xref: /openbmc/linux/lib/bitmap.c (revision c1d2ba10)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/ctype.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/thread_info.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/page.h>
22 
23 #include "kstrtox.h"
24 
25 /**
26  * DOC: bitmap introduction
27  *
28  * bitmaps provide an array of bits, implemented using an
29  * array of unsigned longs.  The number of valid bits in a
30  * given bitmap does _not_ need to be an exact multiple of
31  * BITS_PER_LONG.
32  *
33  * The possible unused bits in the last, partially used word
34  * of a bitmap are 'don't care'.  The implementation makes
35  * no particular effort to keep them zero.  It ensures that
36  * their value will not affect the results of any operation.
37  * The bitmap operations that return Boolean (bitmap_empty,
38  * for example) or scalar (bitmap_weight, for example) results
39  * carefully filter out these unused bits from impacting their
40  * results.
41  *
42  * The byte ordering of bitmaps is more natural on little
43  * endian architectures.  See the big-endian headers
44  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45  * for the best explanations of this ordering.
46  */
47 
__bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)48 bool __bitmap_equal(const unsigned long *bitmap1,
49 		    const unsigned long *bitmap2, unsigned int bits)
50 {
51 	unsigned int k, lim = bits/BITS_PER_LONG;
52 	for (k = 0; k < lim; ++k)
53 		if (bitmap1[k] != bitmap2[k])
54 			return false;
55 
56 	if (bits % BITS_PER_LONG)
57 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 			return false;
59 
60 	return true;
61 }
62 EXPORT_SYMBOL(__bitmap_equal);
63 
__bitmap_or_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,const unsigned long * bitmap3,unsigned int bits)64 bool __bitmap_or_equal(const unsigned long *bitmap1,
65 		       const unsigned long *bitmap2,
66 		       const unsigned long *bitmap3,
67 		       unsigned int bits)
68 {
69 	unsigned int k, lim = bits / BITS_PER_LONG;
70 	unsigned long tmp;
71 
72 	for (k = 0; k < lim; ++k) {
73 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
74 			return false;
75 	}
76 
77 	if (!(bits % BITS_PER_LONG))
78 		return true;
79 
80 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82 }
83 
__bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
85 {
86 	unsigned int k, lim = BITS_TO_LONGS(bits);
87 	for (k = 0; k < lim; ++k)
88 		dst[k] = ~src[k];
89 }
90 EXPORT_SYMBOL(__bitmap_complement);
91 
92 /**
93  * __bitmap_shift_right - logical right shift of the bits in a bitmap
94  *   @dst : destination bitmap
95  *   @src : source bitmap
96  *   @shift : shift by this many bits
97  *   @nbits : bitmap size, in bits
98  *
99  * Shifting right (dividing) means moving bits in the MS -> LS bit
100  * direction.  Zeros are fed into the vacated MS positions and the
101  * LS bits shifted off the bottom are lost.
102  */
__bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned shift,unsigned nbits)103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104 			unsigned shift, unsigned nbits)
105 {
106 	unsigned k, lim = BITS_TO_LONGS(nbits);
107 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
108 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
109 	for (k = 0; off + k < lim; ++k) {
110 		unsigned long upper, lower;
111 
112 		/*
113 		 * If shift is not word aligned, take lower rem bits of
114 		 * word above and make them the top rem bits of result.
115 		 */
116 		if (!rem || off + k + 1 >= lim)
117 			upper = 0;
118 		else {
119 			upper = src[off + k + 1];
120 			if (off + k + 1 == lim - 1)
121 				upper &= mask;
122 			upper <<= (BITS_PER_LONG - rem);
123 		}
124 		lower = src[off + k];
125 		if (off + k == lim - 1)
126 			lower &= mask;
127 		lower >>= rem;
128 		dst[k] = lower | upper;
129 	}
130 	if (off)
131 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
132 }
133 EXPORT_SYMBOL(__bitmap_shift_right);
134 
135 
136 /**
137  * __bitmap_shift_left - logical left shift of the bits in a bitmap
138  *   @dst : destination bitmap
139  *   @src : source bitmap
140  *   @shift : shift by this many bits
141  *   @nbits : bitmap size, in bits
142  *
143  * Shifting left (multiplying) means moving bits in the LS -> MS
144  * direction.  Zeros are fed into the vacated LS bit positions
145  * and those MS bits shifted off the top are lost.
146  */
147 
__bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 			unsigned int shift, unsigned int nbits)
150 {
151 	int k;
152 	unsigned int lim = BITS_TO_LONGS(nbits);
153 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
154 	for (k = lim - off - 1; k >= 0; --k) {
155 		unsigned long upper, lower;
156 
157 		/*
158 		 * If shift is not word aligned, take upper rem bits of
159 		 * word below and make them the bottom rem bits of result.
160 		 */
161 		if (rem && k > 0)
162 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
163 		else
164 			lower = 0;
165 		upper = src[k] << rem;
166 		dst[k + off] = lower | upper;
167 	}
168 	if (off)
169 		memset(dst, 0, off*sizeof(unsigned long));
170 }
171 EXPORT_SYMBOL(__bitmap_shift_left);
172 
173 /**
174  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175  * @dst: destination bitmap, might overlap with src
176  * @src: source bitmap
177  * @first: start bit of region to be removed
178  * @cut: number of bits to remove
179  * @nbits: bitmap size, in bits
180  *
181  * Set the n-th bit of @dst iff the n-th bit of @src is set and
182  * n is less than @first, or the m-th bit of @src is set for any
183  * m such that @first <= n < nbits, and m = n + @cut.
184  *
185  * In pictures, example for a big-endian 32-bit architecture:
186  *
187  * The @src bitmap is::
188  *
189  *   31                                   63
190  *   |                                    |
191  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
192  *                   |  |              |                                    |
193  *                  16  14             0                                   32
194  *
195  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
196  *
197  *   31                                   63
198  *   |                                    |
199  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
200  *                      |              |                                    |
201  *                      14 (bit 17     0                                   32
202  *                          from @src)
203  *
204  * Note that @dst and @src might overlap partially or entirely.
205  *
206  * This is implemented in the obvious way, with a shift and carry
207  * step for each moved bit. Optimisation is left as an exercise
208  * for the compiler.
209  */
bitmap_cut(unsigned long * dst,const unsigned long * src,unsigned int first,unsigned int cut,unsigned int nbits)210 void bitmap_cut(unsigned long *dst, const unsigned long *src,
211 		unsigned int first, unsigned int cut, unsigned int nbits)
212 {
213 	unsigned int len = BITS_TO_LONGS(nbits);
214 	unsigned long keep = 0, carry;
215 	int i;
216 
217 	if (first % BITS_PER_LONG) {
218 		keep = src[first / BITS_PER_LONG] &
219 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220 	}
221 
222 	memmove(dst, src, len * sizeof(*dst));
223 
224 	while (cut--) {
225 		for (i = first / BITS_PER_LONG; i < len; i++) {
226 			if (i < len - 1)
227 				carry = dst[i + 1] & 1UL;
228 			else
229 				carry = 0;
230 
231 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
232 		}
233 	}
234 
235 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236 	dst[first / BITS_PER_LONG] |= keep;
237 }
238 EXPORT_SYMBOL(bitmap_cut);
239 
__bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)240 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
241 				const unsigned long *bitmap2, unsigned int bits)
242 {
243 	unsigned int k;
244 	unsigned int lim = bits/BITS_PER_LONG;
245 	unsigned long result = 0;
246 
247 	for (k = 0; k < lim; k++)
248 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
249 	if (bits % BITS_PER_LONG)
250 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251 			   BITMAP_LAST_WORD_MASK(bits));
252 	return result != 0;
253 }
254 EXPORT_SYMBOL(__bitmap_and);
255 
__bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
257 				const unsigned long *bitmap2, unsigned int bits)
258 {
259 	unsigned int k;
260 	unsigned int nr = BITS_TO_LONGS(bits);
261 
262 	for (k = 0; k < nr; k++)
263 		dst[k] = bitmap1[k] | bitmap2[k];
264 }
265 EXPORT_SYMBOL(__bitmap_or);
266 
__bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
268 				const unsigned long *bitmap2, unsigned int bits)
269 {
270 	unsigned int k;
271 	unsigned int nr = BITS_TO_LONGS(bits);
272 
273 	for (k = 0; k < nr; k++)
274 		dst[k] = bitmap1[k] ^ bitmap2[k];
275 }
276 EXPORT_SYMBOL(__bitmap_xor);
277 
__bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)278 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
279 				const unsigned long *bitmap2, unsigned int bits)
280 {
281 	unsigned int k;
282 	unsigned int lim = bits/BITS_PER_LONG;
283 	unsigned long result = 0;
284 
285 	for (k = 0; k < lim; k++)
286 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
287 	if (bits % BITS_PER_LONG)
288 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289 			   BITMAP_LAST_WORD_MASK(bits));
290 	return result != 0;
291 }
292 EXPORT_SYMBOL(__bitmap_andnot);
293 
__bitmap_replace(unsigned long * dst,const unsigned long * old,const unsigned long * new,const unsigned long * mask,unsigned int nbits)294 void __bitmap_replace(unsigned long *dst,
295 		      const unsigned long *old, const unsigned long *new,
296 		      const unsigned long *mask, unsigned int nbits)
297 {
298 	unsigned int k;
299 	unsigned int nr = BITS_TO_LONGS(nbits);
300 
301 	for (k = 0; k < nr; k++)
302 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
303 }
304 EXPORT_SYMBOL(__bitmap_replace);
305 
__bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)306 bool __bitmap_intersects(const unsigned long *bitmap1,
307 			 const unsigned long *bitmap2, unsigned int bits)
308 {
309 	unsigned int k, lim = bits/BITS_PER_LONG;
310 	for (k = 0; k < lim; ++k)
311 		if (bitmap1[k] & bitmap2[k])
312 			return true;
313 
314 	if (bits % BITS_PER_LONG)
315 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
316 			return true;
317 	return false;
318 }
319 EXPORT_SYMBOL(__bitmap_intersects);
320 
__bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)321 bool __bitmap_subset(const unsigned long *bitmap1,
322 		     const unsigned long *bitmap2, unsigned int bits)
323 {
324 	unsigned int k, lim = bits/BITS_PER_LONG;
325 	for (k = 0; k < lim; ++k)
326 		if (bitmap1[k] & ~bitmap2[k])
327 			return false;
328 
329 	if (bits % BITS_PER_LONG)
330 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
331 			return false;
332 	return true;
333 }
334 EXPORT_SYMBOL(__bitmap_subset);
335 
336 #define BITMAP_WEIGHT(FETCH, bits)	\
337 ({										\
338 	unsigned int __bits = (bits), idx, w = 0;				\
339 										\
340 	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
341 		w += hweight_long(FETCH);					\
342 										\
343 	if (__bits % BITS_PER_LONG)						\
344 		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
345 										\
346 	w;									\
347 })
348 
__bitmap_weight(const unsigned long * bitmap,unsigned int bits)349 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
350 {
351 	return BITMAP_WEIGHT(bitmap[idx], bits);
352 }
353 EXPORT_SYMBOL(__bitmap_weight);
354 
__bitmap_weight_and(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)355 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
356 				const unsigned long *bitmap2, unsigned int bits)
357 {
358 	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
359 }
360 EXPORT_SYMBOL(__bitmap_weight_and);
361 
__bitmap_set(unsigned long * map,unsigned int start,int len)362 void __bitmap_set(unsigned long *map, unsigned int start, int len)
363 {
364 	unsigned long *p = map + BIT_WORD(start);
365 	const unsigned int size = start + len;
366 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
367 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
368 
369 	while (len - bits_to_set >= 0) {
370 		*p |= mask_to_set;
371 		len -= bits_to_set;
372 		bits_to_set = BITS_PER_LONG;
373 		mask_to_set = ~0UL;
374 		p++;
375 	}
376 	if (len) {
377 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
378 		*p |= mask_to_set;
379 	}
380 }
381 EXPORT_SYMBOL(__bitmap_set);
382 
__bitmap_clear(unsigned long * map,unsigned int start,int len)383 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
384 {
385 	unsigned long *p = map + BIT_WORD(start);
386 	const unsigned int size = start + len;
387 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
388 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
389 
390 	while (len - bits_to_clear >= 0) {
391 		*p &= ~mask_to_clear;
392 		len -= bits_to_clear;
393 		bits_to_clear = BITS_PER_LONG;
394 		mask_to_clear = ~0UL;
395 		p++;
396 	}
397 	if (len) {
398 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
399 		*p &= ~mask_to_clear;
400 	}
401 }
402 EXPORT_SYMBOL(__bitmap_clear);
403 
404 /**
405  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
406  * @map: The address to base the search on
407  * @size: The bitmap size in bits
408  * @start: The bitnumber to start searching at
409  * @nr: The number of zeroed bits we're looking for
410  * @align_mask: Alignment mask for zero area
411  * @align_offset: Alignment offset for zero area.
412  *
413  * The @align_mask should be one less than a power of 2; the effect is that
414  * the bit offset of all zero areas this function finds plus @align_offset
415  * is multiple of that power of 2.
416  */
bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)417 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
418 					     unsigned long size,
419 					     unsigned long start,
420 					     unsigned int nr,
421 					     unsigned long align_mask,
422 					     unsigned long align_offset)
423 {
424 	unsigned long index, end, i;
425 again:
426 	index = find_next_zero_bit(map, size, start);
427 
428 	/* Align allocation */
429 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
430 
431 	end = index + nr;
432 	if (end > size)
433 		return end;
434 	i = find_next_bit(map, end, index);
435 	if (i < end) {
436 		start = i + 1;
437 		goto again;
438 	}
439 	return index;
440 }
441 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
442 
443 /*
444  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
445  * second version by Paul Jackson, third by Joe Korty.
446  */
447 
448 /**
449  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
450  *
451  * @ubuf: pointer to user buffer containing string.
452  * @ulen: buffer size in bytes.  If string is smaller than this
453  *    then it must be terminated with a \0.
454  * @maskp: pointer to bitmap array that will contain result.
455  * @nmaskbits: size of bitmap, in bits.
456  */
bitmap_parse_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)457 int bitmap_parse_user(const char __user *ubuf,
458 			unsigned int ulen, unsigned long *maskp,
459 			int nmaskbits)
460 {
461 	char *buf;
462 	int ret;
463 
464 	buf = memdup_user_nul(ubuf, ulen);
465 	if (IS_ERR(buf))
466 		return PTR_ERR(buf);
467 
468 	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
469 
470 	kfree(buf);
471 	return ret;
472 }
473 EXPORT_SYMBOL(bitmap_parse_user);
474 
475 /**
476  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
477  * @list: indicates whether the bitmap must be list
478  * @buf: page aligned buffer into which string is placed
479  * @maskp: pointer to bitmap to convert
480  * @nmaskbits: size of bitmap, in bits
481  *
482  * Output format is a comma-separated list of decimal numbers and
483  * ranges if list is specified or hex digits grouped into comma-separated
484  * sets of 8 digits/set. Returns the number of characters written to buf.
485  *
486  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
487  * area and that sufficient storage remains at @buf to accommodate the
488  * bitmap_print_to_pagebuf() output. Returns the number of characters
489  * actually printed to @buf, excluding terminating '\0'.
490  */
bitmap_print_to_pagebuf(bool list,char * buf,const unsigned long * maskp,int nmaskbits)491 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
492 			    int nmaskbits)
493 {
494 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
495 
496 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
497 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
498 }
499 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
500 
501 /**
502  * bitmap_print_to_buf  - convert bitmap to list or hex format ASCII string
503  * @list: indicates whether the bitmap must be list
504  *      true:  print in decimal list format
505  *      false: print in hexadecimal bitmask format
506  * @buf: buffer into which string is placed
507  * @maskp: pointer to bitmap to convert
508  * @nmaskbits: size of bitmap, in bits
509  * @off: in the string from which we are copying, We copy to @buf
510  * @count: the maximum number of bytes to print
511  */
bitmap_print_to_buf(bool list,char * buf,const unsigned long * maskp,int nmaskbits,loff_t off,size_t count)512 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
513 		int nmaskbits, loff_t off, size_t count)
514 {
515 	const char *fmt = list ? "%*pbl\n" : "%*pb\n";
516 	ssize_t size;
517 	void *data;
518 
519 	data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
520 	if (!data)
521 		return -ENOMEM;
522 
523 	size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
524 	kfree(data);
525 
526 	return size;
527 }
528 
529 /**
530  * bitmap_print_bitmask_to_buf  - convert bitmap to hex bitmask format ASCII string
531  * @buf: buffer into which string is placed
532  * @maskp: pointer to bitmap to convert
533  * @nmaskbits: size of bitmap, in bits
534  * @off: in the string from which we are copying, We copy to @buf
535  * @count: the maximum number of bytes to print
536  *
537  * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
538  * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
539  * bitmask and decimal list to userspace by sysfs ABI.
540  * Drivers might be using a normal attribute for this kind of ABIs. A
541  * normal attribute typically has show entry as below::
542  *
543  *   static ssize_t example_attribute_show(struct device *dev,
544  * 		struct device_attribute *attr, char *buf)
545  *   {
546  * 	...
547  * 	return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
548  *   }
549  *
550  * show entry of attribute has no offset and count parameters and this
551  * means the file is limited to one page only.
552  * bitmap_print_to_pagebuf() API works terribly well for this kind of
553  * normal attribute with buf parameter and without offset, count::
554  *
555  *   bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
556  * 			   int nmaskbits)
557  *   {
558  *   }
559  *
560  * The problem is once we have a large bitmap, we have a chance to get a
561  * bitmask or list more than one page. Especially for list, it could be
562  * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
563  * It turns out bin_attribute is a way to break this limit. bin_attribute
564  * has show entry as below::
565  *
566  *   static ssize_t
567  *   example_bin_attribute_show(struct file *filp, struct kobject *kobj,
568  * 		struct bin_attribute *attr, char *buf,
569  * 		loff_t offset, size_t count)
570  *   {
571  * 	...
572  *   }
573  *
574  * With the new offset and count parameters, this makes sysfs ABI be able
575  * to support file size more than one page. For example, offset could be
576  * >= 4096.
577  * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
578  * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
579  * make those drivers be able to support large bitmask and list after they
580  * move to use bin_attribute. In result, we have to pass the corresponding
581  * parameters such as off, count from bin_attribute show entry to this API.
582  *
583  * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
584  * is similar with cpumap_print_to_pagebuf(),  the difference is that
585  * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
586  * the destination buffer is exactly one page and won't be more than one page.
587  * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
588  * hand, mainly serves bin_attribute which doesn't work with exact one page,
589  * and it can break the size limit of converted decimal list and hexadecimal
590  * bitmask.
591  *
592  * WARNING!
593  *
594  * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
595  * It is intended to workaround sysfs limitations discussed above and should be
596  * used carefully in general case for the following reasons:
597  *
598  *  - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
599  *  - Memory complexity is O(nbits), comparing to O(1) for snprintf().
600  *  - @off and @count are NOT offset and number of bits to print.
601  *  - If printing part of bitmap as list, the resulting string is not a correct
602  *    list representation of bitmap. Particularly, some bits within or out of
603  *    related interval may be erroneously set or unset. The format of the string
604  *    may be broken, so bitmap_parselist-like parser may fail parsing it.
605  *  - If printing the whole bitmap as list by parts, user must ensure the order
606  *    of calls of the function such that the offset is incremented linearly.
607  *  - If printing the whole bitmap as list by parts, user must keep bitmap
608  *    unchanged between the very first and very last call. Otherwise concatenated
609  *    result may be incorrect, and format may be broken.
610  *
611  * Returns the number of characters actually printed to @buf
612  */
bitmap_print_bitmask_to_buf(char * buf,const unsigned long * maskp,int nmaskbits,loff_t off,size_t count)613 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
614 				int nmaskbits, loff_t off, size_t count)
615 {
616 	return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
617 }
618 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
619 
620 /**
621  * bitmap_print_list_to_buf  - convert bitmap to decimal list format ASCII string
622  * @buf: buffer into which string is placed
623  * @maskp: pointer to bitmap to convert
624  * @nmaskbits: size of bitmap, in bits
625  * @off: in the string from which we are copying, We copy to @buf
626  * @count: the maximum number of bytes to print
627  *
628  * Everything is same with the above bitmap_print_bitmask_to_buf() except
629  * the print format.
630  */
bitmap_print_list_to_buf(char * buf,const unsigned long * maskp,int nmaskbits,loff_t off,size_t count)631 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
632 			     int nmaskbits, loff_t off, size_t count)
633 {
634 	return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
635 }
636 EXPORT_SYMBOL(bitmap_print_list_to_buf);
637 
638 /*
639  * Region 9-38:4/10 describes the following bitmap structure:
640  * 0	   9  12    18			38	     N
641  * .........****......****......****..................
642  *	    ^  ^     ^			 ^	     ^
643  *      start  off   group_len	       end	 nbits
644  */
645 struct region {
646 	unsigned int start;
647 	unsigned int off;
648 	unsigned int group_len;
649 	unsigned int end;
650 	unsigned int nbits;
651 };
652 
bitmap_set_region(const struct region * r,unsigned long * bitmap)653 static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
654 {
655 	unsigned int start;
656 
657 	for (start = r->start; start <= r->end; start += r->group_len)
658 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
659 }
660 
bitmap_check_region(const struct region * r)661 static int bitmap_check_region(const struct region *r)
662 {
663 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
664 		return -EINVAL;
665 
666 	if (r->end >= r->nbits)
667 		return -ERANGE;
668 
669 	return 0;
670 }
671 
bitmap_getnum(const char * str,unsigned int * num,unsigned int lastbit)672 static const char *bitmap_getnum(const char *str, unsigned int *num,
673 				 unsigned int lastbit)
674 {
675 	unsigned long long n;
676 	unsigned int len;
677 
678 	if (str[0] == 'N') {
679 		*num = lastbit;
680 		return str + 1;
681 	}
682 
683 	len = _parse_integer(str, 10, &n);
684 	if (!len)
685 		return ERR_PTR(-EINVAL);
686 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
687 		return ERR_PTR(-EOVERFLOW);
688 
689 	*num = n;
690 	return str + len;
691 }
692 
end_of_str(char c)693 static inline bool end_of_str(char c)
694 {
695 	return c == '\0' || c == '\n';
696 }
697 
__end_of_region(char c)698 static inline bool __end_of_region(char c)
699 {
700 	return isspace(c) || c == ',';
701 }
702 
end_of_region(char c)703 static inline bool end_of_region(char c)
704 {
705 	return __end_of_region(c) || end_of_str(c);
706 }
707 
708 /*
709  * The format allows commas and whitespaces at the beginning
710  * of the region.
711  */
bitmap_find_region(const char * str)712 static const char *bitmap_find_region(const char *str)
713 {
714 	while (__end_of_region(*str))
715 		str++;
716 
717 	return end_of_str(*str) ? NULL : str;
718 }
719 
bitmap_find_region_reverse(const char * start,const char * end)720 static const char *bitmap_find_region_reverse(const char *start, const char *end)
721 {
722 	while (start <= end && __end_of_region(*end))
723 		end--;
724 
725 	return end;
726 }
727 
bitmap_parse_region(const char * str,struct region * r)728 static const char *bitmap_parse_region(const char *str, struct region *r)
729 {
730 	unsigned int lastbit = r->nbits - 1;
731 
732 	if (!strncasecmp(str, "all", 3)) {
733 		r->start = 0;
734 		r->end = lastbit;
735 		str += 3;
736 
737 		goto check_pattern;
738 	}
739 
740 	str = bitmap_getnum(str, &r->start, lastbit);
741 	if (IS_ERR(str))
742 		return str;
743 
744 	if (end_of_region(*str))
745 		goto no_end;
746 
747 	if (*str != '-')
748 		return ERR_PTR(-EINVAL);
749 
750 	str = bitmap_getnum(str + 1, &r->end, lastbit);
751 	if (IS_ERR(str))
752 		return str;
753 
754 check_pattern:
755 	if (end_of_region(*str))
756 		goto no_pattern;
757 
758 	if (*str != ':')
759 		return ERR_PTR(-EINVAL);
760 
761 	str = bitmap_getnum(str + 1, &r->off, lastbit);
762 	if (IS_ERR(str))
763 		return str;
764 
765 	if (*str != '/')
766 		return ERR_PTR(-EINVAL);
767 
768 	return bitmap_getnum(str + 1, &r->group_len, lastbit);
769 
770 no_end:
771 	r->end = r->start;
772 no_pattern:
773 	r->off = r->end + 1;
774 	r->group_len = r->end + 1;
775 
776 	return end_of_str(*str) ? NULL : str;
777 }
778 
779 /**
780  * bitmap_parselist - convert list format ASCII string to bitmap
781  * @buf: read user string from this buffer; must be terminated
782  *    with a \0 or \n.
783  * @maskp: write resulting mask here
784  * @nmaskbits: number of bits in mask to be written
785  *
786  * Input format is a comma-separated list of decimal numbers and
787  * ranges.  Consecutively set bits are shown as two hyphen-separated
788  * decimal numbers, the smallest and largest bit numbers set in
789  * the range.
790  * Optionally each range can be postfixed to denote that only parts of it
791  * should be set. The range will divided to groups of specific size.
792  * From each group will be used only defined amount of bits.
793  * Syntax: range:used_size/group_size
794  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
795  * The value 'N' can be used as a dynamically substituted token for the
796  * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
797  * dynamic, so if system changes cause the bitmap width to change, such
798  * as more cores in a CPU list, then any ranges using N will also change.
799  *
800  * Returns: 0 on success, -errno on invalid input strings. Error values:
801  *
802  *   - ``-EINVAL``: wrong region format
803  *   - ``-EINVAL``: invalid character in string
804  *   - ``-ERANGE``: bit number specified too large for mask
805  *   - ``-EOVERFLOW``: integer overflow in the input parameters
806  */
bitmap_parselist(const char * buf,unsigned long * maskp,int nmaskbits)807 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
808 {
809 	struct region r;
810 	long ret;
811 
812 	r.nbits = nmaskbits;
813 	bitmap_zero(maskp, r.nbits);
814 
815 	while (buf) {
816 		buf = bitmap_find_region(buf);
817 		if (buf == NULL)
818 			return 0;
819 
820 		buf = bitmap_parse_region(buf, &r);
821 		if (IS_ERR(buf))
822 			return PTR_ERR(buf);
823 
824 		ret = bitmap_check_region(&r);
825 		if (ret)
826 			return ret;
827 
828 		bitmap_set_region(&r, maskp);
829 	}
830 
831 	return 0;
832 }
833 EXPORT_SYMBOL(bitmap_parselist);
834 
835 
836 /**
837  * bitmap_parselist_user() - convert user buffer's list format ASCII
838  * string to bitmap
839  *
840  * @ubuf: pointer to user buffer containing string.
841  * @ulen: buffer size in bytes.  If string is smaller than this
842  *    then it must be terminated with a \0.
843  * @maskp: pointer to bitmap array that will contain result.
844  * @nmaskbits: size of bitmap, in bits.
845  *
846  * Wrapper for bitmap_parselist(), providing it with user buffer.
847  */
bitmap_parselist_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)848 int bitmap_parselist_user(const char __user *ubuf,
849 			unsigned int ulen, unsigned long *maskp,
850 			int nmaskbits)
851 {
852 	char *buf;
853 	int ret;
854 
855 	buf = memdup_user_nul(ubuf, ulen);
856 	if (IS_ERR(buf))
857 		return PTR_ERR(buf);
858 
859 	ret = bitmap_parselist(buf, maskp, nmaskbits);
860 
861 	kfree(buf);
862 	return ret;
863 }
864 EXPORT_SYMBOL(bitmap_parselist_user);
865 
bitmap_get_x32_reverse(const char * start,const char * end,u32 * num)866 static const char *bitmap_get_x32_reverse(const char *start,
867 					const char *end, u32 *num)
868 {
869 	u32 ret = 0;
870 	int c, i;
871 
872 	for (i = 0; i < 32; i += 4) {
873 		c = hex_to_bin(*end--);
874 		if (c < 0)
875 			return ERR_PTR(-EINVAL);
876 
877 		ret |= c << i;
878 
879 		if (start > end || __end_of_region(*end))
880 			goto out;
881 	}
882 
883 	if (hex_to_bin(*end--) >= 0)
884 		return ERR_PTR(-EOVERFLOW);
885 out:
886 	*num = ret;
887 	return end;
888 }
889 
890 /**
891  * bitmap_parse - convert an ASCII hex string into a bitmap.
892  * @start: pointer to buffer containing string.
893  * @buflen: buffer size in bytes.  If string is smaller than this
894  *    then it must be terminated with a \0 or \n. In that case,
895  *    UINT_MAX may be provided instead of string length.
896  * @maskp: pointer to bitmap array that will contain result.
897  * @nmaskbits: size of bitmap, in bits.
898  *
899  * Commas group hex digits into chunks.  Each chunk defines exactly 32
900  * bits of the resultant bitmask.  No chunk may specify a value larger
901  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
902  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
903  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
904  * Leading, embedded and trailing whitespace accepted.
905  */
bitmap_parse(const char * start,unsigned int buflen,unsigned long * maskp,int nmaskbits)906 int bitmap_parse(const char *start, unsigned int buflen,
907 		unsigned long *maskp, int nmaskbits)
908 {
909 	const char *end = strnchrnul(start, buflen, '\n') - 1;
910 	int chunks = BITS_TO_U32(nmaskbits);
911 	u32 *bitmap = (u32 *)maskp;
912 	int unset_bit;
913 	int chunk;
914 
915 	for (chunk = 0; ; chunk++) {
916 		end = bitmap_find_region_reverse(start, end);
917 		if (start > end)
918 			break;
919 
920 		if (!chunks--)
921 			return -EOVERFLOW;
922 
923 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
924 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
925 #else
926 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
927 #endif
928 		if (IS_ERR(end))
929 			return PTR_ERR(end);
930 	}
931 
932 	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
933 	if (unset_bit < nmaskbits) {
934 		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
935 		return 0;
936 	}
937 
938 	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
939 		return -EOVERFLOW;
940 
941 	return 0;
942 }
943 EXPORT_SYMBOL(bitmap_parse);
944 
945 /**
946  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
947  *	@buf: pointer to a bitmap
948  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
949  *	@nbits: number of valid bit positions in @buf
950  *
951  * Map the bit at position @pos in @buf (of length @nbits) to the
952  * ordinal of which set bit it is.  If it is not set or if @pos
953  * is not a valid bit position, map to -1.
954  *
955  * If for example, just bits 4 through 7 are set in @buf, then @pos
956  * values 4 through 7 will get mapped to 0 through 3, respectively,
957  * and other @pos values will get mapped to -1.  When @pos value 7
958  * gets mapped to (returns) @ord value 3 in this example, that means
959  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
960  *
961  * The bit positions 0 through @bits are valid positions in @buf.
962  */
bitmap_pos_to_ord(const unsigned long * buf,unsigned int pos,unsigned int nbits)963 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
964 {
965 	if (pos >= nbits || !test_bit(pos, buf))
966 		return -1;
967 
968 	return bitmap_weight(buf, pos);
969 }
970 
971 /**
972  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
973  *	@dst: remapped result
974  *	@src: subset to be remapped
975  *	@old: defines domain of map
976  *	@new: defines range of map
977  *	@nbits: number of bits in each of these bitmaps
978  *
979  * Let @old and @new define a mapping of bit positions, such that
980  * whatever position is held by the n-th set bit in @old is mapped
981  * to the n-th set bit in @new.  In the more general case, allowing
982  * for the possibility that the weight 'w' of @new is less than the
983  * weight of @old, map the position of the n-th set bit in @old to
984  * the position of the m-th set bit in @new, where m == n % w.
985  *
986  * If either of the @old and @new bitmaps are empty, or if @src and
987  * @dst point to the same location, then this routine copies @src
988  * to @dst.
989  *
990  * The positions of unset bits in @old are mapped to themselves
991  * (the identify map).
992  *
993  * Apply the above specified mapping to @src, placing the result in
994  * @dst, clearing any bits previously set in @dst.
995  *
996  * For example, lets say that @old has bits 4 through 7 set, and
997  * @new has bits 12 through 15 set.  This defines the mapping of bit
998  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
999  * bit positions unchanged.  So if say @src comes into this routine
1000  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
1001  * 13 and 15 set.
1002  */
bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,unsigned int nbits)1003 void bitmap_remap(unsigned long *dst, const unsigned long *src,
1004 		const unsigned long *old, const unsigned long *new,
1005 		unsigned int nbits)
1006 {
1007 	unsigned int oldbit, w;
1008 
1009 	if (dst == src)		/* following doesn't handle inplace remaps */
1010 		return;
1011 	bitmap_zero(dst, nbits);
1012 
1013 	w = bitmap_weight(new, nbits);
1014 	for_each_set_bit(oldbit, src, nbits) {
1015 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
1016 
1017 		if (n < 0 || w == 0)
1018 			set_bit(oldbit, dst);	/* identity map */
1019 		else
1020 			set_bit(find_nth_bit(new, nbits, n % w), dst);
1021 	}
1022 }
1023 EXPORT_SYMBOL(bitmap_remap);
1024 
1025 /**
1026  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
1027  *	@oldbit: bit position to be mapped
1028  *	@old: defines domain of map
1029  *	@new: defines range of map
1030  *	@bits: number of bits in each of these bitmaps
1031  *
1032  * Let @old and @new define a mapping of bit positions, such that
1033  * whatever position is held by the n-th set bit in @old is mapped
1034  * to the n-th set bit in @new.  In the more general case, allowing
1035  * for the possibility that the weight 'w' of @new is less than the
1036  * weight of @old, map the position of the n-th set bit in @old to
1037  * the position of the m-th set bit in @new, where m == n % w.
1038  *
1039  * The positions of unset bits in @old are mapped to themselves
1040  * (the identify map).
1041  *
1042  * Apply the above specified mapping to bit position @oldbit, returning
1043  * the new bit position.
1044  *
1045  * For example, lets say that @old has bits 4 through 7 set, and
1046  * @new has bits 12 through 15 set.  This defines the mapping of bit
1047  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1048  * bit positions unchanged.  So if say @oldbit is 5, then this routine
1049  * returns 13.
1050  */
bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)1051 int bitmap_bitremap(int oldbit, const unsigned long *old,
1052 				const unsigned long *new, int bits)
1053 {
1054 	int w = bitmap_weight(new, bits);
1055 	int n = bitmap_pos_to_ord(old, oldbit, bits);
1056 	if (n < 0 || w == 0)
1057 		return oldbit;
1058 	else
1059 		return find_nth_bit(new, bits, n % w);
1060 }
1061 EXPORT_SYMBOL(bitmap_bitremap);
1062 
1063 #ifdef CONFIG_NUMA
1064 /**
1065  * bitmap_onto - translate one bitmap relative to another
1066  *	@dst: resulting translated bitmap
1067  * 	@orig: original untranslated bitmap
1068  * 	@relmap: bitmap relative to which translated
1069  *	@bits: number of bits in each of these bitmaps
1070  *
1071  * Set the n-th bit of @dst iff there exists some m such that the
1072  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
1073  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
1074  * (If you understood the previous sentence the first time your
1075  * read it, you're overqualified for your current job.)
1076  *
1077  * In other words, @orig is mapped onto (surjectively) @dst,
1078  * using the map { <n, m> | the n-th bit of @relmap is the
1079  * m-th set bit of @relmap }.
1080  *
1081  * Any set bits in @orig above bit number W, where W is the
1082  * weight of (number of set bits in) @relmap are mapped nowhere.
1083  * In particular, if for all bits m set in @orig, m >= W, then
1084  * @dst will end up empty.  In situations where the possibility
1085  * of such an empty result is not desired, one way to avoid it is
1086  * to use the bitmap_fold() operator, below, to first fold the
1087  * @orig bitmap over itself so that all its set bits x are in the
1088  * range 0 <= x < W.  The bitmap_fold() operator does this by
1089  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
1090  *
1091  * Example [1] for bitmap_onto():
1092  *  Let's say @relmap has bits 30-39 set, and @orig has bits
1093  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
1094  *  @dst will have bits 31, 33, 35, 37 and 39 set.
1095  *
1096  *  When bit 0 is set in @orig, it means turn on the bit in
1097  *  @dst corresponding to whatever is the first bit (if any)
1098  *  that is turned on in @relmap.  Since bit 0 was off in the
1099  *  above example, we leave off that bit (bit 30) in @dst.
1100  *
1101  *  When bit 1 is set in @orig (as in the above example), it
1102  *  means turn on the bit in @dst corresponding to whatever
1103  *  is the second bit that is turned on in @relmap.  The second
1104  *  bit in @relmap that was turned on in the above example was
1105  *  bit 31, so we turned on bit 31 in @dst.
1106  *
1107  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
1108  *  because they were the 4th, 6th, 8th and 10th set bits
1109  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
1110  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
1111  *
1112  *  When bit 11 is set in @orig, it means turn on the bit in
1113  *  @dst corresponding to whatever is the twelfth bit that is
1114  *  turned on in @relmap.  In the above example, there were
1115  *  only ten bits turned on in @relmap (30..39), so that bit
1116  *  11 was set in @orig had no affect on @dst.
1117  *
1118  * Example [2] for bitmap_fold() + bitmap_onto():
1119  *  Let's say @relmap has these ten bits set::
1120  *
1121  *		40 41 42 43 45 48 53 61 74 95
1122  *
1123  *  (for the curious, that's 40 plus the first ten terms of the
1124  *  Fibonacci sequence.)
1125  *
1126  *  Further lets say we use the following code, invoking
1127  *  bitmap_fold() then bitmap_onto, as suggested above to
1128  *  avoid the possibility of an empty @dst result::
1129  *
1130  *	unsigned long *tmp;	// a temporary bitmap's bits
1131  *
1132  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1133  *	bitmap_onto(dst, tmp, relmap, bits);
1134  *
1135  *  Then this table shows what various values of @dst would be, for
1136  *  various @orig's.  I list the zero-based positions of each set bit.
1137  *  The tmp column shows the intermediate result, as computed by
1138  *  using bitmap_fold() to fold the @orig bitmap modulo ten
1139  *  (the weight of @relmap):
1140  *
1141  *      =============== ============== =================
1142  *      @orig           tmp            @dst
1143  *      0                0             40
1144  *      1                1             41
1145  *      9                9             95
1146  *      10               0             40 [#f1]_
1147  *      1 3 5 7          1 3 5 7       41 43 48 61
1148  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1149  *      0 9 18 27        0 9 8 7       40 61 74 95
1150  *      0 10 20 30       0             40
1151  *      0 11 22 33       0 1 2 3       40 41 42 43
1152  *      0 12 24 36       0 2 4 6       40 42 45 53
1153  *      78 102 211       1 2 8         41 42 74 [#f1]_
1154  *      =============== ============== =================
1155  *
1156  * .. [#f1]
1157  *
1158  *     For these marked lines, if we hadn't first done bitmap_fold()
1159  *     into tmp, then the @dst result would have been empty.
1160  *
1161  * If either of @orig or @relmap is empty (no set bits), then @dst
1162  * will be returned empty.
1163  *
1164  * If (as explained above) the only set bits in @orig are in positions
1165  * m where m >= W, (where W is the weight of @relmap) then @dst will
1166  * once again be returned empty.
1167  *
1168  * All bits in @dst not set by the above rule are cleared.
1169  */
bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,unsigned int bits)1170 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1171 			const unsigned long *relmap, unsigned int bits)
1172 {
1173 	unsigned int n, m;	/* same meaning as in above comment */
1174 
1175 	if (dst == orig)	/* following doesn't handle inplace mappings */
1176 		return;
1177 	bitmap_zero(dst, bits);
1178 
1179 	/*
1180 	 * The following code is a more efficient, but less
1181 	 * obvious, equivalent to the loop:
1182 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1183 	 *		n = find_nth_bit(orig, bits, m);
1184 	 *		if (test_bit(m, orig))
1185 	 *			set_bit(n, dst);
1186 	 *	}
1187 	 */
1188 
1189 	m = 0;
1190 	for_each_set_bit(n, relmap, bits) {
1191 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1192 		if (test_bit(m, orig))
1193 			set_bit(n, dst);
1194 		m++;
1195 	}
1196 }
1197 
1198 /**
1199  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1200  *	@dst: resulting smaller bitmap
1201  *	@orig: original larger bitmap
1202  *	@sz: specified size
1203  *	@nbits: number of bits in each of these bitmaps
1204  *
1205  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1206  * Clear all other bits in @dst.  See further the comment and
1207  * Example [2] for bitmap_onto() for why and how to use this.
1208  */
bitmap_fold(unsigned long * dst,const unsigned long * orig,unsigned int sz,unsigned int nbits)1209 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1210 			unsigned int sz, unsigned int nbits)
1211 {
1212 	unsigned int oldbit;
1213 
1214 	if (dst == orig)	/* following doesn't handle inplace mappings */
1215 		return;
1216 	bitmap_zero(dst, nbits);
1217 
1218 	for_each_set_bit(oldbit, orig, nbits)
1219 		set_bit(oldbit % sz, dst);
1220 }
1221 #endif /* CONFIG_NUMA */
1222 
1223 /*
1224  * Common code for bitmap_*_region() routines.
1225  *	bitmap: array of unsigned longs corresponding to the bitmap
1226  *	pos: the beginning of the region
1227  *	order: region size (log base 2 of number of bits)
1228  *	reg_op: operation(s) to perform on that region of bitmap
1229  *
1230  * Can set, verify and/or release a region of bits in a bitmap,
1231  * depending on which combination of REG_OP_* flag bits is set.
1232  *
1233  * A region of a bitmap is a sequence of bits in the bitmap, of
1234  * some size '1 << order' (a power of two), aligned to that same
1235  * '1 << order' power of two.
1236  *
1237  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1238  * Returns 0 in all other cases and reg_ops.
1239  */
1240 
1241 enum {
1242 	REG_OP_ISFREE,		/* true if region is all zero bits */
1243 	REG_OP_ALLOC,		/* set all bits in region */
1244 	REG_OP_RELEASE,		/* clear all bits in region */
1245 };
1246 
__reg_op(unsigned long * bitmap,unsigned int pos,int order,int reg_op)1247 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1248 {
1249 	int nbits_reg;		/* number of bits in region */
1250 	int index;		/* index first long of region in bitmap */
1251 	int offset;		/* bit offset region in bitmap[index] */
1252 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1253 	int nbitsinlong;	/* num bits of region in each spanned long */
1254 	unsigned long mask;	/* bitmask for one long of region */
1255 	int i;			/* scans bitmap by longs */
1256 	int ret = 0;		/* return value */
1257 
1258 	/*
1259 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1260 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1261 	 */
1262 	nbits_reg = 1 << order;
1263 	index = pos / BITS_PER_LONG;
1264 	offset = pos - (index * BITS_PER_LONG);
1265 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1266 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1267 
1268 	/*
1269 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1270 	 * overflows if nbitsinlong == BITS_PER_LONG.
1271 	 */
1272 	mask = (1UL << (nbitsinlong - 1));
1273 	mask += mask - 1;
1274 	mask <<= offset;
1275 
1276 	switch (reg_op) {
1277 	case REG_OP_ISFREE:
1278 		for (i = 0; i < nlongs_reg; i++) {
1279 			if (bitmap[index + i] & mask)
1280 				goto done;
1281 		}
1282 		ret = 1;	/* all bits in region free (zero) */
1283 		break;
1284 
1285 	case REG_OP_ALLOC:
1286 		for (i = 0; i < nlongs_reg; i++)
1287 			bitmap[index + i] |= mask;
1288 		break;
1289 
1290 	case REG_OP_RELEASE:
1291 		for (i = 0; i < nlongs_reg; i++)
1292 			bitmap[index + i] &= ~mask;
1293 		break;
1294 	}
1295 done:
1296 	return ret;
1297 }
1298 
1299 /**
1300  * bitmap_find_free_region - find a contiguous aligned mem region
1301  *	@bitmap: array of unsigned longs corresponding to the bitmap
1302  *	@bits: number of bits in the bitmap
1303  *	@order: region size (log base 2 of number of bits) to find
1304  *
1305  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1306  * allocate them (set them to one).  Only consider regions of length
1307  * a power (@order) of two, aligned to that power of two, which
1308  * makes the search algorithm much faster.
1309  *
1310  * Return the bit offset in bitmap of the allocated region,
1311  * or -errno on failure.
1312  */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)1313 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1314 {
1315 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1316 
1317 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1318 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1319 			continue;
1320 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1321 		return pos;
1322 	}
1323 	return -ENOMEM;
1324 }
1325 EXPORT_SYMBOL(bitmap_find_free_region);
1326 
1327 /**
1328  * bitmap_release_region - release allocated bitmap region
1329  *	@bitmap: array of unsigned longs corresponding to the bitmap
1330  *	@pos: beginning of bit region to release
1331  *	@order: region size (log base 2 of number of bits) to release
1332  *
1333  * This is the complement to __bitmap_find_free_region() and releases
1334  * the found region (by clearing it in the bitmap).
1335  *
1336  * No return value.
1337  */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)1338 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1339 {
1340 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1341 }
1342 EXPORT_SYMBOL(bitmap_release_region);
1343 
1344 /**
1345  * bitmap_allocate_region - allocate bitmap region
1346  *	@bitmap: array of unsigned longs corresponding to the bitmap
1347  *	@pos: beginning of bit region to allocate
1348  *	@order: region size (log base 2 of number of bits) to allocate
1349  *
1350  * Allocate (set bits in) a specified region of a bitmap.
1351  *
1352  * Return 0 on success, or %-EBUSY if specified region wasn't
1353  * free (not all bits were zero).
1354  */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)1355 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1356 {
1357 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1358 		return -EBUSY;
1359 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1360 }
1361 EXPORT_SYMBOL(bitmap_allocate_region);
1362 
1363 /**
1364  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1365  * @dst:   destination buffer
1366  * @src:   bitmap to copy
1367  * @nbits: number of bits in the bitmap
1368  *
1369  * Require nbits % BITS_PER_LONG == 0.
1370  */
1371 #ifdef __BIG_ENDIAN
bitmap_copy_le(unsigned long * dst,const unsigned long * src,unsigned int nbits)1372 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1373 {
1374 	unsigned int i;
1375 
1376 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1377 		if (BITS_PER_LONG == 64)
1378 			dst[i] = cpu_to_le64(src[i]);
1379 		else
1380 			dst[i] = cpu_to_le32(src[i]);
1381 	}
1382 }
1383 EXPORT_SYMBOL(bitmap_copy_le);
1384 #endif
1385 
bitmap_alloc(unsigned int nbits,gfp_t flags)1386 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1387 {
1388 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1389 			     flags);
1390 }
1391 EXPORT_SYMBOL(bitmap_alloc);
1392 
bitmap_zalloc(unsigned int nbits,gfp_t flags)1393 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1394 {
1395 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1396 }
1397 EXPORT_SYMBOL(bitmap_zalloc);
1398 
bitmap_alloc_node(unsigned int nbits,gfp_t flags,int node)1399 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
1400 {
1401 	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1402 				  flags, node);
1403 }
1404 EXPORT_SYMBOL(bitmap_alloc_node);
1405 
bitmap_zalloc_node(unsigned int nbits,gfp_t flags,int node)1406 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
1407 {
1408 	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
1409 }
1410 EXPORT_SYMBOL(bitmap_zalloc_node);
1411 
bitmap_free(const unsigned long * bitmap)1412 void bitmap_free(const unsigned long *bitmap)
1413 {
1414 	kfree(bitmap);
1415 }
1416 EXPORT_SYMBOL(bitmap_free);
1417 
devm_bitmap_free(void * data)1418 static void devm_bitmap_free(void *data)
1419 {
1420 	unsigned long *bitmap = data;
1421 
1422 	bitmap_free(bitmap);
1423 }
1424 
devm_bitmap_alloc(struct device * dev,unsigned int nbits,gfp_t flags)1425 unsigned long *devm_bitmap_alloc(struct device *dev,
1426 				 unsigned int nbits, gfp_t flags)
1427 {
1428 	unsigned long *bitmap;
1429 	int ret;
1430 
1431 	bitmap = bitmap_alloc(nbits, flags);
1432 	if (!bitmap)
1433 		return NULL;
1434 
1435 	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1436 	if (ret)
1437 		return NULL;
1438 
1439 	return bitmap;
1440 }
1441 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1442 
devm_bitmap_zalloc(struct device * dev,unsigned int nbits,gfp_t flags)1443 unsigned long *devm_bitmap_zalloc(struct device *dev,
1444 				  unsigned int nbits, gfp_t flags)
1445 {
1446 	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1447 }
1448 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1449 
1450 #if BITS_PER_LONG == 64
1451 /**
1452  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1453  *	@bitmap: array of unsigned longs, the destination bitmap
1454  *	@buf: array of u32 (in host byte order), the source bitmap
1455  *	@nbits: number of bits in @bitmap
1456  */
bitmap_from_arr32(unsigned long * bitmap,const u32 * buf,unsigned int nbits)1457 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1458 {
1459 	unsigned int i, halfwords;
1460 
1461 	halfwords = DIV_ROUND_UP(nbits, 32);
1462 	for (i = 0; i < halfwords; i++) {
1463 		bitmap[i/2] = (unsigned long) buf[i];
1464 		if (++i < halfwords)
1465 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1466 	}
1467 
1468 	/* Clear tail bits in last word beyond nbits. */
1469 	if (nbits % BITS_PER_LONG)
1470 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1471 }
1472 EXPORT_SYMBOL(bitmap_from_arr32);
1473 
1474 /**
1475  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1476  *	@buf: array of u32 (in host byte order), the dest bitmap
1477  *	@bitmap: array of unsigned longs, the source bitmap
1478  *	@nbits: number of bits in @bitmap
1479  */
bitmap_to_arr32(u32 * buf,const unsigned long * bitmap,unsigned int nbits)1480 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1481 {
1482 	unsigned int i, halfwords;
1483 
1484 	halfwords = DIV_ROUND_UP(nbits, 32);
1485 	for (i = 0; i < halfwords; i++) {
1486 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1487 		if (++i < halfwords)
1488 			buf[i] = (u32) (bitmap[i/2] >> 32);
1489 	}
1490 
1491 	/* Clear tail bits in last element of array beyond nbits. */
1492 	if (nbits % BITS_PER_LONG)
1493 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1494 }
1495 EXPORT_SYMBOL(bitmap_to_arr32);
1496 #endif
1497 
1498 #if BITS_PER_LONG == 32
1499 /**
1500  * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
1501  *	@bitmap: array of unsigned longs, the destination bitmap
1502  *	@buf: array of u64 (in host byte order), the source bitmap
1503  *	@nbits: number of bits in @bitmap
1504  */
bitmap_from_arr64(unsigned long * bitmap,const u64 * buf,unsigned int nbits)1505 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
1506 {
1507 	int n;
1508 
1509 	for (n = nbits; n > 0; n -= 64) {
1510 		u64 val = *buf++;
1511 
1512 		*bitmap++ = val;
1513 		if (n > 32)
1514 			*bitmap++ = val >> 32;
1515 	}
1516 
1517 	/*
1518 	 * Clear tail bits in the last word beyond nbits.
1519 	 *
1520 	 * Negative index is OK because here we point to the word next
1521 	 * to the last word of the bitmap, except for nbits == 0, which
1522 	 * is tested implicitly.
1523 	 */
1524 	if (nbits % BITS_PER_LONG)
1525 		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
1526 }
1527 EXPORT_SYMBOL(bitmap_from_arr64);
1528 
1529 /**
1530  * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
1531  *	@buf: array of u64 (in host byte order), the dest bitmap
1532  *	@bitmap: array of unsigned longs, the source bitmap
1533  *	@nbits: number of bits in @bitmap
1534  */
bitmap_to_arr64(u64 * buf,const unsigned long * bitmap,unsigned int nbits)1535 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
1536 {
1537 	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
1538 
1539 	while (bitmap < end) {
1540 		*buf = *bitmap++;
1541 		if (bitmap < end)
1542 			*buf |= (u64)(*bitmap++) << 32;
1543 		buf++;
1544 	}
1545 
1546 	/* Clear tail bits in the last element of array beyond nbits. */
1547 	if (nbits % 64)
1548 		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
1549 }
1550 EXPORT_SYMBOL(bitmap_to_arr64);
1551 #endif
1552