 }
1284 EXPORT_SYMBOL(bitmap_free);
1285 
1286 static void devm_bitmap_free(void *data)
1287 {
1288 	unsigned long *bitmap = data;
1289 
1290 	bitmap_free(bitmap);
1291 }
1292 
1293 unsigned long *devm_bitmap_alloc(struct device *dev,
1294 				 unsigned int nbits, gfp_t flags)
1295 {
1296 	unsigned long *bitmap;
1297 	int ret;
1298 
1299 	bitmap = bitmap_alloc(nbits, flags);
1300 	if (!bitmap)
1301 		return NULL;
1302 
1303 	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1304 	if (ret)
1305 		return NULL;
1306 
1307 	return bitmap;
1308 }
1309 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1310 
1311 unsigned long *devm_bitmap_zalloc(struct device *dev,
1312 				  unsigned int nbits, gfp_t flags)
1313 {
1314 	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1315 }
1316 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1317 
1318 #if BITS_PER_LONG == 64
1319 /**
1320  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1321  *	@bitmap: array of unsigned longs, the destination bitmap
1322  *	@buf: array of u32 (in host byte order), the source bitmap
1323  *	@nbits: number of bits in @bitmap
1324  */
1325 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1326 {
1327 	unsigned int i, halfwords;
1328 
1329 	halfwords = DIV_ROUND_UP(nbits, 32);
1330 	for (i = 0; i < halfwords; i++) {
1331 		bitmap[i/2] = (unsigned long) buf[i];
1332 		if (++i < halfwords)
1333 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1334 	}
1335 
1336 	/* Clear tail bits in last word beyond nbits. */
1337 	if (nbits % BITS_PER_LONG)
1338 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1339 }
1340 EXPORT_SYMBOL(bitmap_from_arr32);
1341 
1342 /**
1343  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1344  *	@buf: array of u32 (in host byte order), the dest bitmap
1345  *	@bitmap: array of unsigned longs, the source bitmap
1346  *	@nbits: number of bits in @bitmap
1347  */
1348 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1349 {
1350 	unsigned int i, halfwords;
1351 
1352 	halfwords = DIV_ROUND_UP(nbits, 32);
1353 	for (i = 0; i < halfwords; i++) {
1354 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1355 		if (++i < halfwords)
1356 			buf[i] = (u32) (bitmap[i/2] >> 32);
1357 	}
1358 
1359 	/* Clear tail bits in last element of array beyond nbits. */
1360 	if (nbits % BITS_PER_LONG)
1361 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1362 }
1363 EXPORT_SYMBOL(bitmap_to_arr32);
1364 
1365 #endif
1366